DNA Methylation Biomarkers as Prediction Tools for Therapeutic Response and Prognosis in Intermediate-Stage Hepatocellular Carcinoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Procedures
2.2.1. TACE Protocol
2.2.2. RFA Protocol
2.3. Follow-Up
2.4. Cell-Free DNA Extraction from Plasma Samples
2.5. Real-Time Quantitative Methylation Analysis
2.6. Statistical Analysis
3. Results
3.1. Clinicopathological Characteristics of Patients
Correlation between Methylation Markers and Responses of LRT
3.2. Performance of the Methylation Monitoring Model for LRT Response
3.2.1. Prediction of Early Progression in HCC Patients before LRT
3.2.2. Factors Associated with the Therapeutic Outcomes of LRT
3.2.3. Predicting Survival Using Serum Tumor Markers and MMEP
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Villanueva, A. Hepatocellular Carcinoma. N. Engl. J. Med. 2019, 380, 1450–1462. [Google Scholar] [CrossRef]
- Vogeler, M.; Mohr, I.; Pfeiffenberger, J.; Sprengel, S.D.; Klauss, M.; Teufel, A.; Chang, D.-H.; Springfeld, C.; Longerich, T.; Merle, U.; et al. Applicability of scoring systems predicting outcome of transarterial chemoembolization for hepatocellular carcinoma. J. Cancer Res. Clin. Oncol. 2020, 146, 1033–1050. [Google Scholar] [CrossRef] [PubMed]
- Peng, Z.-W.; Chen, M.-S. Transcatheter Arterial Chemoembolization Combined with Radiofrequency Ablation for the Treatment of Hepatocellular Carcinoma. Oncology 2013, 84, 40–43. [Google Scholar] [CrossRef] [PubMed]
- Ho, E.Y.; Cozen, M.L.; Shen, H.; Lerrigo, R.; Trimble, E.; Ryan, J.C.; Corvera, C.U.; Monto, A.; HOVAS Group (Hepatocellular Carcinoma Treatment Outcome at VA San Francisco). Expanded use of aggressive therapies improves survival in early and intermediate hepatocellular carcinoma. HPB 2014, 16, 758–767. [Google Scholar] [CrossRef] [PubMed]
- Dai, W.C.; Cheung, T.T. Strategic overview on the best treatment option for intrahepaitc hepatocellular carcinoma recurrence. Expert Rev. Anticancer. Ther. 2016, 16, 1063–1072. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Xin, Y.; Ye, F.; Liu, N.; Zhang, X.; Wang, Y.; Li, X.; Fan, Q.; Zhou, X.; Chen, Y. Early recurrence after radiofrequency ablation for hepatocellular carcinoma: A multicenter retrospective study on definition, patterns and risk factors. Int. J. Hyperth. 2021, 38, 437–446. [Google Scholar] [CrossRef] [PubMed]
- Hermida, M.; Cassinotto, C.; Piron, L.; Aho-Glélé, S.; Guillot, C.; Schembri, V.; Allimant, C.; Jaber, S.; Pageaux, G.-P.; Assenat, E.; et al. Multimodal Percutaneous Thermal Ablation of Small Hepatocellular Carcinoma: Predictive Factors of Recurrence and Survival in Western Patients. Cancers 2020, 12, 313. [Google Scholar] [CrossRef] [PubMed]
- Hung, Y.-W.; Lee, I.-C.; Chi, C.-T.; Lee, R.-C.; Liu, C.-A.; Chiu, N.-C.; Hwang, H.-E.; Chao, Y.; Hou, M.-C.; Huang, Y.-H. Redefining Tumor Burden in Patients with Intermediate-Stage Hepatocellular Carcinoma: The Seven-Eleven Criteria. Liver Cancer 2021, 10, 629–640. [Google Scholar] [CrossRef]
- Singal, A.G.; Conjeevaram, H.S.; Volk, M.L.; Fu, S.; Fontana, R.J.; Askari, F.; Su, G.L.; Lok, A.S.; Marrero, J.A. Effectiveness of hepatocellular carcinoma surveillance in patients with cirrhosis. Cancer Epidemiol Biomark. Prev. 2012, 21, 793–799. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Zhu, S.; Li, X. Comparison of values of CT and MRI imaging in the diagnosis of hepatocellular carcinoma and analysis of prognostic factors. Oncol. Lett. 2019, 17, 1184–1188. [Google Scholar] [CrossRef]
- Facciorusso, A.; Serviddio, G.; Muscatiello, N. Transarterial radioembolization vs chemoembolization for hepatocarcinoma patients: A systematic review and meta-analysis. World J. Hepatol. 2016, 8, 770–778. [Google Scholar] [CrossRef]
- Granito, A.; Facciorusso, A.; Sacco, R.; Bartalena, L.; Mosconi, C.; Cea, U.V.; Cappelli, A.; Antonino, M.; Modestino, F.; Brandi, N.; et al. TRANS-TACE: Prognostic Role of the Transient Hypertransaminasemia after Conventional Chemoembolization for Hepatocellular Carcinoma. J. Pers. Med. 2021, 11, 1041. [Google Scholar] [CrossRef] [PubMed]
- Shiraki, K.; Takase, K. New serological markers for hepatocellular carcinoma. Hepatol. Res. 2005, 33, 195–197. [Google Scholar] [CrossRef]
- Bibikova, M.; Barnes, B.; Tsan, C.; Ho, V.; Klotzle, B.; Le, J.M.; Delano, D.; Zhang, L.; Schroth, G.P.; Gunderson, K.L.; et al. High density DNA methylation array with single CpG site resolution. Genomics 2011, 98, 288–295. [Google Scholar] [CrossRef] [PubMed]
- Widschwendter, M.; Apostolidou, S.; Raum, E.; Rothenbacher, D.; Fiegl, H.; Menon, U.; Stegmaier, C.; Jacobs, I.J.; Brenner, H. Epigenotyping in Peripheral Blood Cell DNA and Breast Cancer Risk: A Proof of Principle Study. PLoS ONE 2008, 3, e2656. [Google Scholar] [CrossRef]
- Peter, W.L. The power and the promise of DNA methylation markers. Nat. Rev. Cancer 2003, 3, 253–266. [Google Scholar]
- Luo, H.; Wei, W.; Ye, Z.; Zheng, J.; Xu, R.-H. Liquid Biopsy of Methylation Biomarkers in Cell-Free DNA. Trends Mol. Med. 2021, 27, 482–500. [Google Scholar] [CrossRef] [PubMed]
- Bruix, J.; Sherman, M. Management of hepatocellular carcinoma: An update. Hepatology 2011, 53, 1020–1022. [Google Scholar] [CrossRef] [PubMed]
- Angermayr, B.; Cejna, M.; Karnel, F.; Gschwantler, M.; Koenig, F.; Pidlich, J.; Mendel, H.; Pichler, L.; Wichlas, M.; Kreil, A.; et al. Child-Pugh versus MELD score in predicting survival in patients undergoing transjugular intrahepatic portosystemic shunt. Gut 2003, 52, 879–885. [Google Scholar] [CrossRef] [PubMed]
- Gui, B.; Weiner, A.A.; Nosher, J.; Lu, S.E.; Foltz, G.M.; Hasan, O.; Kim, S.K.; Gendel, V.; Mani, N.B.; Carpizo, D.R.; et al. Assessment of the Albumin-Bilirubin (ALBI) Grade as a Prognostic Indicator for Hepatocellular Carcinoma Patients Treated with Radioembolization. Am. J. Clin. Oncol. 2018, 41, 861–866. [Google Scholar] [CrossRef] [PubMed]
- Lei, J.Y.; Wang, W.T.; Yan, L.N. Up-to-seven criteria for hepatocellular carcinoma liver transplantation: A single center analysis. World J. Gastroenterol. 2013, 28, 6077–6083. [Google Scholar] [CrossRef]
- Tirkes, T.; Hollar, M.A.; Tann, M.; Kohli, M.D.; Akisik, F.; Sandrasegaran, K. Response criteria in oncologic imaging: Review of traditional and new criteria. Radiographics 2013, 33, 1323–1341. [Google Scholar] [CrossRef]
- Lu, C.Y.; Lin, K.Y.; Tien, M.T.; Wu, C.T.; Uen, Y.H.; Tseng, T.L. Frequent DNA methylation of MiR-129-2 and its potential clinical implication in hepatocellular carcinoma. Genes Chromosomes Cancer 2013, 52, 636–643. [Google Scholar] [CrossRef]
- Lu, C.-Y.; Hsieh, S.-Y.; Lu, Y.-J.; Wu, C.-S.; Chen, L.-C.; Lo, S.-J.; Wu, C.-T.; Chou, M.-Y.; Huang, T.H.-M.; Chang, Y.-S. Aberrant DNA methylation profile and frequent methylation of KLK10 and OXGR1 genes in hepatocellular carcinoma. Genes Chromosomes Cancer 2009, 48, 1057–1068. [Google Scholar] [CrossRef]
- Lu, C.-Y.; Chen, S.-Y.; Peng, H.-L.; Kan, P.-Y.; Chang, W.-C.; Yen, C.-J. Cell-free methylation markers with diagnostic and prognostic potential in hepatocellular carcinoma. Oncotarget 2017, 8, 6406–6418. [Google Scholar] [CrossRef]
- Tzartzeva, K.; Singal, A.G. Testing for AFP in combination with ultrasound improves early liver cancer detection. Expert Rev. Gastroenterol. Hepatol. 2018, 12, 947–949. [Google Scholar] [CrossRef]
- Farinati, F.; Marino, D.; De Giorgio, M.; Baldan, A.; Cantarini, M.; Cursaro, C.; Rapaccini, G.; Del Poggio, P.; Di Nolfo, M.A.; Benvegnù, L.; et al. Diagnostic and prognostic role of alpha-fetoprotein in hepatocellular carcinoma: Both or neither? Am. J. Gastroenterol. 2006, 101, 524–532. [Google Scholar] [CrossRef]
- Yu, R.; Ding, S.; Tan, W.; Tan, S.; Tan, Z.; Xiang, S.; Zhou, Y.; Mao, Q.; Deng, G. Performance of Protein Induced by Vitamin K Absence or Antagonist-II (PIVKA-II) for Hepatocellular Carcinoma Screening in Chinese Population. Hepat. Mon. 2015, 15, e28806. [Google Scholar] [CrossRef]
- Leygo, C.; Williams, M.; Jin, H.C.; Chan, M.W.Y.; Chu, W.K.; Grusch, M.; Cheng, Y.Y. DNA Methylation as a Noninvasive Epigenetic Biomarker for the Detection of Cancer. Dis. Markers 2017, 2017, 3726595. [Google Scholar] [CrossRef]
- Kudo, M.; Ueshima, K.; Chan, S.; Minami, T.; Chishina, H.; Aoki, T.; Takita, M.; Hagiwara, S.; Minami, Y.; Ida, H.; et al. Lenvatinib as an Initial Treatment in Patients with Intermediate-Stage Hepatocellular Carcinoma Beyond Up-To-Seven Criteria and Child–Pugh A Liver Function: A Proof-Of-Concept Study. Cancers 2019, 11, 1084. [Google Scholar] [CrossRef]
- Kudo, M.; Ueshima, K.; Ikeda, M.; Torimura, T.; Tanabe, N.; Aikata, H.; Izumi, N.; Yamasaki, T.; Nojiri, S.; Hino, K.; et al. Randomised, multicentre prospective trial of transarterial chemoembolisation (TACE) plus sorafenib as compared with TACE alone in patients with hepatocellular carcinoma: TACTICS trial. Gut 2020, 69, 1492–1501. [Google Scholar] [CrossRef] [PubMed]
- Giuffrè, M.; Zuliani, E.; Visintin, A.; Tarchi, P.; Martingano, P.; Pizzolato, R.; Bonazza, D.; Masutti, F.; Moretti, R.; Crocè, L.S. Liver Multidisciplinary Group of Trieste. Predictors of hepatocellular carcinoma early recurrence in patients treated with surgical resection or ablation treatment: A single-center experience. Diagnostics 2022, 12, 69. [Google Scholar] [CrossRef]
- Qi, J.; Zhou, L.; Li, D.; Yang, J.; Wang, H.; Cao, H.; Huang, Y.; Zhang, Z.; Chang, L.; Zhu, C.; et al. Oncogenic role of ALX3 in cervical cancer cells through KDM2B-mediated histone demethylation of CDC25A. BMC Cancer 2021, 21, 819. [Google Scholar] [CrossRef]
- Mori, Y.; Olaru, A.V.; Cheng, Y.; Agarwal, R.; Yang, J.; Luvsanjav, D.; Yu, W.; Selaru, F.M.; Hutfless, S.; Lazarev, M.; et al. Novel candidate colorectal cancer biomarkers identified by methylation microarray-based scanning. Endocr.-Relat. Cancer 2011, 18, 465–478. [Google Scholar] [CrossRef]
- Sun, X.; Wang, M.; Zhang, F.; Kong, X. An integrated analysis of genome-wide DNA methylation and gene expression data in hepatocellular carcinoma. FEBS Open Bio 2018, 8, 1093–1103. [Google Scholar] [CrossRef]
- Zong, M.; Meng, M.; Li, L. Low expression of TBX4 predicts poor prognosis in patients with stage II pancreatic ductal adenocarcinoma. Int. J. Mol. Sci. 2011, 12, 4953–4963. [Google Scholar] [CrossRef]
- Reinert, T.; Modin, C.; Castano, F.M.; Lamy, P.; Wojdacz, T.K.; Hansen, L.L.; Wiuf, C.; Borre, M.; Dyrskjøt, L.; Ørntoft, T.F. Comprehensive Genome Methylation Analysis in Bladder Cancer: Identification and Validation of Novel Methylated Genes and Application of These as Urinary Tumor Markers. Clin. Cancer Res. 2011, 17, 5582–5592. [Google Scholar] [CrossRef]
- Li, M.; Zhang, C.; Zhou, L.; Li, S.; Cao, Y.J.; Wang, L.; Xiang, R.; Shi, Y.; Piao, Y. Identification and validation of novel DNA methylation markers for early diagnosis of lung adenocarcinoma. Mol. Oncol. 2020, 14, 2744–2758. [Google Scholar] [CrossRef]
- Liu, Y.; Nan, F.; Lu, K.; Wang, Y.; Liu, Y.; Wei, S.; Wu, R.; Wang, Y. Identification of key genes in endometrioid endometrial adenocarcinoma via TCGA database. Cancer Biomark. 2017, 21, 11–21. [Google Scholar] [CrossRef]
- Kim, T.-Y.; Zhong, S.; Fields, C.R.; Kim, J.H.; Robertson, K.D. Epigenomic Profiling Reveals Novel and Frequent Targets of Aberrant DNA Methylation-Mediated Silencing in Malignant Glioma. Cancer Res. 2006, 66, 7490–7501. [Google Scholar] [CrossRef]
- Jung, Y.; Park, J.; Bang, Y.-J.; Kim, T.-Y. Gene silencing of TSPYL5 mediated by aberrant promoter methylation in gastric cancers. Lab. Investig. 2008, 88, 153–160. [Google Scholar] [CrossRef]
- Kumar, S.R.; Bryan, J.N.; Esebua, M.; Amos-Landgraf, J.; May, T.J. Testis specific Y-like 5: Gene expression, methylation and implications for drug sensitivity in prostate carcinoma. BMC Cancer 2017, 17, 158. [Google Scholar] [CrossRef]
- Qiu, X.; Hu, B.; Huang, Y.; Deng, Y.; Wang, X.; Zheng, F. Hypermethylation of ACP1, BMP4, and TSPYL5 in Hepatocellular Carcinoma and Their Potential Clinical Significance. Dig. Dis. Sci. 2016, 61, 149–157. [Google Scholar] [CrossRef]
- Taghavi, A.; Akbari, M.E.; Hashemi-Bahremani, M.; Nafissi, N.; Khalilnezhad, A.; Poorhosseini, S.M.; Hashemi-Gorji, F.; Yassaee, V.R. Gene expression profiling of the 8q22-24 position in human breast cancer: TSPYL5, MTDH, ATAD2 and CCNE2 genes are implicated in oncogenesis, while WISP1 and EXT1 genes may predict a risk of metastasis. Oncol. Lett. 2016, 12, 3845–3855. [Google Scholar] [CrossRef]
Gender | |
---|---|
Male (%) | 53 (73.6) |
Female (%) | 19 (26.4) |
Age, median (range) | 68.5 (45–94) |
Hepatitis Status | |
HBV (%) | 35 (48.6) |
HCV (%) | 21 (29.2) |
HBV(+)/HCV(+) (%) | 1 (1.4) |
HBV(−)/HCV(−) (%) | 15 (20.8) |
Tumor Size, median (range) | 2 (0.7–16) |
Tumor Number | |
1 (%) | 48 (66.7) |
2 (%) | 9 (12.5) |
≥3 (%) | 15 (20.8) |
AFP | |
<20 ng/mL (%) | 42 (58.3) |
PIVKA-II | |
<40 mAU/mL (%) | 27 (41.2) |
ALBI Grade | |
1 (%) | 54 (75) |
2 (%) | 18 (25) |
Child-Pugh Score | |
A (%) | 66 (91.7) |
B (%) | 6 (8.3) |
Up-to-7 Criteria | |
In (%) | 53 (73.6) |
Out (%) | 19 (26.4) |
Response | |
CR (%) | 53 (73.6) |
PD (%) | 19 (26.4) |
Tumor Progression within one year | |
Early progression (+) (%) | 52 (73.6) |
Early progression (−) (%) | 20 (26.4) |
(a) | ||||
---|---|---|---|---|
AUC (95% CI) | Sensitivity (%) | Specificity (%) | p-Value | |
AFP | 0.717 (0.572–0.862) | 59.1 | 82.2 | 0.002 |
PIVKA-II | 0.708 (0.565–0.852) | 72.2 | 69.4 | 0.006 |
MMTR index | 0.759 (0.641–0.877) | 72.2 | 62.5 | 0.002 |
AFP + PIVKA-II | 0.796 (0.678–0.915) | 75.0 | 66.7 | <0.001 |
MMTR + AFP | 0.895 (0.812–0.977) | 83.3 | 81.2 | <0.001 |
MMTR + PIVKA-II | 0.803 (0.691–0.914) | 71.7 | 76.9 | 0.001 |
MMTR + AFP + PIVKA-II | 0.880 (0.786–0.973) | 83.0 | 76.9 | <0.001 |
(b) | ||||
AUC (95% CI) | Sensitivity (%) | Specificity (%) | p-Value | |
AFP | 0.758 (0.636–0.880) | 76.0 | 70.4 | <0.001 |
PIVKA-II | 0.714 (0.583–0.844) | 66.7 | 62.3 | 0.005 |
MMEP index | 0.794 (0.681–0.908) | 73.7 | 69.8 | <0.001 |
AFP + PIVKA-II | 0.830 (0.723–0.937) | 83.3 | 69.6 | <0.001 |
MMEP + AFP | 0.857 (0.762–0.952) | 78.9 | 73.6 | <0.001 |
MMEP +PIVKA-II | 0.857 (0.736–0.977) | 84.6 | 68.6 | <0.001 |
MMEP +AFP + PIVKA-II | 0.922 (0.848–0.995) | 92.3 | 72.5 | <0.001 |
Univariate Analysis | Multivariate Analysis | |||||
---|---|---|---|---|---|---|
HR | 95% CI | p Value | HR | 95% CI | p Value | |
Tumor size | 0.855 | 0.709–1.031 | 0.101 | - | - | - |
Tumor number | 0.684 | 0.387–1.208 | 0.190 | - | - | - |
Albumin | 1.005 | 0.596–1.696 | 0.984 | - | - | - |
TBIL | 0.743 | 0.494–1.116 | 0.152 | - | - | - |
AST | 0.996 | 0.986–1.005 | 0.362 | - | - | - |
ALT | 0.994 | 0.982–1.006 | 0.303 | - | - | - |
PLT count | 0.992 | 0.983–1.001 | 0.067 | - | - | - |
CRE | 0.398 | 0.026–6.137 | 0.509 | - | - | - |
Child-Pugh score | 1.600 | 0.174–14.73 | 0.678 | |||
ALBI grade | 0.512 | 0.157–1.670 | 0.267 | |||
Up-to-7 | 0.281 | 0.088–0.896 | 0.032 | 1.648 | 0.268–10.12 | 0.590 |
AFP | 0.178 | 0.059–0.537 | 0.002 | 0.104 | 0.024–0.443 | 0.002 |
PIVKA-II | 0.533 | 0.264–1.076 | 0.079 | - | - | - |
MMTR index | 209.95 | 5.125–8600.35 | 0.005 | 1452.15 | 9.18–229,712.9 | 0.005 |
Univariate Analysis | Multivariate Analysis | |||||
---|---|---|---|---|---|---|
HR | 95% CI | p Value | HR | 95% CI | p Value | |
Tumor size | 1.320 | 1.051–1.656 | 0.017 | 0.879 | 0.544–1.418 | 0.596 |
Tumor number | 1.746 | 0.999–3.052 | 0.051 | 1.191 | 0.457–3.103 | 0.721 |
Albumin | 0.551 | 0.130–2.331 | 0.418 | - | - | - |
TBIL | 1.382 | 0.676–2.827 | 0.375 | - | - | - |
AST | 1.007 | 0.996–1.018 | 0.197 | - | - | - |
ALT | 1.005 | 0.989–1.021 | 0.570 | - | - | - |
PLT | 1.008 | 1.001–1.015 | 0.032 | 1.011 | 1.000–1.022 | 0.044 |
CRE | 0.586 | 0.081–2.230 | 0.596 | - | - | - |
Child-Pugh score | 1.237 | 0.209–7.327 | 0.815 | |||
ALBI grade | 2.523 | 0.824–7.730 | 0.105 | |||
Up-to-7 | 8.381 | 2.586–27.17 | 0.000 | 10.369 | 1.205–89.23 | 0.033 |
AFP | 1.004 | 1.000–1.007 | 0.062 | - | - | - |
PIVKA-II | 1.001 | 1.000–1.002 | 0.209 | - | - | - |
MMEP index | 175.06 | 8.876–33,452.5 | 0.001 | 240.76 | 4.888–11,859.0 | 0.006 |
Univariate Analysis | Multivariate Analysis | |||||
---|---|---|---|---|---|---|
HR | 95% CI | p Value | HR | 95% CI | p Value | |
Tumor size | 1.161 | 1.030–1.310 | 0.015 | 0.991 | 0.833–1.179 | 0.920 |
Tumor number | 1.185 | 0.855–1.641 | 0.309 | - | - | - |
Albumin | 0.554 | 0.227–1.349 | 0.193 | - | - | - |
TBIL | 1.323 | 0.881–1.987 | 0.177 | - | - | - |
AST | 1.003 | 0.998–1.009 | 0.256 | - | - | - |
ALT | 1.007 | 0.998–1.016 | 0.137 | - | - | - |
PLT count | 1.004 | 1.000–1.009 | 0.041 | 1.004 | 0.999–1.009 | 0.125 |
CRE | 1.371 | 0.418–4.502 | 0.603 | - | - | - |
Child-Pugh score | 1.508 | 0.537–4.235 | 0.435 | - | - | - |
ALBI grade | 1.923 | 1.026–3.603 | 0.041 | 2.671 | 1.281–5.566 | 0.009 |
AFP | 1.000 | 1.000–1.000 | 0.081 | - | - | - |
PIVKA-II | 1.000 | 1.000–1.000 | <0.001 | 1.000 | 1.000–1.000 | 0.258 |
MMEP | 14.101 | 3.691–53.87 | <0.001 | 7.423 | 1.263–43.61 | 0.027 |
Univariate Analysis | Multivariate Analysis | |||||
---|---|---|---|---|---|---|
HR | 95% CI | p Value | HR | 95% CI | p Value | |
Tumor size | 1.185 | 1.018–1.380 | 0.028 | 0.722 | 0.155–3.371 | 0.678 |
Tumor number | 1.830 | 0.979–3.420 | 0.058 | - | - | - |
Albumin | 0.422 | 0.059–3.005 | 0.389 | - | - | - |
TBIL | 1.959 | 1.030–3.728 | 0.041 | 1.401 | 0.294–6.686 | 0.672 |
AST | 1.011 | 1.002–1.019 | 0.017 | 0.980 | 0.903–1.064 | 0.631 |
ALT | 1.006 | 0.986–1.026 | 0.584 | - | - | - |
PLT | 1.004 | 0.996–1.012 | 0.305 | - | - | - |
CRE | 0.082 | 0.003–2.027 | 0.127 | - | - | - |
Child-Pugh score | 4.521 | 0.910–22.47 | 0.065 | - | - | - |
ALBI grade | 3.10 | 0.779–12.50 | 0.108 | |||
AFP | 1.000 | 1.000–1.000 | 0.861 | - | - | - |
PIVKA-II | 1.000 | 1.000–1.000 | 0.008 | 1.000 | 0.998–1.002 | 0.847 |
MMEP | 37.683 | 2.897–490.0 | 0.006 | 267.609 | 1.73–41,526 | 0.030 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, C.-Y.; Hsiao, C.-Y.; Peng, P.-J.; Huang, S.-C.; Chuang, M.-R.; Su, H.-J.; Huang, K.-W. DNA Methylation Biomarkers as Prediction Tools for Therapeutic Response and Prognosis in Intermediate-Stage Hepatocellular Carcinoma. Cancers 2023, 15, 4465. https://doi.org/10.3390/cancers15184465
Lu C-Y, Hsiao C-Y, Peng P-J, Huang S-C, Chuang M-R, Su H-J, Huang K-W. DNA Methylation Biomarkers as Prediction Tools for Therapeutic Response and Prognosis in Intermediate-Stage Hepatocellular Carcinoma. Cancers. 2023; 15(18):4465. https://doi.org/10.3390/cancers15184465
Chicago/Turabian StyleLu, Chang-Yi, Chih-Yang Hsiao, Pey-Jey Peng, Shao-Chang Huang, Meng-Rong Chuang, Hung-Ju Su, and Kai-Wen Huang. 2023. "DNA Methylation Biomarkers as Prediction Tools for Therapeutic Response and Prognosis in Intermediate-Stage Hepatocellular Carcinoma" Cancers 15, no. 18: 4465. https://doi.org/10.3390/cancers15184465
APA StyleLu, C. -Y., Hsiao, C. -Y., Peng, P. -J., Huang, S. -C., Chuang, M. -R., Su, H. -J., & Huang, K. -W. (2023). DNA Methylation Biomarkers as Prediction Tools for Therapeutic Response and Prognosis in Intermediate-Stage Hepatocellular Carcinoma. Cancers, 15(18), 4465. https://doi.org/10.3390/cancers15184465