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Simple Summary: Understanding the long-term care needs of cancer patients is crucial for healthcare
providers and policymakers, as this area remains understudied. This research aims to fill this
knowledge gap by employing machine learning algorithms to predict the kinds of services that these
patients may require. We have developed two specialized models: one provides a generalized view
of potential service needs, and the other makes more specific service-type predictions. Our findings
identify not only the types of cancer that significantly differ in their care service usage but also key
demographic and health-related factors that influence these needs. This research offers valuable
insights that could guide the allocation of healthcare resources and customized care interventions for
cancer patients.

Abstract: Background: Long-term care (LTC) service demands among cancer patients are significantly
understudied, leading to gaps in healthcare resource allocation and policymaking. Objective: This
study aimed to predict LTC service demands for cancer patients and identify the crucial factors.
Methods: 3333 cases of cancers were included. We further developed two specialized prediction
models: a Unified Prediction Model (UPM) and a Category-Specific Prediction Model (CSPM).
The UPM offered generalized forecasts by treating all services as identical, while the CSPM built
individual predictive models for each specific service type. Sensitivity analysis was also conducted to
find optimal usage cutoff points for determining the usage and non-usage cases. Results: Service
usage differences in lung, liver, brain, and pancreatic cancers were significant. For the UPM, the
top 20 performance model cutoff points were adopted, such as through Logistic Regression (LR),
Quadratic Discriminant Analysis (QDA), and XGBoost (XGB), achieving an AUROC range of 0.707
to 0.728. The CSPM demonstrated performance with an AUROC ranging from 0.777 to 0.837 for
the top five most frequently used services. The most critical predictive factors were the types of
cancer, patients’ age and female caregivers, and specific health needs. Conclusion: The results of our
study provide valuable information for healthcare decisions, resource allocation optimization, and
personalized long-term care usage for cancer patients.

Keywords: machine learning; long-term care services; demands prediction; cancer patients; health-
care advancements; sensitivity analysis

1. Introduction

Cancer is not only a leading cause of mortality worldwide but also a significant
stressor on global healthcare systems [1]. The intricate nature of cancer, combined with
often-debilitating treatments such as chemotherapy and radiation, results in a complex
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array of physical and psychosocial challenges for patients [2,3]. These challenges, which
can significantly compromise a patient’s quality of life, underline the necessity of a multi-
faceted approach to healthcare, one that goes beyond immediate medical treatment [4].

In this context, long-term care (LTC) services emerge as an essential component of
comprehensive healthcare, particularly for the aging population and those grappling with
chronic illnesses like cancer [3]. LTC services are multifaceted, aiming to address the needs
of individuals who are hampered in their ability to manage daily living activities [5]. This
includes not only medical tasks but also personal care and household chores, all contribut-
ing to the enhancement of the patient’s overall quality of life and health outcomes [6,7].
Nevertheless, with the ever-increasing demand for these indispensable services, optimizing
the allocation of scarce LTC resources has become increasingly imperative [8].

Despite the critical role of LTC services in healthcare, the current literature is somewhat
limited in delineating how these services are utilized specifically by cancer patients. Prior
studies have employed machine learning (ML) techniques for predicting LTC needs; how-
ever, they often limit their scope to very specific service usage scenarios. For instance, two
Japanese studies used healthcare insurance claims and multiclass classification to predict
eligibility for government allowances instead of assessing demand for LTC services directly,
with one study focusing on people over 75 [9,10]. In contrast, a study from Taiwan forecasts
the scores for difficulties in Activities of Daily Living (ADL) and Instrumental Activities of
Daily Living (IADL), achieving mean absolute errors of 17.67 and 1.31, respectively [11].
Meanwhile, another study focused on predicting the demand for emergency house call
services, potentially neglecting other non-emergency but equally critical services [8]. Such
a narrow focus inherently limits the generalizability of these methods, as it fails to capture
the comprehensive care needs specific to cancer patients, who often require a variety of
services due to the multi-faceted nature of their disease and treatment regimens [12,13].
A more nuanced understanding of the demand for LTC services among cancer patients,
coupled with a tailored prediction model, is urgently needed to address these gaps in
existing research.

To address these shortcomings and knowledge gaps, this study aims to provide a
comprehensive and targeted overview of LTC service utilization patterns among cancer
patients. First of all, we explored the costs and usage across a wide range of services
and examined how these patterns differ among various forms of cancer. In addition,
by employing machine learning (ML) techniques, we established both a comprehensive
predictive model for long-term care (LTC) service utilization and specialized models for
each specific service, thereby providing a flexible and universally applicable approach for
understanding and anticipating LTC demands. Moreover, our study conducted a sensitivity
analysis to identify the optimal usage frequency cutoff point that best distinguishes between
those people who would and would not utilize LTC services.

2. Materials and Methods

This study is a retrospective analysis that employed data collected between August
2019 and December 2022 in Ping-Tung County, a regional administrative division in south-
ern Taiwan. Ethical approval for this research was granted by the Institutional Review
Board of the National Health Research Institutes, under protocol codes EC1091216-1 and
20211123.

2.1. LTC 2.0 Services

The study population for this research consists of individuals who have received
services from LTC 2.0, a program formulated by the Taiwan central government and
implemented by local authorities [14]. Before accessing LTC services, recipients undergo
a comprehensive evaluation that includes various metrics such as demographics, disease
history and condition, communication skills, short-term memory, Activities of Daily Living
(ADL), Instrumental Activities of Daily Living (IADL), medical history, nutrition, and living
environment [14,15]. The results of this assessment serve as variables for constructing our
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predictive model in this study. To identify cancer cases, we relied on evaluation records
that indicated a cancer diagnosis within the past five years. Table S2 summarizes the
services provided by LTC 2.0. There exist more than 50 distinct types, which can be
basically classified into five categories, including homecare, daycare and adult foster
service, professional service, transportation, respite service, and others [16].

2.2. Model Construction and Data Preprocessing

Figure 1 illustrates the conceptual framework for our study’s long-term care (LTC)
service demand prediction models. We developed two main types of predictive models
for this research. The “Unified Prediction Model (UPM)” is a comprehensive model that
takes into account all types of services available in the LTC system. In contrast, the
“Category-Specific Prediction Models (CSPMs)” are specialized models focused on the five
most frequently utilized types of services. Both models make use of a variety of machine
learning methods in their formulation. The UPM aims for a broader, more generalized
prediction, while the CSPMs offer more targeted forecasts for specific types of services.
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In our dataset, we included a total of 462 features, of which 406 were related to the case
(care recipient) and 56 were related to the caregiver (Table S3). In the data preprocessing
phase, we streamlined the dataset by removing redundant features and converting numeri-
cal attributes into binary variables. To achieve this, we employed the median as a threshold
for discretizing continuous variables, coding values greater than the median as one and
those less than or equal to the median as zero. Regarding the treatment of missing values,
we used the median to substitute the missing values for numerical types and introduced
a new “Null” field to replace the missing state of a categorical feature. Following this
preprocessing, we partitioned the dataset into training and testing subsets. To rigorously
assess model performance, we executed 10-fold cross-validation solely on the training set.

To optimize model performance, several techniques were applied to the training
dataset. Initially, the Least Absolute Shrinkage and Selection Operator (LASSO) was used
for feature selection [17]. However, we found that in models for the top five most frequently
used services, LASSO could remove all features at certain cutoff points. To mitigate this, we
employed the Recursive Feature Elimination (RFE) method to select the 30 most important
features [18]. Meanwhile, to address data imbalance, the Synthetic Minority Over-Sampling
Technique (SMOTE) was applied [19]. Furthermore, the hyperparameter tuning was
carried out using grid search methods, examining an average of approximately 50 different
hyperparameters [20].

Finally, the top-performing model was selected using 10-fold cross-validation on the
training dataset. We then evaluated and reported its performance on an independent test



Cancers 2023, 15, 4598 4 of 14

set that the model had never encountered before. We assessed the performance of all
models using the Area Under the Receiver Operating Characteristic (AUROC) curve [21].
The AUROC serves as a measure of a model’s discriminatory ability, with performance
classifications ranging from “no discrimination” (AUROC of 0.5) to “outstanding discrimi-
nation” (AUROC greater than 0.9) [21]. Additional evaluation metrics such as precision,
recall, and F1 score were calculated using the Youden Index to provide a comprehensive
understanding [22,23].

2.3. Sensitivity Analysis

Our objective is to predict whether a case will utilize LTC services. We defined usage
status as either “usage” or “non-usage” based on the number of utilizations. To assess
the impact of varying cutoff points on the model’s performance and to determine the
optimal cutoff point that could effectively differentiate between usage and non-usage, we
conducted a sensitivity analysis, while the conceptual framework is presented in Figure S2.

To conduct a thorough sensitivity analysis, we first organized all cases in ascending
order according to the number of service users. We defined cutoff points at 0.5% percentile
increments to frame this analysis. For each cutoff point, we deployed 16 distinct ML
algorithms to construct predictive models.

In the case of the UPM, which considered various service categories as one, we
designated a sensitivity analysis range of 15% to 85%. This selection was informed by
the Pareto principle, commonly known as the 80–20 rule [24]. The principle suggests that
approximately 80% of outcomes typically originate from just 20% of contributing factors.
To ensure a more comprehensive data overview, we broadened this range by 5% at both
the lower and upper bounds.

In contrast, when building CSPMs, we noted that the most frequently used service
did not show any usage until the 75th percentile, accounting for less than a quarter of the
total usage. Given this observation, we extended the upper limit of the sensitivity analysis
range from 85% to 95%.

3. Results

During our study period from 2019 to 2022, we collected a total of 33,321 unique cases.
Figure S3 illustrates the process of selecting the study cohort, which includes analyzing
the disparities in LTC service utilization between cancer and non-cancer patients, as well
as the development of a cancer-specific LTC service demand prediction ML model. Out
of the total number of cases, 3333 patients were confirmed to have cancer based on their
evaluation records, indicating a cancer diagnosis within the previous five years. Table
S4 shows the demographics of all cases, as well as distinguishing between cancer and
non-cancer cases. The entire dataset comprised 33,321 cases, including 3333 cancer cases
and 29,988 non-cancer cases. The average age was marginally lower for cancer cases
(74.88 years) compared to non-cancer cases (76 years), and there were more male cases
in the cancer group (53.3%) than in the non-cancer group (41.6%). In terms of caregivers,
those caring for cancer patients had a higher mean age (53.16 years) and were slightly
less likely to be male (34.3%). Across all categories, 11.4% employed a caregiver, with
fewer cancer cases (8.5%) doing so compared to non-cancer cases (11.7%). The statistical
comparison of LTC service utilization between non-cancer and cancer cases can be found
in the Supplementary Materials (Figure S1 and Table S1).

3.1. LTC Service Utilization Differences among Various Cancer Types

In Table 1, which elucidates the LTC comparative statistics on service use across
various cancer types, a spectrum of noteworthy findings is presented (Figure S4). The table
encompasses various metrics, including the number of total cases (N of cases), the number
of service usages (N of usage), the T-statistic, and the p-value for each cancer type.
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Table 1. LTC comparative statistics on service use in various cancer cases.

Cancer Types
N of Cases N of Usage

T-Statistic p-Value
Total Users % Mean (SD)

Colorectal 586 236 40.3 216.5 (327.0) 0.465 0.642
Lung 541 192 35.5 135.9 (276.1) −3.272 *** 0.001
Liver 334 112 33.5 123.7 (187.4) −2.831 ** 0.005
Breast 330 138 41.8 258.2 (363.4) 1.920 0.055

Prostate 313 132 42.2 214.7 (314.9) 0.267 0.789
Other 187 87 46.5 187.9 (309.3) −0.576 0.565

Bladder 176 66 37.5 264.1 (294.4) 1.440 0.150
Oral 158 76 48.1 271.8 (357.7) 1.762 0.078
Brain 124 39 31.5 310.0 (405.1) 1.986 * 0.047

Lymphoma 119 39 32.8 237.3 (345.8) 0.577 0.564
Myeloma 113 22 19.5 248.4 (584.0) 0.591 0.555
Cervical 106 50 47.2 259.2 (410.7) 1.137 0.256
Stomach 104 35 33.7 185.1 (253.4) −0.408 0.683
Kidney 84 27 32.1 270.1 (425.0) 1.004 0.316

Pancreatic 67 26 38.8 52.0 (76.2) −2.448 * 0.015
Skin 61 25 41.0 205.8 (361.2) −0.025 0.980

Nasopharyngeal 58 25 43.1 222.4 (467.8) 0.231 0.817
Laryngeal 58 21 36.2 249.4 (361.0) 0.592 0.554

Esophageal 55 18 32.7 210.7 (214.7) 0.042 0.967
Tongue 54 25 46.3 180.2 (271.3) −0.419 0.675

N = Number; SD = Standard deviation. * = p < 0.05; ** = p < 0.01; *** = p < 0.001.

We employed a one-vs-all t-test to evaluate service usage differences among various
types of cancer based on their number of service usages. The analysis revealed statistically
significant deviations in service usage for four types of cancer: lung, liver, brain, and
pancreatic. Specifically, lung cancer cases were marked by a mean usage of 135.9, supported
by a significant result (t = −3.272, p = 0.001). Similarly, liver cancer had a mean usage of
123.7 (t = −2.831, p = 0.005). Conversely, brain cancer showed an elevated mean usage of
310.0 (t = 1.986, p = 0.047), indicative of higher service consumption. Pancreatic cancer also
revealed significance, with a p-value of 0.015 (t = −2.448), and displayed a lower mean
usage of 52.0.

Regarding usage rate, oral cancer cases were marked by a usage rate of 48.1, cervical
by 47.2, other by 46.5, and myeloma by a strikingly lower rate of 19.5. These salient
statistics provide not only a nuanced understanding of disparities in service usage rates
among diverse cancer types but also insight into the usage rate. Such findings are pivotal
for healthcare resource allocation and the formulation of more personalized patient care
strategies.

We examined the differences in LTC service usage among various types of cancers,
and the results are visualized through the heat map in Figure 2. The X-axis labels represent
the different cancer types sorted in ascending order based on the number of usages. The
heat box for each cancer type was calculated by dividing the number of specific service
usages by the total number of specific service usages.

The analysis of the utilization rates of different care services among various cancer
types indicated distinct patterns. For instance, individuals diagnosed with pancreatic
cancer showed a particularly high reliance (35.7% of total usage) on assistance for basic
body hygiene. This elevated utilization rate can be attributed to the decreased mobility and
energy levels of these patients due to the aggressive nature of pancreatic cancer and its
treatment methods. Furthermore, a significant utilization rate of meal care services was
observed among bile duct cancer cases, with nearly half of the total usages (48.1%), which
could be attributed to their need for a specialized diet.
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Notably, cases of blood cancer (Leukemia) and tongue cancer tended to utilize services
such as household assistance (24.6% of total usage) and assistance with shopping, collection,
or delivery service (17.7% of total usage) more frequently due to their communication and
mobility skill disabilities. These analyses provide a detailed understanding of the care
needs of different cancer patients and could inform strategies to optimize the provision of
care services.

3.2. Top 20 Efficient Model Cutoff Points in UPM

We utilized 16 distinct machine learning algorithms, coupled with sensitivity analysis,
to evaluate the influence of different cutoff thresholds on model performance and to pin-
point the optimal threshold for effectively distinguishing between usage and non-usage.
The performance metrics were evaluated using an independent test set (Tables S5–S8). A
comprehensive overview of the top 20 best performance model cutoff points is presented,
ranked by their AUROC scores on the test set (Table 2), while additional details are avail-
able in Tables S5–S8. The models we assessed include Logistic Regression (LR), Linear
Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), Bagging Classifier
(BC), AdaBoost (AB), Extra Trees (ET), and XGBoost (XGB). To manage feature selection
and class imbalance, we either employed LASSO as a standalone technique (denoted as
“L”) or combined LASSO with SMOTE (denoted as “L + S”). The AUROC scores across
these models ranged from 0.707 to 0.728.
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Table 2. Summary of top 20 efficient performance model cutoff points (sorted by AUROC).

COP COV
NoLs

NoFs MLM

Performance Metrics

Best ParametersAUROC
Recall Precision F1

0 1 Test Valid

84 167.9 284 50 22 LR (L + S) 0.728 0.690
(0.018) 0.74 0.285 0.411 C = 10,000, Sol =

‘lbfgs’

84 167.9 284 50 22 LDA (L + S) 0.72 0.687
(0.026) 0.74 0.287 0.413 NC = None, S =

‘auto’, Sol = ‘lsqr’

72 37 256 78 39 QDA (L + S) 0.718 0.658
(0.034) 0.808 0.403 0.495 RP = 0.2, SC =

True

78 80 271 63 38 BC (L + S) 0.714 0.639
(0.039) 0.825 0.297 0.437 MF = 0.5, MS =

0.5, NE = 100

84 167.9 284 50 22 AB (L + S) 0.713 0.691
(0.048) 0.74 0.28 0.407 LR = 1, NE = 200

70.5 32 249 85 37 QDA (L + S) 0.713 0.657
(0.032) 0.812 0.365 0.504 RP = 0.3, SC =

True

71.5 36 254 80 59 QDA (L + S) 0.711 0.666
(0.032) 0.713 0.385 0.5 RP = 0.2, SC =

True

72.5 40 259 75 38 ET (L + S) 0.711 0.649
(0.035) 0.827 0.348 0.49 MD = 10, MSS = 5,

NE = 200

84 167.9 284 50 22 QDA (L + S) 0.711 0.675
(0.034) 0.78 0.267 0.398 RP = 0.2, SC =

True

72 37 256 78 39 XGB (L + S) 0.711 0.641
(0.030) 0.859 0.333 0.48

G = 0.1, LR = 0.05,
MD = 8, MCW = 2,

NE = 1000

72.5 40 259 75 38 BC (L + S) 0.71 0.644
(0.036) 0.747 0.358 0.477 MF = 0.5, MS =

1.0, NE = 100

83 150 282 52 40 QDA (L + S) 0.71 0.676
(0.044) 0.808 0.278 0.414 RP = 0.2, SC =

True

83 150 282 52 40 AB (L + S) 0.71 0.687
(0.028) 0.75 0.293 0.422 LR = 1, NE = 200

69.5 29 243 91 36 QDA (L + S) 0.71 0.664
(0.040) 0.736 0.435 0.547 RP = 0.4, SC =

True

66.5 20.8 232 102 56 XGB (L + S) 0.71 0.630
(0.040) 0.873 0.426 0.572

G = 0.1, LR = 0.05,
MD = 8, MCW = 2,

NE = 1000

72.5 40 259 75 38 AB (L + S) 0.709 0.682
(0.034) 0.653 0.353 0.458 LR = 1, NE = 200

83.5 157.2 282 52 44 LDA (L + S) 0.709 0.683
(0.031) 0.712 0.266 0.387 NC = None, S =

‘auto’, Sol = ‘lsqr’

70.5 32 249 85 37 XGB (L + S) 0.708 0.644
(0.025) 0.682 0.406 0.509

G = 0.1, LR = 0.05,
MD = 8, MCW = 3,

NE = 1000

84 167.9 284 50 22 LR (L) 0.708 0.688
(0.033) 0.86 0.231 0.364 C = 207, Sol =

‘newton-cg’

68 24 236 98 37 QDA (L + S) 0.707 0.662
(0.032) 0.643 0.46 0.536 RP = 0.3, SC =

True

COP = Cutoff Point; COV= Cutoff Value; NoLs = Number of Labels; NoFs = Number of Features; MLM =
Machine Learning Models; AUROC = Area Under the Receiver Operating Characteristic; LR = Learning Rate; NE
= Number of Estimators; MF = Max Features; MS = Max Samples; MD = Max Depth; MSS = Min Samples Split;
NC = Number of Components; S = Shrinkage; Sol = Solver; C = Regularization Parameter; RP = Regularization
Parameter; SC = Store Covariance; G = Gamma; MCW = Min Child Weight. The optimal point was determined
using the Youden index; the valid column of AUROC represents the average 10-fold cross-validation scores, with
the standard deviation given in parentheses.

The highest-performing model is the LR at COP = 84.0, which uses LASSO and SMOTE
(L + S), achieving an AUROC of 0.728. This model also scores well in recall (0.740) and F1
score (0.411), with optimal parameters including a regularization parameter C = 10,000 and
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the solver ‘lbfgs’. Following closely is an LDA model at COP = 84.0, also using “L + S”,
with an AUROC of 0.720, recall of 0.740, and an F1 score of 0.413. The LDA model is
optimized with ‘lsqr’ as the solver and auto shrinkage.

Among the other standout models are a QDA at COP = 72.0 configuration using L + S
with an AUROC of 0.718 and a particularly high recall rate of 0.808, and an XGBoost model
at COP = 72.0 also using L + S, which attained an AUROC of 0.711 with an impressive
recall of 0.859. These models also demonstrated strong F1 scores, at 0.495 and 0.480,
respectively. In summary, the table showcases a well-rounded performance snapshot of
the models across multiple evaluation metrics, indicating that varying combinations of
hyperparameters and feature engineering techniques like LASSO and SMOTE can lead to
different levels of model efficacy.

Figure 3 illustrates the top 30 most important features among the model cutoff points,
and the number of cutoff points passed feature selection (N). The definition for each feature
name is listed in Table S9. Under the main column ‘Cutoff Percentile (COP)’ labeled ‘54,’
there are two sub-columns: ‘0.0’ and ‘0.5’. These sub-columns represent the values 54.0 and
54.5, respectively, and this pattern continues in the same manner for subsequent values
such as 55.0, 55.5, etc. Specialized medical care is highlighted by the prominence of features
like SpecialMedCare and SpecialMedCare-PainManagement, suggesting the significance of
tailored medical approaches in care needs. Physical limitations also play a substantial role,
with features like KneeMobilityLimited and ShoulderMobilityLimited making it into the
top ranks.

In the caregiving context, attributes related to the caregiver and household conditions
are noteworthy. For instance, CaregiverGender-Female and HavingSecondCaregiver point
to the caregiving landscape within the household, while features such as NotHiredForeign-
Caregiver and CoResidents-Other offer insights into the living circumstances. Moreover,
CaregiverSleepQuality and CaregiverStrain indicate the emotional and physical toll on
caregivers, emphasizing the necessity for supportive measures.
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Finally, features focusing on the patient’s environment and their ability to manage
daily activities are also crucial. These include FallRisk-Bathroom, SelfLaundry, and Self-
Medication, which highlight the patient’s capability for self-care. Practical challenges in
daily life are underlined by features like HasStairs and ToiletAbility.

3.3. Top 5 Efficient Model Cutoff Points in CSPM

Table 3 presents the top five performance metrics for model cutoff points in the
Category-Specific Prediction Models (CSPMs) across the five most frequently utilized ser-
vice categories: “Assistance with Bathing and Shampooing”, “Accompanying Outings”,
“Meal Care”, “Household Assistance”, and “Companion Services”. The models are evalu-
ated based on four key metrics: Area Under the Receiver Operating Characteristic Curve
(AUROC), recall, precision, and F1 score. Additional parameters, including Cutoff Point
(COP), Cutoff Value (COV), Number of Labels (NoLs), Number of Features (NoFs), and
Best Parameters for each model, are also detailed in the table.

Table 3. Top 5 model cutoff points in five most frequently used service categories.

COP COV
NoLs

NoFs MLM

Performance Metrics

Best ParametersAUROC
Recall Precision F1

0 1 Test Valid

Assistance with bathing and shampooing (number of usages = 61,451)

95 129.8 320 14 30 QDA (RFE) 0.837 0.764
(0.043) 0.929 0.108 0.194 RP = 0.3, SC = True

95 129.8 320 14 30 LDA (RFE) 0.826 0.773
(0.064) 1 0.091 0.167 S = 0.1, Sol = ‘lsqr’

95 129.8 320 14 30 LR (RFE) 0.824 0.767
(0.070) 0.857 0.118 0.207 C = 100, Sol =

‘newton-cg’

95 129.8 320 14 30 GB (RFE) 0.806 0.751
(0.037) 0.929 0.103 0.186 MIP = 50, NRO = 0

93.5 97 314 20 30 LR (RFE) 0.795 0.750
(0.042) 0.8 0.151 0.254 C = 10,000, Sol =

‘newton-cg’

Accompanying outings (number of usages = 38,475)

95 53 320 14 30 RF (RFE) 0.841 0.668
(0.050) 0.857 0.13 0.226 B = True, MD = 10,

MSS = 5, NE = 200

95 53 320 14 30 QDA (RFE) 0.815 0.687
(0.054) 0.857 0.1 0.179 RP = 0.1, SC = True

95 53 320 14 30 GB (RFE) 0.809 0.675
(0.045) 0.857 0.111 0.197 LR = 0.1, MD = 3, NE

= 100

95 53 320 14 30 XGB (RFE) 0.798 0.657
(0.072) 0.929 0.089 0.163

G = 0.1, LR = 0.05,
MD = 8, MCW = 2,
NE = 300, SS = 0.7

94 39 315 19 30 GNB (RFE) 0.786 0.667
(0.056) 0.789 0.169 0.278 VS = 1 × 10−9

Meal care (number of usages = 37,279)

93.5 19 314 20 30 LR (RFE) 0.784 0.724
(0.073) 0.8 0.134 0.23 C = 1, Sol =

‘newton-cg’

93.5 19 314 20 30 LDA (RFE) 0.779 0.728
(0.075) 0.75 0.15 0.25 S = None, Sol = ‘svd’

93.5 19 314 20 30 GB (RFE) 0.773 0.705
(0.048) 0.75 0.139 0.234 MIP = 50, NRO = 0

94 26.1 315 19 30 LR (RFE) 0.76 0.740
(0.048) 0.737 0.118 0.203 C = 100, Sol =

‘newton-cg’

93.5 19 314 20 30 GNB (RFE) 0.76 0.674
(0.090) 0.8 0.131 0.225 VS = 1 × 10−8
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Table 3. Cont.

COP COV
NoLs

NoFs MLM

Performance Metrics

Best ParametersAUROC
Recall Precision F1

0 1 Test Valid

Household assistance (number of usages = 35,928)

90 26 302 32 30 BC (RFE) 0.777 0.687
(0.045) 0.688 0.265 0.383 MS = 0.5, NE = 50

92 43.4 308 26 30 LDA (RFE) 0.776 0.746
(0.044) 0.769 0.22 0.342 S = ‘auto’, Sol = ‘lsqr’

91 33 304 30 30 LR (RFE) 0.765 0.745
(0.043) 0.767 0.207 0.326 C = 1, Sol =

‘newton-cg’

93.5 60.4 314 20 30 BC (RFE) 0.765 0.677
(0.051) 0.9 0.133 0.232 MS = 1.0, NE = 50

89.5 24 301 33 30 SVM (RFE) 0.76 0.628
(0.060) 0.848 0.19 0.311 C = 0.1, G = 1, K =

‘linear’

Companion services (number of usages = 34,154)

94 26.1 315 19 30 QDA (RFE) 0.799 0.646
(0.037) 0.684 0.191 0.299 RP = 0.1, SC = True

92.5 12 310 24 30 LDA (RFE) 0.792 0.698
(0.077) 0.875 0.181 0.3 S = None, Sol = ‘svd’

94.5 33.5 320 14 30 MNB (RFE) 0.79 0.686
(0.077) 0.857 0.099 0.178 A = 1

94.5 33.5 320 14 30 QDA (RFE) 0.789 0.674
(0.082) 0.929 0.109 0.195 RP = 0.1, SC = True

92.5 12 310 24 30 LR (RFE) 0.789 0.699
(0.049) 0.833 0.161 0.27 C = 10,000, Sol =

‘newton-cg’

COP = Cutoff Point; COV= Cutoff Value; NoLs = Number of Labels; NoFs = Number of Features; MLM =
Machine Learning Models; AUROC = Area Under the Receiver Operating Characteristic; RP = reg_param; SC
= store_covariance; S = shrinkage; Sol = solver; C = C; MIP = max_iter_predict; NRO = n_restarts_optimizer; B
= bootstrap; MD = max_depth; MSS = min_samples_split; NE = n_estimators; LR = learning_rate; G = gamma;
MCW = min_child_weight; SS = subsample; VS = var_smoothing; MS = max_samples; A = alpha; K = kernel.
The optimal point was determined using the Youden index; the valid column of AUROC represents the average
10-fold cross-validation scores, with the standard deviation given in parentheses.

In the caregiving sector, the type of service and frequency of its use provided a context
for model performance. For instance, the “Assistance with Bathing and Shampooing”
service, utilized 61,451 times, saw the QDA model performing optimally at COP = 95.0
(AUROC = 0.837, recall = 0.929, precision = 0.108, F1 = 0.194). In comparison, the “Accom-
panying Outings” service, utilized 38,475 times, showed its best performance with the RF
model at COP = 95.0 (AUROC = 0.841, recall = 0.857, precision = 0.130, F1 = 0.226).

For services with fewer instances, such as “Meal Care” and “Household Assistance”,
utilized 37,279 and 35,928 times, respectively, different models took the lead. For “Meal
Care”, the LR model was most effective at COP = 93.5 (AUROC = 0.784, Recall = 0.800,
Precision = 0.134, F1 = 0.230). In “Household Assistance”, the BC model emerged as the
best at COP = 90.0 (AUROC = 0.777, recall = 0.688, precision = 0.265, F1 = 0.383).

Finally, the “Companion Services”, used 34,154 times, was best modeled by QDA at
COP = 94.0 (AUROC = 0.799, recall = 0.684, precision = 0.191, F1 = 0.299). The efficacy
of machine learning models in these caregiving scenarios often varies depending on the
service type and frequency of use, underlining the importance of the choice of cutoff points.

4. Discussion
4.1. Main Findings

In the current study, we have successfully engineered machine learning models and
incorporated sensitivity analysis to forecast the LTC service needs of cancer patients. Few
existing studies explore the demand prediction for LTC services, particularly for those
afflicted with cancer. To the best of our knowledge, this is the first study providing
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a comprehensive solution by developing both unified and category-specific models to
address this gap.

Statistical analysis results of 20 different types of cancer revealed significant variations
in service usage. Specifically, lung, liver, brain, and pancreatic cancers showed statistically
significant differences in service usage compared to other types of cancer. This suggests
that the type of cancer may be a critical factor in determining LTC service needs.

Our sensitivity analysis pinpoints the optimal cutoff point for distinguishing between
usage and non-usage cases with greater efficiency. As for the UPM, it achieved an AUROC
of 0.728 at the 84.0 percentile cutoff, suggesting that 84% of patients are predicted not to
require the service. Meanwhile, the CSPM demonstrated robust performance, achieving an
AUROC ranging from 0.777 to 0.837 for predicting the top five most frequently utilized
services.

In addition to these achievements, our results further illuminate the key determinants
of LTC service demand among cancer patients. Factors such as demographics (e.g., pa-
tient age and female caregiver), health-related attributes (e.g., the need for specialized
medical care, specific cancer types like lung cancer, and limited knee mobility), and care-
giving context (e.g., caregiver strain and patient independence) emerged as crucial features
influencing the utilization of LTC services among this patient population.

4.2. Implications

The predictive models formulated in this study offer immediately actionable insights
for healthcare providers and policymakers [25]. Medical professionals can employ these
algorithms for precise risk stratification, allowing them to pinpoint patients who are at
higher risk of needing long-term care (LTC) services. Such targeted identification facilitates
optimized resource allocation and timely interventions [26]. In the context of Taiwan,
government agencies could specifically focus on individuals who have not yet utilized LTC
services but are identified as potential users by the model [14]. These individuals might
face barriers such as financial constraints or geographic isolation, making it challenging
to access necessary services. To address this, the government could devise specialized
LTC plans tailored to their unique needs. Concurrently, policymakers can leverage the
predictive models to make informed decisions concerning healthcare planning [8]. This
could involve evaluating the necessity of expanded LTC facilities or specialized services in
regions showing a high incidence of particular types of cancer.

Like the previous research study on informal caregiver burden, the role of female
caregivers remains a significant predictive factor in demographic considerations, reflecting
the ongoing predominance of women in caregiving roles [27,28]. Health-related aspects
of the patients, such as specialized medical needs, mobility limitations, and the ability to
perform daily living activities independently, constitute important variables [16,29]. These
needs are precisely what long-term care (LTC) services aim to address [16]. Notably, factors
related to the caregiver—such as sleep quality, caregiving burden, and the absence of
professional nursing care—also emerge as significant predictors [30,31]. These data suggest
that the likelihood of utilizing LTC services increases when caregivers face higher levels of
caregiving burden.

Drawing on our findings, we propose that future research should consider the follow-
ing factors while designing analogous studies. First, individual-level prediction models
should be adopted [32]. These would allow for customized, unique care plans for patients,
considering their health status, lifestyle, and personal preferences. Second, including a
more varied array of features, such as clinical data, financial status, living conditions,
family support, and exercise status, is crucial [33]. These factors markedly influence the
utilization of LTC services. Therefore, their integration would amplify the predictive power
of the model. Lastly, we recommend an analysis of the impact of these services on disease
progression, considering their potential to either hasten or decelerate deterioration [34]. By
comprehending these relationships, we can strategically plan and deliver care interventions.
This approach optimizes resource usage and improves patient outcomes. The insights
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derived from this study could offer valuable insights for researchers and policymakers to
distribute the limited LTC resources in the future effectively.

4.3. Comparison with Previous Research

Previous research has largely overlooked the prediction of long-term care needs,
specifically for cancer patients, focusing more on evaluating the likelihood of individuals
qualifying for government financial subsidies. For example, Sato J.’s study leveraged
historical healthcare insurance claims data to build a predictive model using multiclass
classification and a gradient-boosting decision tree, achieving a high level of accuracy
with a weighted average precision of 0.872, recall of 0.878, and an F-value of 0.873 [9].
Simultaneously, the study conducted by H. Fukunishi also utilized the same dataset but
concentrated on predicting the needs of individuals aged 75 and older. The study achieved
a precision score of 0.694 and a recall score of 0.505 [10]. Our own model also yielded
promising results, achieving an AUROC of 0.728 using Logistic Regression techniques.
However, the performance was limited by data imbalance, with the best F1 score reaching
only 0.572 when employing the XGB algorithm. Interestingly, while all three studies
identified age and sex to be significant factors in predicting long-term care needs, the
research conducted by Sato J. and H. Fukunishi emphasized current health status as the
most critical feature. In our model, although we included features relating to eligibility
levels, they did not prove to be as crucial. This underscores the existence of other significant
determinants for cancer patients in deciding whether to utilize long-term care services.

In another study, Sun Y. used medical and long-term care claims data to predict
who among the elderly who regularly receive home visits are likely to require frequent
emergency house calls [8]. The performance of their study closely aligns with ours: When
using all 19 variables for prediction, they achieved an AUROC (Area Under the Receiver
Operating Characteristic Curve) of 0.734. When making rule-based predictions using only
the three most critical factors, the AUROC was 0.707. Notably, these key factors include
home oxygen therapy, long-term care need level, and cancer. In our research, we examine
home oxygen therapy as a component of Special Medical Care (SpecialMedCare), which
is an important feature contributing to our predictions. Specifically, we delve deeper into
variations in its usage among different types of cancer. We find that lung, liver, brain, and
pancreatic cancers exhibit distinct patterns, setting our study apart from others in the field.
Meanwhile, K.M. Chen’s model uses numerical output to forecast future usage frequency,
which differs from previous models that relied on binary or multi-class classification. This
offers a new thinking framework for consideration in subsequent research [11].

4.4. Limitations

There are several limitations to this study. First, in our research, we used the summa-
tion of usage to calculate and determine whether LTC services would be utilized. However,
we neglected to consider the time series characteristics, which could have provided valu-
able insights. Second, relying on retrospective data may introduce selection bias, potentially
affecting the accuracy of our prediction models. Lastly, our study only recruited cases
from a specific county in the southern part of Taiwan, limiting the generalizability of our
findings to other populations or healthcare systems.

5. Conclusions

This study offers a groundbreaking approach by using machine learning models to
forecast LTC service needs among cancer patients, a significantly understudied subject. By
identifying crucial variables like cancer type and demographic factors, our models pave
the way for more personalized care and improved patient outcomes. These predictive
tools not only showcase robust performance but also present actionable insights for better
resource allocation and policymaking. Like previous works, this research underscores the
transformative potential of data-driven models in healthcare, and it sets the stage for future
studies to refine these tools for broader LTC scenarios.
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