Microscopical Variables and Tumor Inflammatory Microenvironment Do Not Modify Survival or Recurrence in Stage I-IIA Lung Adenocarcinomas
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Inclusion and Exclusion Criteria
2.2. Data Collection and Management
2.3. Pathological Examination
2.4. Pathological Score (PS)
2.5. Statistical Analysis
3. Results
3.1. Perioperative Evaluation
3.2. Pathological Data
3.3. Survival and Recurrence According to the Pathological Score (PS)
3.4. Immune Microenvironment and Survival
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Garinet, S.; Wang, P.; Mansuet-Lupo, A.; Fournel, L.; Wislez, M.; Blons, H. Updated Prognostic Factors in Localized NSCLC. Cancers 2022, 14, 1400. [Google Scholar] [CrossRef] [PubMed]
- Rami-Porta, R. Future Perspectives on the TNM Staging for Lung Cancer. Cancers 2021, 13, 1940. [Google Scholar] [CrossRef] [PubMed]
- Galon, J.; Bruni, D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat. Rev. Drug Discov. 2019, 18, 197–218. [Google Scholar] [CrossRef] [PubMed]
- Gibney, G.T.; Weiner, L.M.; Atkins, M.B. Predictive biomarkers for checkpoint inhibitor-based immunotherapy. Lancet Oncol. 2016, 17, e542–e551. [Google Scholar] [CrossRef]
- Saigi, M.; Alburquerque-Bejar, J.J.; Sanchez-Cespedes, M. Determinants of immunological evasion and immunocheckpoint inhibition response in non-small cell lung cancer: The genetic front. Oncogene 2019, 38, 5921–5932. [Google Scholar] [CrossRef]
- O’Brien, M.; Paz-Ares, L.; Marreaud, S.; Dafni, U.; Oselin, K.; Havel, L.; Esteban, E.; Isla, D.; Martinez-Marti, A.; Faehling, M.; et al. Pembrolizumab versus placebo as adjuvant therapy for completely resected stage IB-IIIA non-small-cell lung cancer (PEARLS/KEYNOTE-091): An interim analysis of a randomised, triple-blind, phase 3 trial. Lancet Oncol. 2022, 23, 1274–1286. [Google Scholar] [CrossRef]
- Felip, E.; Altorki, N.; Zhou, C.; Csőszi, T.; Vynnychenko, I.; Goloborodko, O.; Luft, A.; Akopov, A.; Martinez-Marti, A.; Kenmotsu, H.; et al. Adjuvant atezolizumab after adjuvant chemotherapy in resected stage IB-IIIA non-small-cell lung cancer (IMpower010): A randomised, multicentre, open-label, phase 3 trial. Lancet 2021, 398, 1344–1357. [Google Scholar] [CrossRef]
- Rittmeyer, A.; Barlesi, F.; Waterkamp, D.; Park, K.; Ciardiello, F.; von Pawel, J.; Gadgeel, S.M.; Hida, T.; Kowalski, D.M.; Dols, M.C.; et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): A phase 3, open-label, multicentre randomised controlled trial. Lancet 2017, 389, 255–265. [Google Scholar] [CrossRef]
- Topalian, S.L.; Hodi, F.S.; Brahmer, J.R.; Gettinger, S.N.; Smith, D.C.; McDermott, D.F.; Powderly, J.D.; Carvajal, R.D.; Sosman, J.A.; Atkins, M.B.; et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 2012, 366, 2443–2454. [Google Scholar] [CrossRef]
- Wang, S.; Yuan, P.; Mao, B.; Li, N.; Ying, J.; Tao, X.; Tang, W.; Zhang, L.; Geng, X.; Zhang, F.; et al. Genomic features and tumor immune microenvironment alteration in NSCLC treated with neoadjuvant PD-1 blockade. NPJ Precis. Oncol. 2022, 6, 2. [Google Scholar] [CrossRef]
- Banchereau, R.; Leng, N.; Zill, O.; Sokol, E.; Liu, G.; Pavlick, D.; Maund, S.; Liu, L.F.; Kadel, E., III; Baldwin, N.; et al. Molecular determinants of response to PD-L1 blockade across tumor types. Nat. Commun. 2021, 12, 3969. [Google Scholar] [CrossRef] [PubMed]
- Forde, P.M.; Spicer, J.; Lu, S.; Provencio, M.; Mitsudomi, T.; Awad, M.M.; Felip, E.; Broderick, S.R.; Brahmer, J.R.; Swanson, S.J.; et al. Neoadjuvant Nivolumab plus Chemotherapy in Resectable Lung Cancer. N. Engl. J. Med. 2022, 386, 1973–1985. [Google Scholar] [CrossRef] [PubMed]
- Forde, P.M.; Chaft, J.E.; Smith, K.N.; Anagnostou, V.; Cottrell, T.R.; Hellmann, M.D.; Zahurak, M.; Yang, S.C.; Jones, D.R.; Broderick, S.; et al. Neoadjuvant PD-1 Blockade in Resectable Lung Cancer. N. Engl. J. Med. 2018, 378, 1976–1986. [Google Scholar] [CrossRef] [PubMed]
- Tumeh, P.C.; Harview, C.L.; Yearley, J.H.; Shintaku, I.P.; Taylor, E.J.; Robert, L.; Chmielowski, B.; Spasic, M.; Henry, G.; Ciobanu, V.; et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 2014, 515, 568–571. [Google Scholar] [CrossRef]
- Gooden, M.; de Bock, G.; Leffers, N.; Daemen, T.; Nijman, H. The prognostic influence of tumour-infiltrating lymphocytes in cancer: A systematic review with meta-analysis. Br. J. Cancer 2011, 105, 93–103. [Google Scholar] [CrossRef]
- Brummel, K.; Eerkens, A.L.; de Bruyn, M.; Nijman, H.W. Tumour-infiltrating lymphocytes: From prognosis to treatment selection. Br. J. Cancer 2022, 128, 451–458. [Google Scholar] [CrossRef]
- Ding, R.; Prasanna, P.; Corredor, G.; Barrera, C.; Zens, P.; Lu, C.; Velu, P.; Leo, P.; Beig, N.; Li, H.; et al. Image analysis reveals molecularly distinct patterns of TILs in NSCLC associated with treatment outcome. NPJ Precis. Oncol. 2022, 6, 33. [Google Scholar] [CrossRef]
- Lopez de Rodas, M.; Nagineni, V.; Ravi, A.; Datar, I.J.; Mino-Kenudson, M.; Corredor, G.; Barrera, C.; Behlman, L.; Rimm, D.L.; Herbst, R.S.; et al. Role of tumor infiltrating lymphocytes and spatial immune heterogeneity in sensitivity to PD-1 axis blockers in non-small cell lung cancer. J. Immunother. Cancer 2022, 10, e004440. [Google Scholar] [CrossRef]
- Zens, P.; Bello, C.; Scherz, A.; von Gunten, M.; Ochsenbein, A.; Schmid, R.A.; Berezowska, S. The effect of neoadjuvant therapy on PD-L1 expression and CD8+lymphocyte density in non-small cell lung cancer. Mod. Pathol. 2022, 35, 1848–1859. [Google Scholar] [CrossRef]
- Kuhn, E.; Morbini, P.; Cancellieri, A.; Damiani, S.; Cavazza, A.; Comin, C.E. Adenocarcinoma classification: Patterns and prognosis. Pathol. J. Ital. Soc. Anat. Pathol. Diagn. Cytopathol. 2018, 110, 5–11. Available online: https://www.pathologica.it/article/view/36 (accessed on 4 August 2023).
- The Jamovi Project (2022). Jamovi (Version 2.3.18). Available online: https://www.jamovi.org (accessed on 15 June 2023).
- R Core Team. A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, Austria, 2022. Available online: https://www.R-project.org/ (accessed on 15 June 2023).
- Wang, X.; Janowczyk, A.; Zhou, Y.; Thawani, R.; Fu, P.; Schalper, K.; Velcheti, V.; Madabhushi, A. Prediction of recurrence in early stage non-small cell lung cancer using computer extracted nuclear features from digital H&E images. Sci. Rep. 2017, 7, 13543. [Google Scholar] [CrossRef]
- Karasaki, T.; Nagayama, K.; Kuwano, H.; Nitadori, J.I.; Sato, M.; Anraku, M.; Hosoi, A.; Matsushita, H.; Morishita, Y.; Kashiwabara, K.; et al. An Immunogram for the Cancer-Immunity Cycle: Towards Personalized Immunotherapy of Lung Cancer. J. Thorac. Oncol. 2017, 12, 791–803. [Google Scholar] [CrossRef]
- Binnewies, M.; Roberts, E.W.; Kersten, K.; Chan, V.; Fearon, D.F.; Merad, M.; Coussens, L.M.; Gabrilovich, D.I.; Ostrand-Rosenberg, S.; Hedrick, C.C.; et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat. Med. 2018, 24, 541–550. [Google Scholar] [CrossRef]
- Paijens, S.T.; Vledder, A.; de Bruyn, M.; Nijman, H.W. Tumor-infiltrating lymphocytes in the immunotherapy era. Cell. Mol. Immunol. 2021, 18, 842–859. [Google Scholar] [CrossRef]
- Kim, S.H.; Go, S.I.; Song, D.H.; Park, S.W.; Kim, H.R.; Jang, I.; Kim, J.D.; Lee, J.S.; Lee, G.W. Prognostic impact of CD8 and programmed death-ligand 1 expression in patients with resectable non-small cell lung cancer. Br. J. Cancer 2019, 120, 547–554. [Google Scholar] [CrossRef]
- Schmidt, L.H.; Kümmel, A.; Görlich, D.; Mohr, M.; Bröckling, S.; Mikesch, J.H.; Grünewald, I.; Marra, A.; Schultheis, A.M.; Wardelmann, E.; et al. PD-1 and PD-L1 Expression in NSCLC Indicate a Favorable Prognosis in Defined Subgroups. PLoS ONE 2015, 10, e0136023. [Google Scholar] [CrossRef] [PubMed]
- Cooper, W.A.; Tran, T.; Vilain, R.E.; Madore, J.; Selinger, C.I.; Kohonen-Corish, M.; Yip, P.; Yu, B.; O’Toole, S.A.; McCaughan, B.C.; et al. PD-L1 expression is a favorable prognostic factor in early stage non-small cell carcinoma. Lung Cancer 2015, 89, 181–188. [Google Scholar] [CrossRef]
- Teramoto, K.; Igarashi, T.; Kataoka, Y.; Ishida, M.; Hanaoka, J.; Sumimoto, H.; Daigo, Y. Biphasic prognostic significance of PD-L1 expression status in patients with early- and locally advanced-stage non-small cell lung cancer. Cancer Immunol. Immunother. 2021, 70, 1063–1074. [Google Scholar] [CrossRef]
- Li, F.; Li, C.; Cai, X.; Xie, Z.; Zhou, L.; Cheng, B.; Zhong, R.; Xiong, S.; Li, J.; Chen, Z.; et al. The association between CD8+ tumor-infiltrating lymphocytes and the clinical outcome of cancer immunotherapy: A systematic review and meta-analysis. EClinicalMedicine 2021, 41, 101134. [Google Scholar] [CrossRef] [PubMed]
- Boscolo, A.; Fortarezza, F.; Lunardi, F.; Comacchio, G.; Urso, L.; Frega, S.; Menis, J.; Bonanno, L.; Guarneri, V.; Rea, F.; et al. Combined Immunoscore for Prognostic Stratification of Early Stage Non-Small-Cell Lung Cancer. Front. Oncol. 2020, 10, 564915. [Google Scholar] [CrossRef] [PubMed]
- Park, C.; Jeong, D.Y.; Choi, Y.; Oh, Y.J.; Kim, J.; Ryu, J.; Paeng, K.; Lee, S.H.; Ock, C.Y.; Lee, H.Y. Tumor-infiltrating lymphocyte enrichment predicted by CT radiomics analysis is associated with clinical outcomes of non-small cell lung cancer patients receiving immune checkpoint inhibitors. Front. Immunol. 2023, 13, 1038089. [Google Scholar] [CrossRef] [PubMed]
Variable | P Score |
---|---|
STAS (absent, present) | 0–1 |
Histology (lepidic, acinar, solid and other) [20] | 1–2–3 |
Grading (G1, G2, G3) | 1–2–3 |
Necrosis (≤10%, 11–30%, >30%) | 0–1–2 |
Mitoses (≤10%, 11–30%, >30%) | 0–1–2 |
TILs (<11%, ≥11%) | 0–1 |
Fibrosis (≤10%, 11–30%, >30%) | 0–1–2 |
Vascular invasion (absent, present) | 0–1 |
Perineural invasion (absent, present) | 0–1 |
Pleural invasion (PL0, PL1, PL2) | 0–1–2 |
TOTAL | 18 Points |
Variables (n = 358) Median (IQR); n (%) | N = 358 |
---|---|
Age at surgery | 70 (63, 75) |
Gender | |
Female | 179 (50%) |
Male | 179 (50%) |
BMI | 26.2 (22.9, 28.7) |
Diabetes | 38 (11%) |
Hypertension | 206 (58%) |
COPD | 43 (12%) |
Smoking history | |
No | 99 (28%) |
Active | 221 (62%) |
Former (at least one month) | 38 (11%) |
FVC% | 100 (88, 113) |
FEV1% | 100 (84, 113) |
DLCO/VA% | 77 (64, 90) |
Surgical time (min) | 120 (90, 150) |
Typical resection type | |
Segmentectomy | 78 (22%) |
Lobectomy | 280 (78%) |
Procedure Access | |
Uniportal VATS | 6 (1.7%) |
Biportal VATS | 28 (7.8%) |
Triportal VATS—Copenhagen | 319 (89%) |
Robotic | 4 (1.1%) |
Lobectomies | |
RUL | 121 (34%) |
ML | 25 (7.0%) |
RLL | 50 (14%) |
LUL | 57 (16%) |
LLL | 27 (8%) |
Side | |
Right | 223 (62%) |
Left | 135 (38%) |
Conversion rate | 4 (1.1%) |
cT diameter (mm) | 20 (13, 29) |
cT | |
1a | 28 (7.8%) |
1b | 136 (38%) |
1c | 117 (33%) |
2a | 49 (14%) |
2b | 28 (7.8%) |
Peritumoral GGO | 123 (34) |
SUV T | 3.7 (2.0, 6.7) |
Preoperative diagnosis | 180 (50%) |
Pathological Characteristics (n = 358) | |
---|---|
pT | |
1a | 54 (15%) |
1b | 103 (29%) |
1c | 28 (7.8%) |
2a | 159 (44%) |
2b | 14 (4%) |
p-Stage | |
IA1 | 62 (17%) |
IA2 | 83 (23%) |
IA3 | 22 (6.1%) |
IB | 176 (49%) |
IIA | 15 (4.2%) |
STAS type | |
Absent | 207 (58%) |
Limited | 135 (38%) |
Extensive | 12 (3.4%) |
Histology | |
Lepidic | 41 (11%) |
Acinar/papillar | 279 (78%) |
Solid | 38 (11%) |
Grading | |
G1 | 11 (3.1%) |
G2 | 258 (73%) |
G3 | 79 (22%) |
Tumor necrosis | |
<10% | 305 (86%) |
11–30% | 32 (9.1%) |
>30% | 16 (4.5%) |
Mitoses | |
0–1/10HPF | 132 (54%) |
2–4/10HPF | 83 (34%) |
>4/10HPF | 30 (12%) |
TILs | |
<11% | 142 (40%) |
11–30% | 158 (45%) |
>30% | 54 (15%) |
Fibrosis | |
<10% | 164 (49%) |
11–30% | 102 (31%) |
>30% | 68 (20%) |
Vascular invasion | |
Absent | 290 (82%) |
Present | 65 (18%) |
Perineural invasion | |
Absent | 270 (98%) |
Present | 5 (1.8%) |
Pleural invasion | |
PL0 | 141 (42%) |
PL1 | 175 (52%) |
PL2 | 19 (5.7%) |
PD-L1 | |
<1% | 156 (53%) |
≥1% | 140 (47%) |
Median Surveillance in months | 34 (18–55) |
Characteristic | N | PD-L1 < 1% N = 156 (53%) | PD-L1 almost 1% N = 140 (47%) | p-Value |
---|---|---|---|---|
SUV T | 226 | 3.1 (1.7, 5.3) | 4.0 (2.4, 7.9) | 0.010 |
STAS | 294 | 0.26 | ||
Absent | 88 (57%) | 89 (64%) | ||
Present | 66 (43%) | 51 (36%) | ||
Histology | 296 | 0.26 | ||
Lepidic | 20 (13%) | 13 (9.3%) | ||
Acinar/papillar | 123 (79%) | 108 (77%) | ||
Solid | 13 (8.3%) | 19 (14%) | ||
Grading | 291 | 0.33 | ||
G1 | 7 (4.6%) | 2 (1.4%) | ||
G2 | 112 (73%) | 98 (71%) | ||
G3 | 31 (20%) | 36 (26%) | ||
Tumor necrosis | 296 | 0.17 | ||
<10% | 140 (90%) | 117 (84%) | ||
11–30% | 10 (6.4%) | 18 (13%) | ||
>30% | 6 (3.8%) | 5 (3.6%) | ||
Mitoses | 296 | 0.95 | ||
0–1/10HPF | 106 (68%) | 97 (69%) | ||
2–4/10HPF | 38 (24%) | 32 (23%) | ||
>4/10HPF | 12 (7.7%) | 11 (7.9%) | ||
Fibrosis | 296 | 0.30 | ||
<10% | 88 (56%) | 70 (50%) | ||
11–30% | 46 (29%) | 41 (29%) | ||
>30% | 22 (14%) | 29 (21%) | ||
Vascular invasion | 296 | 0.19 | ||
Absent | 126 (81%) | 121 (86%) | ||
Present | 30 (19%) | 19 (14%) | ||
Perineural invasion | 296 | >0.99 | ||
Absent | 154 (99%) | 139 (99%) | ||
Present | 2 (1.3%) | 1 (0.7%) | ||
Pleural invasion | 296 | 0.57 | ||
PL0 | 74 (47%) | 59 (42%) | ||
PL1 | 74 (47%) | 75 (54%) | ||
PL2 | 8 (5.1%) | 6 (4.3%) | ||
TILs | 292 | 0.12 | ||
<11% | 70 (46%) | 51 (37%) | ||
≥11% | 83 (54%) | 88 (63%) | ||
Comparisons: Wilcoxon rank sum test; Pearson’s chi-squared test; Fisher’s exact test |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dell’Amore, A.; Bonis, A.; Melan, L.; Silvestrin, S.; Cannone, G.; Shamshoum, F.; Zampieri, A.; Pezzuto, F.; Calabrese, F.; Nicotra, S.; et al. Microscopical Variables and Tumor Inflammatory Microenvironment Do Not Modify Survival or Recurrence in Stage I-IIA Lung Adenocarcinomas. Cancers 2023, 15, 4542. https://doi.org/10.3390/cancers15184542
Dell’Amore A, Bonis A, Melan L, Silvestrin S, Cannone G, Shamshoum F, Zampieri A, Pezzuto F, Calabrese F, Nicotra S, et al. Microscopical Variables and Tumor Inflammatory Microenvironment Do Not Modify Survival or Recurrence in Stage I-IIA Lung Adenocarcinomas. Cancers. 2023; 15(18):4542. https://doi.org/10.3390/cancers15184542
Chicago/Turabian StyleDell’Amore, Andrea, Alessandro Bonis, Luca Melan, Stefano Silvestrin, Giorgio Cannone, Fares Shamshoum, Alberto Zampieri, Federica Pezzuto, Fiorella Calabrese, Samuele Nicotra, and et al. 2023. "Microscopical Variables and Tumor Inflammatory Microenvironment Do Not Modify Survival or Recurrence in Stage I-IIA Lung Adenocarcinomas" Cancers 15, no. 18: 4542. https://doi.org/10.3390/cancers15184542
APA StyleDell’Amore, A., Bonis, A., Melan, L., Silvestrin, S., Cannone, G., Shamshoum, F., Zampieri, A., Pezzuto, F., Calabrese, F., Nicotra, S., Schiavon, M., Faccioli, E., Mammana, M., Comacchio, G. M., Pasello, G., & Rea, F. (2023). Microscopical Variables and Tumor Inflammatory Microenvironment Do Not Modify Survival or Recurrence in Stage I-IIA Lung Adenocarcinomas. Cancers, 15(18), 4542. https://doi.org/10.3390/cancers15184542