Enhancing Prediction for Tumor Pathologic Response to Neoadjuvant Immunochemotherapy in Locally Advanced Esophageal Cancer by Dynamic Parameters from Clinical Assessments
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Neoadjuvant Immunochemotherapy and Surgery
2.3. Pathologic Assessment
2.4. Parameters from CT Scans
2.5. Efficacy Assessment on Esophagogram
2.6. Endoscopic Response Evaluation
2.7. Statistical Analysis
3. Results
3.1. Patient Characteristic and Pathological Outcomes
3.2. Accuracy and Reproducibility of Response Evaluation
3.3. The Performance of Clinical Assessments in Pathologic Response Evaluation
3.4. Multivariable Logistic Regression Analysis and Model Development
3.5. Clinical Trial Grouping Based on MPR Prediction Model 2
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Response | Score | Stenosis | Dilation | Shrinkage | Smoothness |
Progressive Disease (PD) | 1–2 | Increase in the degree of esophageal stenosis | A more prominent dilation of the esophagus, specifically at the upper end of the tumor | An observed increase in the size or extent of the tumor | Filling defect or niche that is worse than before |
Stable Disease (SD) | 3–4 | No significant improvement in the degree of esophageal stenosis | Inadequate passage of the contrast medium through the esophagus, but the degree of obstruction is slightly improved or unchanged compared to previous assessments | The tumor has exhibited regression, but the degree of shrinkage is inadequate to meet the criteria for a partial response | Filling defect or niche remains evident |
Partial Response (PR) | 5–6 | A significant improvement in esophageal stenosis, but the narrowing is still noticeable (with the ratio of normal lumen width to stenosed lumen width greater than 3:2) | The degree of obstruction is obviously improved compared to previous assessments | One of the following criteria is met:
| One of the following criteria is met:
|
Complete Response (CR) | 7–8 | No narrowing or only slight narrowing of the esophagus (with the ratio of normal lumen width to stenosed lumen width less than or equal to 3:2) | The contrast medium flows smoothly and without obstruction through the esophagus | Complete disappearance of the tumor | The esophageal wall appears smooth and exhibits a near-normal or normal appearance |
References
- Sun, J.M.; Shen, L.; Shah, M.A.; Enzinger, P.; Adenis, A.; Doi, T.; Kojima, T.; Metges, J.P.; Li, Z.; Kim, S.B.; et al. Pembrolizumab plus chemotherapy versus chemotherapy alone for first-line treatment of advanced oesophageal cancer (KEYNOTE-590): A randomised, placebo-controlled, phase 3 study. Lancet 2021, 398, 759–771. [Google Scholar] [CrossRef]
- Doki, Y.; Ajani, J.A.; Kato, K.; Xu, J.; Wyrwicz, L.; Motoyama, S.; Ogata, T.; Kawakami, H.; Hsu, C.H.; Adenis, A.; et al. Nivolumab Combination Therapy in Advanced Esophageal Squamous-Cell Carcinoma. N. Engl. J. Med. 2022, 386, 449–462. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Lu, J.; Bai, Y.; Mao, T.; Wang, J.; Fan, Q.; Zhang, Y.; Zhao, K.; Chen, Z.; Gao, S.; et al. Effect of Camrelizumab vs Placebo Added to Chemotherapy on Survival and Progression-Free Survival in Patients With Advanced or Metastatic Esophageal Squamous Cell Carcinoma: The ESCORT-1st Randomized Clinical Trial. JAMA 2021, 326, 916–925. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Shao, C.; Wang, Y.; Duan, H.; Pan, M.; Zhao, J.; Wang, J.; Ma, Z.; Li, X.; Yan, X. Efficacy and safety of neoadjuvant immunotherapy in surgically resectable esophageal cancer: A systematic review and meta-analysis. Int. J. Surg. 2022, 104, 106767. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Bao, Y.; Yang, X.; Sun, S.; Yuan, M.; Ma, Z.; Zhang, W.; Zhai, Y.; Wang, Y.; Men, Y.; et al. Efficacy and safety of neoadjuvant immunotherapy combined with chemoradiotherapy or chemotherapy in esophageal cancer: A systematic review and meta-analysis. Front. Immunol. 2023, 14, 1117448. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Wei, X.F.; Li, C.J.; Yang, Z.Y.; Yu, Y.K.; Li, H.M.; Xie, H.N.; Yang, Y.F.; Jing, W.W.; Wang, Z.; et al. Pathologic responses and surgical outcomes after neoadjuvant immunochemotherapy versus neoadjuvant chemoradiotherapy in patients with locally advanced esophageal squamous cell carcinoma. Front. Immunol. 2022, 13, 1052542. [Google Scholar] [CrossRef]
- Liu, J.; Yang, Y.; Liu, Z.; Fu, X.; Cai, X.; Li, H.; Zhu, L.; Shen, Y.; Zhang, H.; Sun, Y.; et al. Multicenter, single-arm, phase II trial of camrelizumab and chemotherapy as neoadjuvant treatment for locally advanced esophageal squamous cell carcinoma. J. Immunother. Cancer 2022, 10, e004291. [Google Scholar] [CrossRef]
- Yang, Y.; Tan, L.; Hu, J.; Li, Y.; Mao, Y.; Tian, Z.; Zhang, B.; Ma, J.; Li, H.; Chen, C.; et al. Safety and efficacy of neoadjuvant treatment with immune checkpoint inhibitors in esophageal cancer: Real-world multicenter retrospective study in China. Dis. Esophagus 2022, 35, doac031. [Google Scholar] [CrossRef]
- Yao, Y.; Lu, J.; Qin, Z.; Li, N.; Ma, J.; Yao, N.; Qu, W.; Cui, L.; Yuan, S.; Jiang, A.; et al. High-dose versus standard-dose radiotherapy in concurrent chemoradiotherapy for inoperable esophageal cancer: A systematic review and meta-analysis. Radiother. Oncol. 2023, 184, 109700. [Google Scholar] [CrossRef]
- Abravan, A.; Faivre-Finn, C.; Kennedy, J.; McWilliam, A.; van Herk, M. Radiotherapy-Related Lymphopenia Affects Overall Survival in Patients With Lung Cancer. J. Thorac. Oncol. 2020, 15, 1624–1635. [Google Scholar] [CrossRef]
- Noordman, B.J.; Spaander, M.C.W.; Valkema, R.; Wijnhoven, B.P.L.; van Berge Henegouwen, M.I.; Shapiro, J.; Biermann, K.; van der Gaast, A.; van Hillegersberg, R.; Hulshof, M.; et al. Detection of residual disease after neoadjuvant chemoradiotherapy for oesophageal cancer (preSANO): A prospective multicentre, diagnostic cohort study. Lancet Oncol. 2018, 19, 965–974. [Google Scholar] [CrossRef]
- van der Bogt, R.D.; van der Wilk, B.J.; Nikkessen, S.; Krishnadath, K.K.; Schoon, E.J.; Oostenbrug, L.E.; Siersema, P.D.; Vleggaar, F.P.; Doukas, M.; van Lanschot, J.J.B.; et al. Predictive value of endoscopic esophageal findings for residual esophageal cancer after neoadjuvant chemoradiotherapy. Endoscopy 2021, 53, 1098–1104. [Google Scholar] [CrossRef] [PubMed]
- Tustumi, F.; Albenda, D.G.; Sallum, R.A.A.; Nahas, S.C.; Ribeiro Junior, U.; Buchpiguel, C.A.; Cecconello, I.; Duarte, P.S. (18)F-FDG-PET/CT-measured parameters as potential predictors of residual disease after neoadjuvant chemoradiotherapy in patients with esophageal carcinoma. Radiol. Bras. 2022, 55, 286–292. [Google Scholar] [CrossRef] [PubMed]
- Vollenbrock, S.E.; Voncken, F.E.M.; Lambregts, D.M.J.; Maas, M.; Donswijk, M.L.; Vegt, E.; Ter Beek, L.C.; van Dieren, J.M.; van Sandick, J.W.; Aleman, B.M.P.; et al. Clinical response assessment on DW-MRI compared with FDG-PET/CT after neoadjuvant chemoradiotherapy in patients with oesophageal cancer. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 176–185. [Google Scholar] [CrossRef] [PubMed]
- Borggreve, A.S.; Mook, S.; Verheij, M.; Mul, V.E.M.; Bergman, J.J.; Bartels-Rutten, A.; Ter Beek, L.C.; Beets-Tan, R.G.H.; Bennink, R.J.; van Berge Henegouwen, M.I.; et al. Preoperative image-guided identification of response to neoadjuvant chemoradiotherapy in esophageal cancer (PRIDE): A multicenter observational study. BMC Cancer 2018, 18, 1006. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yang, W.; Zhou, Q.; Luo, H.; Chen, W.; Yeung, S.J.; Zhang, S.; Gan, Y.; Zeng, B.; Liu, Z.; et al. The role of (18)F-FDG PET/CT in predicting the pathological response to neoadjuvant PD-1 blockade in combination with chemotherapy for resectable esophageal squamous cell carcinoma. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 4241–4251. [Google Scholar] [CrossRef]
- He, W.; Leng, X.; Mao, T.; Luo, X.; Zhou, L.; Yan, J.; Peng, L.; Fang, Q.; Liu, G.; Wei, X.; et al. Toripalimab Plus Paclitaxel and Carboplatin as Neoadjuvant Therapy in Locally Advanced Resectable Esophageal Squamous Cell Carcinoma. Oncologist 2022, 27, e18–e28. [Google Scholar] [CrossRef]
- Liu, J.; Li, J.; Lin, W.; Shao, D.; Depypere, L.; Zhang, Z.; Li, Z.; Cui, F.; Du, Z.; Zeng, Y.; et al. Neoadjuvant camrelizumab plus chemotherapy for resectable, locally advanced esophageal squamous cell carcinoma (NIC-ESCC2019): A multicenter, phase 2 study. Int. J. Cancer 2022, 151, 128–137. [Google Scholar] [CrossRef]
- Xing, W.; Zhao, L.; Zheng, Y.; Liu, B.; Liu, X.; Li, T.; Zhang, Y.; Ma, B.; Yang, Y.; Shang, Y.; et al. The Sequence of Chemotherapy and Toripalimab Might Influence the Efficacy of Neoadjuvant Chemoimmunotherapy in Locally Advanced Esophageal Squamous Cell Cancer-A Phase II Study. Front. Immunol. 2021, 12, 772450. [Google Scholar] [CrossRef]
- Chirieac, L.R.; Swisher, S.G.; Ajani, J.A.; Komaki, R.R.; Correa, A.M.; Morris, J.S.; Roth, J.A.; Rashid, A.; Hamilton, S.R.; Wu, T.T. Posttherapy pathologic stage predicts survival in patients with esophageal carcinoma receiving preoperative chemoradiation. Cancer 2005, 103, 1347–1355. [Google Scholar] [CrossRef]
- Zhong, X.; Yu, J.; Zhang, B.; Mu, D.; Zhang, W.; Li, D.; Han, A.; Song, P.; Li, H.; Yang, G.; et al. Using 18F-fluorodeoxyglucose positron emission tomography to estimate the length of gross tumor in patients with squamous cell carcinoma of the esophagus. Int. J. Radiat. Oncol. Biol. Phys. 2009, 73, 136–141. [Google Scholar] [CrossRef]
- Yu, W.; Fu, X.L.; Zhang, Y.J.; Xiang, J.Q.; Shen, L.; Jiang, G.L.; Chang, J.Y. GTV spatial conformity between different delineation methods by 18FDG PET/CT and pathology in esophageal cancer. Radiother. Oncol. 2009, 93, 441–446. [Google Scholar] [CrossRef]
- Wang, H.; Jiang, Z.; Wang, Q.; Wu, T.; Guo, F.; Xu, Z.; Yang, W.; Yang, S.; Feng, S.; Wang, X.; et al. Pathological response and prognostic factors of neoadjuvant PD-1 blockade combined with chemotherapy in resectable oesophageal squamous cell carcinoma. Eur. J. Cancer 2023, 196–210. [Google Scholar] [CrossRef]
- van der Werf, L.R.; Busweiler, L.A.D.; van Sandick, J.W.; van Berge Henegouwen, M.I.; Wijnhoven, B.P.L. Reporting National Outcomes After Esophagectomy and Gastrectomy According to the Esophageal Complications Consensus Group (ECCG). Ann. Surg. 2020, 271, 1095–1101. [Google Scholar] [CrossRef]
- Goense, L.; Meziani, J.; Ruurda, J.P.; van Hillegersberg, R. Impact of postoperative complications on outcomes after oesophagectomy for cancer. Br. J. Surg. 2019, 106, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Park, S.R.; Yoon, D.H.; Kim, J.H.; Kim, Y.H.; Kim, H.R.; Lee, H.J.; Jung, H.Y.; Lee, G.H.; Song, H.J.; Kim, D.H.; et al. A Randomized Phase III Trial on the Role of Esophagectomy in Complete Responders to Preoperative Chemoradiotherapy for Esophageal Squamous Cell Carcinoma (ESOPRESSO). Anticancer. Res. 2019, 39, 5123–5133. [Google Scholar] [CrossRef] [PubMed]
- Qian, D.; Chen, X.; Shang, X.; Wang, Y.; Tang, P.; Han, D.; Jiang, H.; Chen, C.; Zhao, G.; Zhou, D.; et al. Definitive chemoradiotherapy versus neoadjuvant chemoradiotherapy followed by surgery in patients with locally advanced esophageal squamous cell carcinoma who achieved clinical complete response when induction chemoradiation finished: A phase II random. Radiother. Oncol. 2022, 174, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, H.; Ito, Y.; Machida, R.; Kato, K.; Onozawa, M.; Minashi, K.; Yano, T.; Nakamura, K.; Tsushima, T.; Hara, H.; et al. A Single-Arm Confirmatory Study of Definitive Chemoradiation Therapy Including Salvage Treatment for Clinical Stage II/III Esophageal Squamous Cell Carcinoma (JCOG0909 Study). Int. J. Radiat. Oncol. Biol. Phys. 2022, 114, 454–462. [Google Scholar] [CrossRef]
- Katada, C.; Hara, H.; Fujii, H.; Nakajima, T.E.; Ando, T.; Nomura, M.; Kojima, T.; Yamashita, K.; Yokoyama, T.; Sakamoto, Y.; et al. A phase II study of chemoselection with docetaxel, cisplatin, and 5–fluorouracil as a strategy for organ preservation in patients with resectable esophageal cancer (CROC trial). J. Clin. Oncol. 2021, 39, 4027. [Google Scholar] [CrossRef]
- Zhao, J.; Lei, T.; Zhang, T.; Chen, X.; Dong, J.; Guan, Y.; Wang, J.; Wei, H.; Er, P.; Han, D.; et al. The efficacy and safety of simultaneous integrated dose reduction in clinical target volume with intensity-modulated radiotherapy for patients with locally advanced esophageal squamous cell carcinoma. Ann. Transl. Med. 2020, 8, 1160. [Google Scholar] [CrossRef]
- Noordman, B.J.; Wijnhoven, B.P.L.; Lagarde, S.M.; Boonstra, J.J.; Coene, P.; Dekker, J.W.T.; Doukas, M.; van der Gaast, A.; Heisterkamp, J.; Kouwenhoven, E.A.; et al. Neoadjuvant chemoradiotherapy plus surgery versus active surveillance for oesophageal cancer: A stepped-wedge cluster randomised trial. BMC Cancer 2018, 18, 142. [Google Scholar] [CrossRef] [PubMed]
- Schaue, D.; McBride, W.H. T lymphocytes and normal tissue responses to radiation. Front. Oncol. 2012, 2, 119. [Google Scholar] [CrossRef]
- Smith, S.A.; Fox, M.P. Radiation doses in esophageal cancer. J. Thorac. Dis. 2019, 11, 5688–5690. [Google Scholar] [CrossRef] [PubMed]
- Withers, H.R.; Peters, L.J.; Taylor, J.M. Dose-response relationship for radiation therapy of subclinical disease. Int. J. Radiat. Oncol. Biol. Phys. 1995, 31, 353–359. [Google Scholar] [CrossRef]
- du Bois, H.; Heim, T.A.; Lund, A.W. Tumor-draining lymph nodes: At the crossroads of metastasis and immunity. Sci. Immunol. 2021, 6, eabg3551. [Google Scholar] [CrossRef]
- Marciscano, A.E.; Ghasemzadeh, A.; Nirschl, T.R.; Theodros, D.; Kochel, C.M.; Francica, B.J.; Muroyama, Y.; Anders, R.A.; Sharabi, A.B.; Velarde, E.; et al. Elective Nodal Irradiation Attenuates the Combinatorial Efficacy of Stereotactic Radiation Therapy and Immunotherapy. Clin. Cancer Res. 2018, 24, 5058–5071. [Google Scholar] [CrossRef]
- Taniyama, Y.; Murakami, K.; Yoshida, N.; Takahashi, K.; Matsubara, H.; Baba, H.; Kamei, T. Evaluating the effect of Neoadjuvant chemotherapy for esophageal Cancer using the RECIST system with shorter-axis measurements: A retrospective multicenter study. BMC Cancer 2021, 21, 1008. [Google Scholar] [CrossRef] [PubMed]
- Voncken, F.E.; Jiang, H.; Kim, J.; Guindi, M.; Brierley, J.; Knox, J.; Liu, G.; Horgan, A.M.; Lister, J.; Darling, G.; et al. Degree of tumor shrinkage following neoadjuvant chemoradiotherapy: A potential predictor for complete pathological response in esophageal cancer? Dis. Esophagus 2014, 27, 552–559. [Google Scholar] [CrossRef]
- Alfieri, R.; Pintacuda, G.; Cagol, M.; Occhipinti, T.; Capraro, I.; Scarpa, M.; Zanchettin, G.; Cavallin, F.; Michelotto, M.; Giacomelli, L.; et al. Oesophageal cancer: Assessment of tumour response to chemoradiotherapy with tridimensional CT. Radiol. Med. 2015, 120, 430–439. [Google Scholar] [CrossRef]
- de Gouw, D.; Klarenbeek, B.R.; Driessen, M.; Bouwense, S.A.W.; van Workum, F.; Futterer, J.J.; Rovers, M.M.; Ten Broek, R.P.G.; Rosman, C. Detecting Pathological Complete Response in Esophageal Cancer after Neoadjuvant Therapy Based on Imaging Techniques: A Diagnostic Systematic Review and Meta-Analysis. J. Thorac. Oncol. 2019, 14, 1156–1171. [Google Scholar] [CrossRef]
- Bradley, J.; Movsas, B. Radiation pneumonitis and esophagitis in thoracic irradiation. Cancer Treat. Res. 2006, 128, 43–64. [Google Scholar] [CrossRef]
- Bentzen, S.M. Preventing or reducing late side effects of radiation therapy: Radiobiology meets molecular pathology. Nat. Rev. Cancer 2006, 6, 702–713. [Google Scholar] [CrossRef] [PubMed]
- Jun, W. Shiguan ai fangliao hou jinqi liaoxiao pinggu biaozhun—Fu 1000 li fenxi [Criteria of Evaluation of Immediate Response of Radiation Therapy for Esophageal Cancer—Report on 1000 patients]. Chin. J. Radiat. Oncol. 1989, 4, 205–207. [Google Scholar]
- Rihua, L. Shiguan zaoying zai shiguanai fangliao hou jinqi liaoxiao pingjia zhong de yingyong [The Application of Esophagogram in The Evaluation of Immediate Response of Radiotherapy for Esophageal Cancer]. Shanxi Med. J. 2008, 37, 1029–1030. [Google Scholar]
- Eng, C.W.; Fuqua, J.L., 3rd; Grewal, R.; Ilson, D.; Messiah, A.C.; Rizk, N.; Tang, L.; Gollub, M.J. Evaluation of response to induction chemotherapy in esophageal cancer: Is barium esophagography or PET-CT useful? Clin. Imaging 2013, 37, 468–474. [Google Scholar] [CrossRef]
- Matsuda, S.; Kawakubo, H.; Tsuji, T.; Aoyama, J.; Hirata, Y.; Takemura, R.; Mayanagi, S.; Irino, T.; Fukuda, K.; Nakamura, R.; et al. Clinical Significance of Endoscopic Response Evaluation to Predict the Distribution of Residual Tumor after Neoadjuvant Chemotherapy for Esophageal Squamous Cell Carcinoma. Ann. Surg. Oncol. 2022, 29, 2673–2680. [Google Scholar] [CrossRef]
- Nagai, Y.; Yoshida, N.; Baba, Y.; Harada, K.; Imai, K.; Iwatsuki, M.; Karashima, R.; Koga, Y.; Nomoto, D.; Okadome, K.; et al. Clinical significance of evaluating endoscopic response to neoadjuvant chemotherapy in esophageal squamous cell carcinoma. Dig. Endosc. 2020, 32, 39–48. [Google Scholar] [CrossRef]
- Matsuda, S.; Kitagawa, Y.; Okui, J.; Okamura, A.; Kawakubo, H.; Takemura, R.; Kono, K.; Muto, M.; Kakeji, Y.; Takeuchi, H.; et al. Prognostic impact of endoscopic response evaluation after neoadjuvant chemotherapy for esophageal squamous cell carcinoma: A nationwide validation study. Esophagus 2023, 20, 455–464. [Google Scholar] [CrossRef]
Characteristic | All | Non-pCR | pCR | p.Overall | Non-MPR | MPR | p.Overall |
---|---|---|---|---|---|---|---|
N = 137 | N = 85 | N = 52 | N = 50 | N = 87 | |||
Age | 64.5 (6.93) | 64.0 (7.07) | 65.3 (6.69) | 0.290 | 63.3 (6.89) | 65.2 (6.91) | 0.128 |
Sex: | 0.047 | 0.460 | |||||
Female | 22 (16.1%) | 9 (10.6%) | 13 (25.0%) | 6 (12.0%) | 16 (18.4%) | ||
Male | 115(83.9%) | 76 (89.4%) | 39 (75.0%) | 44 (88.0%) | 71 (81.6%) | ||
GTV-pre(cm3) | 36.8 (21.9) | 37.4 (20.6) | 35.9 (23.9) | 0.707 | 39.2 (21.2) | 35.5 (22.2) | 0.327 |
Tumor location: | 0.362 | 0.655 | |||||
Lower | 72 (52.6%) | 41 (48.2%) | 31 (59.6%) | 24 (48.0%) | 48 (55.2%) | ||
Middle | 43 (31.4%) | 28 (32.9%) | 15 (28.8%) | 18 (36.0%) | 25 (28.7%) | ||
Upper | 22 (16.1%) | 16 (18.8%) | 6 (11.5%) | 8 (16.0%) | 14 (16.1%) | ||
Clinical-T: | 0.109 | 0.229 | |||||
T1-2 | 75 (54.7%) | 42 (49.4%) | 33 (63.5%) | 24 (48.0%) | 51 (58.6%) | ||
T3-4 | 62 (45.3%) | 43 (50.6%) | 19 (36.5%) | 26 (52.0%) | 36 (41.4%) | ||
Clinical-N: | 0.120 | 0.251 | |||||
N0 | 5 (3.65%) | 1 (1.18%) | 4 (7.69%) | 0 (0.00%) | 5 (5.75%) | ||
N1 | 25 (18.2%) | 19 (22.4%) | 6 (11.5%) | 8 (16.0%) | 17 (19.5%) | ||
N2 | 84 (61.3%) | 51 (60.0%) | 33 (63.5%) | 31 (62.0%) | 53 (60.9%) | ||
N3 | 23 (16.8%) | 14 (16.5%) | 9 (17.3%) | 11 (22.0%) | 12 (13.8%) | ||
Regimen | 0.303 | 0.991 | |||||
Others (q3w) | 59 (43.1%) | 40 (47.1%) | 19 (36.5%) | 21 (42.0%) | 38 (43.7%) | ||
NICE(qw) | 78 (56.9%) | 45 (52.9%) | 33 (63.5%) | 29 (58.0%) | 49 (56.3%) | ||
Dose reduction: | 0.051 | 0.688 | |||||
≤15% | 117(85.4%) | 77 (90.6%) | 40 (76.9%) | 44 (88.0%) | 73 (83.9%) | ||
>15% | 20 (14.6%) | 8 (9.41%) | 12 (23.1%) | 6 (12.0%) | 14 (16.1%) | ||
Dose delay: | 0.368 | 0.813 | |||||
<7 days | 107(78.1%) | 69 (81.2%) | 38 (73.1%) | 38 (76.0%) | 69 (79.3%) | ||
≥7 days | 30 (21.9%) | 16 (18.8%) | 14 (26.9%) | 12 (24.0%) | 18 (20.7%) | ||
s-LN group | 13.9 (2.75) | 14.0 (2.56) | 13.8 (3.05) | 0.762 | 14.1 (2.27) | 13.8 (2.99) | 0.492 |
s-LN number | 31.3 (12.2) | 32.8 (13.3) | 28.9 (9.75) | 0.049 | 33.8 (13.6) | 29.9 (11.1) | 0.084 |
yp-T: | <0.001 | <0.001 | |||||
T0 | 52 (38.0%) | 0 (0.00%) | 52(100%) | 0 (0.00%) | 52 (59.8%) | ||
T1 | 28 (20.4%) | 28 (32.9%) | 0 (0.00%) | 12 (24.0%) | 16 (18.4%) | ||
T2 | 14 (10.2%) | 14 (16.5%) | 0 (0.00%) | 8 (16.0%) | 6 (6.90%) | ||
T3 | 43 (31.4%) | 43 (50.6%) | 0 (0.00%) | 30 (60.0%) | 13 (14.9%) | ||
yp-N: | <0.001 | 0.001 | |||||
N0 | 73 (53.3%) | 34 (40.0%) | 39 (75.0%) | 18 (36.0%) | 55 (63.2%) | ||
N1 | 34 (24.8%) | 24 (28.2%) | 10 (19.2%) | 12 (24.0%) | 22 (25.3%) | ||
N2 | 20 (14.6%) | 18 (21.2%) | 2 (3.85%) | 12 (24.0%) | 8 (9.20%) | ||
N3 | 10 (7.30%) | 9 (10.6%) | 1 (1.92%) | 8 (16.0%) | 2 (2.30%) |
Non-pCR | pCR | OR (95%CI) | p.Ratio | p.Overall | Non-MPR | MPR | OR (95%CI) | p.Ratio | p.Overall | |
---|---|---|---|---|---|---|---|---|---|---|
GTV-post | 21.8 (14.4) | 14.1 (7.58) | 0.93 [0.89;0.97] | 0.001 | <0.001 | 25.9 (16.3) | 14.8 (7.79) | 0.91 [0.87;0.95] | <0.001 | <0.001 |
post/pre | 62.4 (27.3) | 44.6 (14.3) | 0.95 [0.93;0.98] | <0.001 | <0.001 | 71.3 (30.7) | 46.6 (14.4) | 0.95 [0.93;0.97] | <0.001 | <0.001 |
GTV-residual | 26.1 (79.2) | −15.64 (101) | 0.99 [0.99;1.00] | 0.026 | 0.013 | 39.4 (99.4) | −6.51 (80.4) | 0.99 [0.98;1.00] | 0.003 | 0.007 |
Stenosis | 5.35 (1.88) | 6.87 (1.44) | 1.77 [1.36;2.30] | <0.001 | <0.001 | 4.78 (1.85) | 6.59 (1.54) | 1.79 [1.42;2.26] | <0.001 | <0.001 |
Dilation | 5.80 (1.80) | 7.21 (1.30) | 1.83 [1.38;2.43] | <0.001 | <0.001 | 5.18 (1.80) | 7.00 (1.36) | 1.95 [1.51;2.50] | <0.001 | <0.001 |
Shrinkage | 5.74 (1.58) | 7.19 (0.91) | 2.76 [1.82;4.18] | <0.001 | <0.001 | 5.16 (1.63) | 6.94 (1.02) | 2.83 [1.94;4.12] | <0.001 | <0.001 |
Smoothness | 5.82 (1.66) | 7.27 (0.79) | 2.77 [1.80;4.25] | <0.001 | <0.001 | 5.12 (1.64) | 7.09 (0.94) | 3.42 [2.23;5.24] | <0.001 | <0.001 |
Esophagogram-total | 22.7 (6.39) | 28.5 (3.71) | 1.27 [1.15;1.40] | <0.001 | <0.001 | 20.2 (6.38) | 27.6 (4.17) | 1.28 [1.18;1.40] | <0.001 | <0.001 |
Esophagoscope a | <0.001 | <0.001 | ||||||||
No residual disease | 20 (28.6%) | 32 (78.0%) | Ref. | Ref. | 5 (12.2%) | 47 (67.1%) | Ref. | Ref. | ||
Residual disease | 50 (71.4%) | 9 (22.0%) | 0.12 [0.04;0.28] | <0.001 | 36 (87.8%) | 23 (32.9%) | 0.07 [0.02;0.19] | <0.001 |
pCR | MPR | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
AUC (95% CI) | CUT-OFF | Control vs. Case | Specificity | Sensitivity | AUC (95% CI) | CUT-OFF | Control vs. Case | Specificity | Sensitivity | |
GTV-post | 0.682 [0.593;0.772] | 14.0 | > | 0.671 | 0.615 | 0.742 [0.653;0.832] | 17.5 | > | 0.700 | 0.713 |
post/pre | 0.727 [0.641;0.813] | 43.1 | > | 0.800 | 0.577 | 0.770 [0.684;0.856] | 50.4 | > | 0.720 | 0.724 |
GTV-residual | 0.686 [0.597;0.774] | 15.5 | > | 0.541 | 0.808 | 0.754 [0.662;0.847] | 13.1 | > | 0.720 | 0.724 |
Stenosis | 0.749 [0.666;0.832] | 6.5 | < | 0.682 | 0.750 | 0.782 [0.700;0.865] | 6.5 | < | 0.860 | 0.678 |
Dilation | 0.744 [0.663;0.826] | 6.5 | < | 0.565 | 0.827 | 0.793 [0.717;0.870] | 6.5 | < | 0.720 | 0.759 |
Shrinkage | 0.792 [0.718;0.866] | 6.5 | < | 0.671 | 0.885 | 0.854 [0.789;0.928] | 6.5 | < | 0.780 | 0.805 |
Smoothness | 0.776 [0.703;0.849] | 6.5 | < | 0.576 | 0.865 | 0.866 [0.805;0.928] | 6.5 | < | 0.792 | 0.805 |
Esophagogram-total | 0.793 [0.716;0.869] | 27.5 | < | 0.718 | 0.788 | 0.830 [0.754;0.906] | 24.5 | < | 0.760 | 0.828 |
Model 1 | 0.818 [0.747;0.889] | 0.155 | < | 0.859 | 0.654 | 0.871 [0.805;0.938] | 0.195 | < | 0.700 | 0.920 |
Model 2 a | 0.879 [0.817;0.942] | −0.636 | < | 0.786 | 0.854 | 0.912 [0.857;0.968] | 0.384 | < | 0.805 | 0.857 |
pCR | mPR | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
OR | 95%CI | p.Value | C-Index | OR | 95%CI | p.Value | C-Index | ||||
Model 1: CT+esophagogram | 0.818 | Model 1: CT+esophagogram | 0.871 | ||||||||
post/pre | 0.963 | 0.934 | 0.990 | 0.011 | post/pre | 0.964 | 0.935 | 0.990 | 0.011 | ||
Esophagogram-total | 1.237 | 1.123 | 1.386 | <0.001 | Smoothness | 2.970 | 1.951 | 4.846 | <0.001 | ||
Model 2 a: CT+esophagogram+esophagoscope | 0.879 | Model 2 a: CT+esophagogram+esophagoscope | 0.912 | ||||||||
post/pre | 0.963 | 0.927 | 0.995 | 0.034 | post/pre | 0.965 | 0.930 | 0.998 | 0.048 | ||
Esophagogram-total | 1.247 | 1.112 | 1.433 | 0.001 | Smoothness | 2.887 | 1.737 | 5.356 | <0.001 | ||
Esophagoscope (residual) | 0.126 | 0.042 | 0.341 | <0.001 | Esophagoscope (residual) | 0.068 | 0.015 | 0.233 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, X.-Y.; Liu, J.; Li, H.-X.; Cai, X.-W.; Li, Z.-G.; Su, Y.-C.; Li, Y.; Dong, X.-H.; Yu, W.; Fu, X.-L. Enhancing Prediction for Tumor Pathologic Response to Neoadjuvant Immunochemotherapy in Locally Advanced Esophageal Cancer by Dynamic Parameters from Clinical Assessments. Cancers 2023, 15, 4377. https://doi.org/10.3390/cancers15174377
Song X-Y, Liu J, Li H-X, Cai X-W, Li Z-G, Su Y-C, Li Y, Dong X-H, Yu W, Fu X-L. Enhancing Prediction for Tumor Pathologic Response to Neoadjuvant Immunochemotherapy in Locally Advanced Esophageal Cancer by Dynamic Parameters from Clinical Assessments. Cancers. 2023; 15(17):4377. https://doi.org/10.3390/cancers15174377
Chicago/Turabian StyleSong, Xin-Yun, Jun Liu, Hong-Xuan Li, Xu-Wei Cai, Zhi-Gang Li, Yu-Chen Su, Yue Li, Xiao-Huan Dong, Wen Yu, and Xiao-Long Fu. 2023. "Enhancing Prediction for Tumor Pathologic Response to Neoadjuvant Immunochemotherapy in Locally Advanced Esophageal Cancer by Dynamic Parameters from Clinical Assessments" Cancers 15, no. 17: 4377. https://doi.org/10.3390/cancers15174377
APA StyleSong, X. -Y., Liu, J., Li, H. -X., Cai, X. -W., Li, Z. -G., Su, Y. -C., Li, Y., Dong, X. -H., Yu, W., & Fu, X. -L. (2023). Enhancing Prediction for Tumor Pathologic Response to Neoadjuvant Immunochemotherapy in Locally Advanced Esophageal Cancer by Dynamic Parameters from Clinical Assessments. Cancers, 15(17), 4377. https://doi.org/10.3390/cancers15174377