Predicting Long-Term Care Service Demands for Cancer Patients: A Machine Learning Approach
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. LTC 2.0 Services
2.2. Model Construction and Data Preprocessing
2.3. Sensitivity Analysis
3. Results
3.1. LTC Service Utilization Differences among Various Cancer Types
3.2. Top 20 Efficient Model Cutoff Points in UPM
3.3. Top 5 Efficient Model Cutoff Points in CSPM
4. Discussion
4.1. Main Findings
4.2. Implications
4.3. Comparison with Previous Research
4.4. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin. 2015, 65, 87–108. [Google Scholar] [CrossRef] [PubMed]
- Lovelace, D.L.; McDaniel, L.R.; Golden, D. Long-Term Effects of Breast Cancer Surgery, Treatment, and Survivor Care. J. Midwifery Womens Health 2019, 64, 713–724. [Google Scholar] [CrossRef] [PubMed]
- Gopal, D.P.; de Rooij, B.H.; Ezendam, N.P.; Taylor, S.J. Delivering long-term cancer care in primary care. Br. J. Gen. Pract. 2020, 70, 226–227. [Google Scholar] [CrossRef] [PubMed]
- Burke, O.; Levine, S.K.; Mir, N.; Gleason, L.J. Transitions of care for advanced cancer in post-acute and long-term care. J. Am. Geriatr. Soc. 2023, 71, 1680–1684. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zhang, X.; Xu, X. Health Insurance and Long-Term Care Services for the Disabled Elderly in China: Based on CHARLS Data. Risk Manag. Healthc. Policy 2020, 13, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Theobald, H.; Chon, Y. Home care development in Korea and Germany: The interplay of long-term care and professionalization policies. Soc. Pol. Admin. 2020, 54, 615–629. [Google Scholar] [CrossRef]
- Wang, T.; Molassiotis, A.; Chung, B.P.M.; Tan, J.Y. Unmet care needs of advanced cancer patients and their informal caregivers: A systematic review. BMC Palliat. Care 2018, 17, 96. [Google Scholar] [CrossRef] [PubMed]
- Otsuki, N.; Yamamoto, R.; Sakaguchi, Y.; Masukawa, K.; Morita, T.; Kizawa, Y.; Tsuneto, S.; Shima, Y.; Fukui, S.; Miyashita, M. Care needs level in long-term care insurance system and family caregivers’ self-perceived time-dependent burden in patients with home palliative care for cancer: A cross-sectional study. Support. Care Cancer 2022, 30, 1587–1596. [Google Scholar] [CrossRef]
- Sato, J.; Mitsutake, N.; Kitsuregawa, M.; Ishikawa, T.; Goda, K. Predicting demand for long-term care using Japanese healthcare insurance claims data. Environ. Health Prev. Med. 2022, 27, 42. [Google Scholar] [CrossRef]
- Fukunishi, H.; Kobayashi, Y. Care-needs level prediction for elderly long-term care using insurance claims data. Inform. Med. Unlocked 2023, 41, 101321. [Google Scholar] [CrossRef]
- Chen, K.-M.; Hsiang, C.-W.; Chao, S.-F.; Lin, M.-J.; Tseng, K.-J.; Chou, Y.-H.; Hsieh, J.-L.; Chen, Y.-M. Using Taiwanese Universal Health Insurance Data to Estimate LTC Needs with Machine Learning. Innov. Aging 2021, 5, 1019. [Google Scholar] [CrossRef]
- Kerns, S.L.; Fung, C.; Monahan, P.O.; Ardeshir-Rouhani-Fard, S.; Abu Zaid, M.I.; Williams, A.M.; Stump, T.E.; Sesso, H.D.; Feldman, D.R.; Hamilton, R.J.; et al. Cumulative Burden of Morbidity Among Testicular Cancer Survivors After Standard Cisplatin-Based Chemotherapy: A Multi-Institutional Study. J. Clin. Oncol. 2018, 36, 1505–1512. [Google Scholar] [CrossRef]
- Cortis, L.J.; Ward, P.R.; McKinnon, R.A.; Koczwara, B. Integrated care in cancer: What is it, how is it used and where are the gaps? A textual narrative literature synthesis. Eur. J. Cancer Care 2017, 26, e12689. [Google Scholar] [CrossRef]
- Yang, C.C.; Hsueh, J.Y.; Wei, C.Y. Current Status of Long-term Care in Taiwan: Transition of Long-term Care Plan From 1.0 to 2.0. Int. J. Health Policy Manag. 2020, 9, 363–364. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.-H.; Pai, F.-Y.; Yeh, T.-M. Using the Importance–Satisfaction Model and Service Quality Performance Matrix to Improve Long-Term Care Service Quality in Taiwan. Appl. Sci. 2019, 10, 85. [Google Scholar] [CrossRef]
- Young, Y.; Hsu, W.H.; Chen, Y.M.; Chung, K.P.; Chen, H.H.; Kane, C.; Shayya, A.; Schumacher, P.; Yeh, Y.P. Determinants associated with medical-related long-term care service use among community-dwelling older adults in Taiwan. Geriatr. Nurs. 2022, 48, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Zou, H. The Adaptive Lasso and Its Oracle Properties. J. Amer. Stat. Assoc. 2012, 101, 1418–1429. [Google Scholar] [CrossRef]
- Misra, P.; Yadav, A. Improving the classification accuracy using recursive feature elimination with cross-validation. Int. J. Emerg. Technol. 2020, 11, 659–665. [Google Scholar]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Shekar, B.; Dagnew, G. Grid search-based hyperparameter tuning and classification of microarray cancer data. In Proceedings of the 2019 Second International Conference on Advanced Computational and Communication Paradigms (ICACCP), Gangtok, India, 25–28 February 2019; pp. 1–8. [Google Scholar]
- Yang, S.; Berdine, G. The receiver operating characteristic (ROC) curve. Southwest Respir. Crit. Care Chron. 2017, 5, 34–36. [Google Scholar] [CrossRef]
- Yacouby, R.; Axman, D. Probabilistic extension of precision, recall, and f1 score for more thorough evaluation of classification models. In Proceedings of the First Workshop on Evaluation and Comparison of NLP Systems, Online, 20 November 2020; pp. 79–91. [Google Scholar]
- Fluss, R.; Faraggi, D.; Reiser, B. Estimation of the Youden Index and its associated cutoff point. Biom. J. 2005, 47, 458–472. [Google Scholar] [CrossRef]
- Sanders, R. The Pareto Principle: Its Use and Abuse. J. Serv. Mark. 1987, 1, 37–40. [Google Scholar] [CrossRef]
- Waring, J.; Lindvall, C.; Umeton, R. Automated machine learning: Review of the state-of-the-art and opportunities for healthcare. Artif. Intell. Med. 2020, 104, 101822. [Google Scholar] [CrossRef] [PubMed]
- Shahid, A.H.; Khattak, W.A. Improving Patient Care with Machine Learning: A Game-Changer for Healthcare. Appl. Res. Artif. Intell. Cloud Comput. 2022, 5, 150–163. [Google Scholar]
- Adelman, R.D.; Tmanova, L.L.; Delgado, D.; Dion, S.; Lachs, M.S. Caregiver burden: A clinical review. JAMA 2014, 311, 1052–1060. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Tang, F. More caregiving, less working: Caregiving roles and gender difference. J. Appl. Gerontol. 2015, 34, 465–483. [Google Scholar] [CrossRef]
- Neo, J.; Fettes, L.; Gao, W.; Higginson, I.J.; Maddocks, M. Disability in activities of daily living among adults with cancer: A systematic review and meta-analysis. Cancer Treat. Rev. 2017, 61, 94–106. [Google Scholar] [CrossRef]
- Lee Wong, C.; Choi, K.C.; Mei Nok, L.; Lam, K.L.; Wei So, W.K. Caregiving burden and sleep quality amongst family caregivers of Chinese male patients with advanced cancer: A cross-sectional study. Eur. J. Oncol. Nurs. 2020, 46, 101774. [Google Scholar] [CrossRef]
- Hassankhani, H.; Rahmani, A.; Best, A.; Taleghani, F.; Sanaat, Z.; Dehghannezhad, J. Barriers to home-based palliative care in people with cancer: A qualitative study of the perspective of caregivers. Nurs. Open 2020, 7, 1260–1268. [Google Scholar] [CrossRef]
- Barda, N.; Riesel, D.; Akriv, A.; Levy, J.; Finkel, U.; Yona, G.; Greenfeld, D.; Sheiba, S.; Somer, J.; Bachmat, E.; et al. Developing a COVID-19 mortality risk prediction model when individual-level data are not available. Nat. Commun. 2020, 11, 4439. [Google Scholar] [CrossRef]
- Kruse, C.S.; Mileski, M.; Vijaykumar, A.G.; Viswanathan, S.V.; Suskandla, U.; Chidambaram, Y. Impact of Electronic Health Records on Long-Term Care Facilities: Systematic Review. JMIR Med. Inform. 2017, 5, e35. [Google Scholar] [CrossRef] [PubMed]
- Koch, L.; Jansen, L.; Brenner, H.; Arndt, V. Fear of recurrence and disease progression in long-term (>/= 5 years) cancer survivors—A systematic review of quantitative studies. Psychooncology 2013, 22, 1–11. [Google Scholar] [CrossRef] [PubMed]
Cancer Types | N of Cases | N of Usage | T-Statistic | p-Value | |||
---|---|---|---|---|---|---|---|
Total | Users | % | Mean | (SD) | |||
Colorectal | 586 | 236 | 40.3 | 216.5 | (327.0) | 0.465 | 0.642 |
Lung | 541 | 192 | 35.5 | 135.9 | (276.1) | −3.272 *** | 0.001 |
Liver | 334 | 112 | 33.5 | 123.7 | (187.4) | −2.831 ** | 0.005 |
Breast | 330 | 138 | 41.8 | 258.2 | (363.4) | 1.920 | 0.055 |
Prostate | 313 | 132 | 42.2 | 214.7 | (314.9) | 0.267 | 0.789 |
Other | 187 | 87 | 46.5 | 187.9 | (309.3) | −0.576 | 0.565 |
Bladder | 176 | 66 | 37.5 | 264.1 | (294.4) | 1.440 | 0.150 |
Oral | 158 | 76 | 48.1 | 271.8 | (357.7) | 1.762 | 0.078 |
Brain | 124 | 39 | 31.5 | 310.0 | (405.1) | 1.986 * | 0.047 |
Lymphoma | 119 | 39 | 32.8 | 237.3 | (345.8) | 0.577 | 0.564 |
Myeloma | 113 | 22 | 19.5 | 248.4 | (584.0) | 0.591 | 0.555 |
Cervical | 106 | 50 | 47.2 | 259.2 | (410.7) | 1.137 | 0.256 |
Stomach | 104 | 35 | 33.7 | 185.1 | (253.4) | −0.408 | 0.683 |
Kidney | 84 | 27 | 32.1 | 270.1 | (425.0) | 1.004 | 0.316 |
Pancreatic | 67 | 26 | 38.8 | 52.0 | (76.2) | −2.448 * | 0.015 |
Skin | 61 | 25 | 41.0 | 205.8 | (361.2) | −0.025 | 0.980 |
Nasopharyngeal | 58 | 25 | 43.1 | 222.4 | (467.8) | 0.231 | 0.817 |
Laryngeal | 58 | 21 | 36.2 | 249.4 | (361.0) | 0.592 | 0.554 |
Esophageal | 55 | 18 | 32.7 | 210.7 | (214.7) | 0.042 | 0.967 |
Tongue | 54 | 25 | 46.3 | 180.2 | (271.3) | −0.419 | 0.675 |
COP | COV | NoLs | NoFs | MLM | Performance Metrics | Best Parameters | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
AUROC | Recall | Precision | F1 | |||||||||
0 | 1 | Test | Valid | |||||||||
84 | 167.9 | 284 | 50 | 22 | LR | (L + S) | 0.728 | 0.690 (0.018) | 0.74 | 0.285 | 0.411 | C = 10,000, Sol = ‘lbfgs’ |
84 | 167.9 | 284 | 50 | 22 | LDA | (L + S) | 0.72 | 0.687 (0.026) | 0.74 | 0.287 | 0.413 | NC = None, S = ‘auto’, Sol = ‘lsqr’ |
72 | 37 | 256 | 78 | 39 | QDA | (L + S) | 0.718 | 0.658 (0.034) | 0.808 | 0.403 | 0.495 | RP = 0.2, SC = True |
78 | 80 | 271 | 63 | 38 | BC | (L + S) | 0.714 | 0.639 (0.039) | 0.825 | 0.297 | 0.437 | MF = 0.5, MS = 0.5, NE = 100 |
84 | 167.9 | 284 | 50 | 22 | AB | (L + S) | 0.713 | 0.691 (0.048) | 0.74 | 0.28 | 0.407 | LR = 1, NE = 200 |
70.5 | 32 | 249 | 85 | 37 | QDA | (L + S) | 0.713 | 0.657 (0.032) | 0.812 | 0.365 | 0.504 | RP = 0.3, SC = True |
71.5 | 36 | 254 | 80 | 59 | QDA | (L + S) | 0.711 | 0.666 (0.032) | 0.713 | 0.385 | 0.5 | RP = 0.2, SC = True |
72.5 | 40 | 259 | 75 | 38 | ET | (L + S) | 0.711 | 0.649 (0.035) | 0.827 | 0.348 | 0.49 | MD = 10, MSS = 5, NE = 200 |
84 | 167.9 | 284 | 50 | 22 | QDA | (L + S) | 0.711 | 0.675 (0.034) | 0.78 | 0.267 | 0.398 | RP = 0.2, SC = True |
72 | 37 | 256 | 78 | 39 | XGB | (L + S) | 0.711 | 0.641 (0.030) | 0.859 | 0.333 | 0.48 | G = 0.1, LR = 0.05, MD = 8, MCW = 2, NE = 1000 |
72.5 | 40 | 259 | 75 | 38 | BC | (L + S) | 0.71 | 0.644 (0.036) | 0.747 | 0.358 | 0.477 | MF = 0.5, MS = 1.0, NE = 100 |
83 | 150 | 282 | 52 | 40 | QDA | (L + S) | 0.71 | 0.676 (0.044) | 0.808 | 0.278 | 0.414 | RP = 0.2, SC = True |
83 | 150 | 282 | 52 | 40 | AB | (L + S) | 0.71 | 0.687 (0.028) | 0.75 | 0.293 | 0.422 | LR = 1, NE = 200 |
69.5 | 29 | 243 | 91 | 36 | QDA | (L + S) | 0.71 | 0.664 (0.040) | 0.736 | 0.435 | 0.547 | RP = 0.4, SC = True |
66.5 | 20.8 | 232 | 102 | 56 | XGB | (L + S) | 0.71 | 0.630 (0.040) | 0.873 | 0.426 | 0.572 | G = 0.1, LR = 0.05, MD = 8, MCW = 2, NE = 1000 |
72.5 | 40 | 259 | 75 | 38 | AB | (L + S) | 0.709 | 0.682 (0.034) | 0.653 | 0.353 | 0.458 | LR = 1, NE = 200 |
83.5 | 157.2 | 282 | 52 | 44 | LDA | (L + S) | 0.709 | 0.683 (0.031) | 0.712 | 0.266 | 0.387 | NC = None, S = ‘auto’, Sol = ‘lsqr’ |
70.5 | 32 | 249 | 85 | 37 | XGB | (L + S) | 0.708 | 0.644 (0.025) | 0.682 | 0.406 | 0.509 | G = 0.1, LR = 0.05, MD = 8, MCW = 3, NE = 1000 |
84 | 167.9 | 284 | 50 | 22 | LR | (L) | 0.708 | 0.688 (0.033) | 0.86 | 0.231 | 0.364 | C = 207, Sol = ‘newton-cg’ |
68 | 24 | 236 | 98 | 37 | QDA | (L + S) | 0.707 | 0.662 (0.032) | 0.643 | 0.46 | 0.536 | RP = 0.3, SC = True |
COP | COV | NoLs | NoFs | MLM | Performance Metrics | Best Parameters | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
AUROC | Recall | Precision | F1 | |||||||||
0 | 1 | Test | Valid | |||||||||
Assistance with bathing and shampooing (number of usages = 61,451) | ||||||||||||
95 | 129.8 | 320 | 14 | 30 | QDA | (RFE) | 0.837 | 0.764 (0.043) | 0.929 | 0.108 | 0.194 | RP = 0.3, SC = True |
95 | 129.8 | 320 | 14 | 30 | LDA | (RFE) | 0.826 | 0.773 (0.064) | 1 | 0.091 | 0.167 | S = 0.1, Sol = ‘lsqr’ |
95 | 129.8 | 320 | 14 | 30 | LR | (RFE) | 0.824 | 0.767 (0.070) | 0.857 | 0.118 | 0.207 | C = 100, Sol = ‘newton-cg’ |
95 | 129.8 | 320 | 14 | 30 | GB | (RFE) | 0.806 | 0.751 (0.037) | 0.929 | 0.103 | 0.186 | MIP = 50, NRO = 0 |
93.5 | 97 | 314 | 20 | 30 | LR | (RFE) | 0.795 | 0.750 (0.042) | 0.8 | 0.151 | 0.254 | C = 10,000, Sol = ‘newton-cg’ |
Accompanying outings (number of usages = 38,475) | ||||||||||||
95 | 53 | 320 | 14 | 30 | RF | (RFE) | 0.841 | 0.668 (0.050) | 0.857 | 0.13 | 0.226 | B = True, MD = 10, MSS = 5, NE = 200 |
95 | 53 | 320 | 14 | 30 | QDA | (RFE) | 0.815 | 0.687 (0.054) | 0.857 | 0.1 | 0.179 | RP = 0.1, SC = True |
95 | 53 | 320 | 14 | 30 | GB | (RFE) | 0.809 | 0.675 (0.045) | 0.857 | 0.111 | 0.197 | LR = 0.1, MD = 3, NE = 100 |
95 | 53 | 320 | 14 | 30 | XGB | (RFE) | 0.798 | 0.657 (0.072) | 0.929 | 0.089 | 0.163 | G = 0.1, LR = 0.05, MD = 8, MCW = 2, NE = 300, SS = 0.7 |
94 | 39 | 315 | 19 | 30 | GNB | (RFE) | 0.786 | 0.667 (0.056) | 0.789 | 0.169 | 0.278 | VS = 1 × 10−9 |
Meal care (number of usages = 37,279) | ||||||||||||
93.5 | 19 | 314 | 20 | 30 | LR | (RFE) | 0.784 | 0.724 (0.073) | 0.8 | 0.134 | 0.23 | C = 1, Sol = ‘newton-cg’ |
93.5 | 19 | 314 | 20 | 30 | LDA | (RFE) | 0.779 | 0.728 (0.075) | 0.75 | 0.15 | 0.25 | S = None, Sol = ‘svd’ |
93.5 | 19 | 314 | 20 | 30 | GB | (RFE) | 0.773 | 0.705 (0.048) | 0.75 | 0.139 | 0.234 | MIP = 50, NRO = 0 |
94 | 26.1 | 315 | 19 | 30 | LR | (RFE) | 0.76 | 0.740 (0.048) | 0.737 | 0.118 | 0.203 | C = 100, Sol = ‘newton-cg’ |
93.5 | 19 | 314 | 20 | 30 | GNB | (RFE) | 0.76 | 0.674 (0.090) | 0.8 | 0.131 | 0.225 | VS = 1 × 10−8 |
Household assistance (number of usages = 35,928) | ||||||||||||
90 | 26 | 302 | 32 | 30 | BC | (RFE) | 0.777 | 0.687 (0.045) | 0.688 | 0.265 | 0.383 | MS = 0.5, NE = 50 |
92 | 43.4 | 308 | 26 | 30 | LDA | (RFE) | 0.776 | 0.746 (0.044) | 0.769 | 0.22 | 0.342 | S = ‘auto’, Sol = ‘lsqr’ |
91 | 33 | 304 | 30 | 30 | LR | (RFE) | 0.765 | 0.745 (0.043) | 0.767 | 0.207 | 0.326 | C = 1, Sol = ‘newton-cg’ |
93.5 | 60.4 | 314 | 20 | 30 | BC | (RFE) | 0.765 | 0.677 (0.051) | 0.9 | 0.133 | 0.232 | MS = 1.0, NE = 50 |
89.5 | 24 | 301 | 33 | 30 | SVM | (RFE) | 0.76 | 0.628 (0.060) | 0.848 | 0.19 | 0.311 | C = 0.1, G = 1, K = ‘linear’ |
Companion services (number of usages = 34,154) | ||||||||||||
94 | 26.1 | 315 | 19 | 30 | QDA | (RFE) | 0.799 | 0.646 (0.037) | 0.684 | 0.191 | 0.299 | RP = 0.1, SC = True |
92.5 | 12 | 310 | 24 | 30 | LDA | (RFE) | 0.792 | 0.698 (0.077) | 0.875 | 0.181 | 0.3 | S = None, Sol = ‘svd’ |
94.5 | 33.5 | 320 | 14 | 30 | MNB | (RFE) | 0.79 | 0.686 (0.077) | 0.857 | 0.099 | 0.178 | A = 1 |
94.5 | 33.5 | 320 | 14 | 30 | QDA | (RFE) | 0.789 | 0.674 (0.082) | 0.929 | 0.109 | 0.195 | RP = 0.1, SC = True |
92.5 | 12 | 310 | 24 | 30 | LR | (RFE) | 0.789 | 0.699 (0.049) | 0.833 | 0.161 | 0.27 | C = 10,000, Sol = ‘newton-cg’ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chien, S.-C.; Chang, Y.-H.; Yen, C.-M.; Chen, Y.-E.; Liu, C.-C.; Hsiao, Y.-P.; Yang, P.-Y.; Lin, H.-M.; Lu, X.-H.; Wu, I.-C.; et al. Predicting Long-Term Care Service Demands for Cancer Patients: A Machine Learning Approach. Cancers 2023, 15, 4598. https://doi.org/10.3390/cancers15184598
Chien S-C, Chang Y-H, Yen C-M, Chen Y-E, Liu C-C, Hsiao Y-P, Yang P-Y, Lin H-M, Lu X-H, Wu I-C, et al. Predicting Long-Term Care Service Demands for Cancer Patients: A Machine Learning Approach. Cancers. 2023; 15(18):4598. https://doi.org/10.3390/cancers15184598
Chicago/Turabian StyleChien, Shuo-Chen, Yu-Hung Chang, Chia-Ming Yen, Ying-Erh Chen, Chia-Chun Liu, Yu-Ping Hsiao, Ping-Yen Yang, Hong-Ming Lin, Xing-Hua Lu, I-Chien Wu, and et al. 2023. "Predicting Long-Term Care Service Demands for Cancer Patients: A Machine Learning Approach" Cancers 15, no. 18: 4598. https://doi.org/10.3390/cancers15184598
APA StyleChien, S. -C., Chang, Y. -H., Yen, C. -M., Chen, Y. -E., Liu, C. -C., Hsiao, Y. -P., Yang, P. -Y., Lin, H. -M., Lu, X. -H., Wu, I. -C., Hsu, C. -C., Chiou, H. -Y., & Chung, R. -H. (2023). Predicting Long-Term Care Service Demands for Cancer Patients: A Machine Learning Approach. Cancers, 15(18), 4598. https://doi.org/10.3390/cancers15184598