Real-Time Evaluation of Thyroid Cytology Using New Digital Microscopy Allows for Sample Adequacy Assessment, Morphological Classification, and Supports Molecular Analysis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Study Design
2.2. Sample Preparation
2.3. Instant Digital Microscopy Instrument
2.4. Molecular Analysis
2.5. Fluorescence In Situ Hybridization (FISH) Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Durante, C.; Hegedus, L.; Czarniecka, A.; Paschke, R.; Russ, G.; Schmitt, F.; Soares, P.; Solymosi, T.; Papini, E. 2023 European Thyroid Association clinical practice guidelines for thyroid nodule management. Eur. Thyroid J. 2023, 12, e230067. [Google Scholar] [CrossRef]
- Tapoi, D.A.; Lambrescu, I.M.; Gheorghisan-Galateanu, A.A. Preoperative evaluation of thyroid nodules–Diagnosis and management strategies. Pathol. Res. Pract. 2023, 246, 154516. [Google Scholar] [CrossRef]
- Capitanio, A.; Dina, R.E.; Treanor, D. Digital cytology: A short review of technical and methodological approaches and applications. Cytopathology 2018, 29, 317–325. [Google Scholar] [CrossRef]
- Malvehy, J.; Pérez-Anker, J.; Toll, A.; Pigem, R.; Garcia, A.; Alos, L.L.; Puig, S. Ex vivo confocal microscopy: Revolution in fast pathology in dermatology. Br. J. Dermatol. 2020, 183, 1011–1025. [Google Scholar] [CrossRef]
- Longo, C.; Pampena, R.; Bombonato, C.; Gardini, S.; Piana, S.; Mirra, M.; Raucci, M.; Kyrgidis, A.; Pellacani, G.; Ragazzi, M. Diagnostic accuracy of ex vivo fluorescence confocal microscopy in Mohs surgery of basal cell carcinomas: A prospective study on 753 margins. Br. J. Dermatol. 2019, 180, 1473–1480. [Google Scholar] [CrossRef]
- Rocco, B.; Cimadamore, A.; Sarchi, L.; Bonetti, L.R.; Bertoni, L.; Azzoni, P.; Assumma, S.; Turri, F.; Bozzini, G.; Eissa, A.; et al. Current and future perspectives of digital microscopy with fluorescence confocal microscope for prostate tissue interpretation: A narrative review. Transl. Androl. Urol. 2021, 10, 1569–1580. [Google Scholar] [CrossRef]
- Sighinolfi, M.C.; Cimadamore, A.; Cassani, A.; Assumma, S.; Sarchi, L.; Filippi, B.; Turri, F.; Reggiani Bonetti, L.; Maiorana, A.; Eissa, A.; et al. Digital real-time microscopy of ex-vivo tissues: A novel strategy to control surgical accuracy. Urologia 2023, 90, 146–150. [Google Scholar] [CrossRef]
- Krishnamurthy, S.; Sabir, S.; Ban, K.; Wu, Y.; Sheth, R.; Tam, A.; Meric-Bernstam, F.; Shaw, K.; Mills, G.; Bassett, R.; et al. Comparison of Real-Time Fluorescence Confocal Digital Microscopy with Hematoxylin-Eosin-Stained Sections of Core-Needle Biopsy Specimens. JAMA Netw. Open 2020, 3, e200476. [Google Scholar] [CrossRef]
- Titze, U.; Sievert, K.D.; Titze, B.; Schulz, B.; Schlieker, H.; Madarasz, Z.; Weise, C.; Hansen, T. Ex Vivo Fluorescence Confocal Microscopy in Specimens of the Liver: A Proof-of-Concept Study. Cancers 2022, 14, 590. [Google Scholar] [CrossRef]
- Villarreal, J.Z.; Pérez-Anker, J.; Puig, S.; Xipell, M.; Espinosa, G.; Barnadas, E.; Larque, A.B.; Malvehy, J.; Cervera, R.; Pereira, A.; et al. Ex vivo confocal microscopy detects basic patterns of acute and chronic lesions using fresh kidney samples. Clin. Kidney J. 2023, 16, 1005–1013. [Google Scholar] [CrossRef]
- Krishnamurthy, S.; Ban, K. Feasibility of using digital confocal microscopy for cytopathological examination in clinical practice. Mod. Pathol. 2022, 35, 319–325. [Google Scholar] [CrossRef] [PubMed]
- Stigliano, S.; Crescenzi, A.; Taffon, C.; Covotta, F.; Hassan, C.; Antonelli, G.; Verri, M.; Biasutto, D.; Scarpa, R.M.; Di Matteo, F.M. Role of fluorescence confocal microscopy for rapid evaluation of EUS fine-needle biopsy sampling in pancreatic solid lesions. Gastrointest. Endosc. 2021, 94, 562–568.e1. [Google Scholar] [CrossRef] [PubMed]
- Amendoeira, I.; Arcidiacono, P.G.; Barizzi, J.; Capitanio, A.; Cuatrecasas, M.; Di Matteo, F.M.; Doglioni, C.; Fukushima, N.; Fulciniti, F.; Ginès, A.; et al. New digital confocal laser microscopy may boost real-time evaluation of endoscopic ultrasound-guided fine-needle biopsy (EUS-FNB) from solid pancreatic lesions: Data from an international multicenter study. EBioMedicine 2022, 86, 104377. [Google Scholar] [CrossRef]
- Tessler, F.N.; Middleton, W.D.; Grant, E.G.; Hoang, J.K.; Berland, L.L.; Teefey, S.A.; Cronan, J.J.; Beland, M.D.; Desser, T.S.; Frates, M.C.; et al. ACR Thyroid Imaging, Reporting and Data System (TI-RADS): White Paper of the ACR TI-RADS Committee. J. Am. Coll. Radiol. 2017, 14, 587–595. [Google Scholar] [CrossRef]
- Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016, 26, 1–133. [Google Scholar] [CrossRef]
- Nardi, F.; Basolo, F.; Crescenzi, A.; Fadda, G.; Frasoldati, A.; Orlandi, F.; Palombini, L.; Papini, E.; Zini, M.; Pontecorvi, A.; et al. Italian consensus for the classification and reporting of thyroid cytology. J. Endocrinol. Investig. 2014, 37, 593–599. [Google Scholar] [CrossRef]
- Cibas, E.S.; Ali, S.Z. The 2017 Bethesda System for Reporting Thyroid Cytopathology. Thyroid 2017, 27, 1341–1346. [Google Scholar] [CrossRef]
- Lloyd, R.V.; Osamura, R.Y.; Klöppel, G.; Rosai, J. Tumours of the thyroid gland. In World Health Organization Classification of Tumours of Endocrine Organs, 4th ed.; IARC: Lyon, France, 2017. [Google Scholar]
- Puliatti, S.; Bertoni, L.; Pirola, G.M.; Azzoni, P.; Bevilacqua, L.; Eissa, A.; Elsherbiny, A.; Sighinolfi, M.C.; Chester, J.; Kaleci, S.; et al. Ex vivo fluorescence confocal microscopy: The first application for real-time pathological examination of prostatic tissue. BJU Int. 2019, 124, 469–476. [Google Scholar] [CrossRef]
- Mu, C.; Ming, X.; Tian, Y.; Liu, Y.; Yao, M.; Ni, Y.; Liu, Y.; Li, Z. Mapping global epidemiology of thyroid nodules among general population: A systematic review and meta-analysis. Front. Oncol. 2022, 12, 1029926. [Google Scholar] [CrossRef]
- Mulita, F.; Anjum, F. Thyroid Adenoma. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Stigliano, S.; Crescenzi, A.; Marocchi, G.; Taffon, C.; Verri, M.; Di Matteo, F.M. A new tool for rapid evaluation of endoscopic ultrasound through the needle biopsy in pancreatic cystic neoplasm. Dig. Liver Dis. 2023, 3, S1590–S8658. [Google Scholar] [CrossRef]
- Kim, N.E.; Raghunathan, R.S.; Hughes, E.G.; Longstaff, X.R.; Tseng, C.H.; Li, S.; Cheung, D.S.; Gofnung, Y.A.; Famini, P.; Wu, J.X.; et al. Bethesda III and IV Thyroid Nodules Managed Nonoperatively after Molecular Testing with Afirma GSC or Thyroseq v3. J. Clin. Endocrinol. Metab. 2023, 30, dgad181. [Google Scholar] [CrossRef] [PubMed]
- Muri, R.; Trippel, M.; Borner, U.; Weidner, S.; Trepp, R. The Impact of Rapid On-Site Evaluation on the Quality and Diagnostic Value of Thyroid Nodule Fine-Needle Aspirations. Thyroid 2022, 32, 667–674. [Google Scholar] [CrossRef] [PubMed]
- Kirbis, I.S.; Maxwell, P.; Fležar, M.S.; Miller, K.; Ibrahim, M. External quality control for immunocytochemistry on cytology samples: A review of UK NEQAS ICC (cytology module) results. Cytopathology 2011, 22, 230–237. [Google Scholar] [CrossRef] [PubMed]
- Qin, S.Y.; Zhou, Y.; Li, P.; Jiang, H.X. Diagnostic efficacy of cell block immunohistochemistry, smear cytology, and liquid-based cytology in endoscopic ultrasound-guided fine-needle aspiration of pancreatic lesions: A single-institution experience. PLoS ONE 2014, 9, e108762. [Google Scholar] [CrossRef]
- Baloch, Z.W.; Asa, S.L.; Barletta, J.A.; Ghossein, R.A.; Juhlin, C.C.; Jung, C.K.; LiVolsi, V.A.; Papotti, M.G.; Sobrinho-Simões, M.; Tallini, G.; et al. Overview of the 2022 WHO Classification of Thyroid Neoplasms. Endocr. Pathol. 2022, 33, 27–63. [Google Scholar] [CrossRef]
- Nikiforova, M.N.; Mercurio, S.; Wald, A.I.; Barbi de Moura, M.; Callenberg, K.; Santana-Santos, L.; Gooding, W.E.; Yip, L.; Ferris, R.L.; Nikiforov, Y.E. Analytical performance of the ThyroSeq v3 genomic classifier for cancer diagnosis in thyroid nodules. Cancer 2018, 124, 1682–1690. [Google Scholar] [CrossRef]
- Mulita, F.; Plachouri, M.K.; Liolis, E.; Vailas, M.; Panagopoulos, K.; Maroulis, I. Patient outcomes following surgical management of thyroid nodules classified as Bethesda category III (AUS/FLUS). Endokrynol. Pol. 2021, 72, 143–144. [Google Scholar] [CrossRef]
- Crescenzi, A.; Palermo, A.; Trimboli, P. Cancer prevalence in the subcategories of the indeterminate class III (AUS/FLUS) of the Bethesda system for thyroid cytology: A meta-analysis. J. Endocrinol. Investig. 2021, 44, 1343–1351. [Google Scholar] [CrossRef]
- Trimboli, P.; Ferrarazzo, G.; Cappelli, C.; Piccardo, A.; Castellana, M.; Barizzi, J. Thyroid Nodules with Indeterminate FNAC According to the Italian Classification System: Prevalence, Rate of Operation, and Impact on Risk of Malignancy. An Updated Systematic Review and Meta-analysis. Endocr. Pathol. 2022, 33, 457–471. [Google Scholar] [CrossRef]
- Bertoni, L.; Puliatti, S.; Reggiani Bonetti, L.; Maiorana, A.; Eissa, A.; Azzoni, P.; Bevilacqua, L.; Spandri, V.; Kaleci, S.; Zoeir, A.; et al. Ex vivo fluorescence confocal microscopy: Prostatic and periprostatic tissues atlas and evaluation of the learning curve. Virchows Arch. 2020, 476, 511–520. [Google Scholar] [CrossRef]
- Ruini, C.; Schlingmann, S.; Jonke, Ž.; Avci, P.; Padrón-Laso, V.; Neumeier, F.; Koveshazi, I.; Ikeliani, I.U.; Patzer, K.; Kunrad, E.; et al. Machine Learning Based Prediction of Squamous Cell Carcinoma in Ex Vivo Confocal Laser Scanning Microscopy. Cancers 2021, 13, 5522. [Google Scholar] [CrossRef] [PubMed]
- Davoli, D.; Verri, M.; Crescenzi, A. Automated Diagnosis of Pancreatic Cancer through Deep Learning and Ex-vivo Fluorescence Confocal Laser Microscopy: A New Frontier in Digital Pathology. In Proceedings of the ECDP2023, Budapest, Hungary, 14–17 June 2023. [Google Scholar]
ID Patient | Sex | Age | Max Diameter (mm) | Clinical Features | FNA FCM | FNA | Histological Diagnosis | ||
---|---|---|---|---|---|---|---|---|---|
TSH | US Eu-Tirads | ICCRTC | BSRTC | ||||||
1 | F | 61 | 7 | 0.6 | 5 | Suspicous for malignancy | TIR5 | Malignant | PTC |
2 | F | 36 | 30 | 2.1 | 4 | Malignant PTC | TIR3B | FN/SFN | PTC |
3 | M | 49 | 50 | 0.8 | 3 | Follicular lesion | TIR3A | AUS/FLUS | FA |
4 | F | 30 | 19 | 1.6 | 5 | Malignant PTC | TIR5 | Malignant | PTC |
5 | F | 48 | 7 | 1.5 | 4 | Suspicous for malignancy | TIR3B | FN/SFN | PTC |
6 | F | 51 | 18 | 1.2 | 5 | Malignant PTC | TIR5 | Malignant | PTC |
7 | M | 65 | 16 | 3.2 | 5 | Suspicous for malignancy | TIR4 | SM | HB-PTC |
8 | F | 72 | 10 | 0.56 | 4 | Follicular lesion | TIR3A | AUS/FLUS | FV-PTC |
9 | F | 60 | 19 | 1.6 | 3 | Follicular lesion | TIR4 | SM | FA |
10 | M | 70 | 12 | 1,2 | 4 | Suspicous for malignancy | TIR4 | SM | PTC |
11 | F | 49 | 10 | 1.4 | 4 | Malignant PTC | TIR5 | Malignant | PTC |
12 | F | 36 | 8 | 1 | 4 | Malignant PTC | TIR5 | Malignant | PTC |
13 | F | 47 | 9 | 1.3 | 5 | Malignant PTC | TIR5 | Malignant | PTC |
14 | F | 72 | 14 | 1.7 | 4 | Suspicous for malignancy | TIR3B | FN/SFN | FV-PTC |
15 | M | 53 | 21 | 1.2 | 4 | Malignant PTC | TIR4 | SM | OXY-PTC |
16 | F | 53 | 16 | 1 | 4 | Follicular lesion | TIR3B | FN/SFN | HCC |
17 | M | 82 | 70 | 2.1 | 5 | Malignant PTC | TIR5 | Malignant | TC-PTC |
18 | M | 73 | 36 | 1 | 4 | Follicular lesion | TIR3B | FN/SFN | HCC |
19 | F | 35 | 12 | 2.1 | 3 | Follicular lesion | TIR3B | FN/SFN | FA |
20 | F | 53 | 23 | 1.1 | 3 | Follicular lesion | TIR3B | FN/SFN | FA |
ID Patient | Cells/ Section | % Tumoral Cells | Mutational Analysis | RNA Fusion | ||
---|---|---|---|---|---|---|
Cytomatrix | Surgical Tissue | Cytomatrix | Surgical Tissue | |||
1 | 3000 | 90% | BRAF | BRAF | - | - |
pVal600E/c.1799 T > A | pVal600E/c.1799 T > A | |||||
AF: 17.65% | AF: 43% | |||||
2 | 1200 | 90% | BRAF | BRAF | - | - |
pVal600E/c.1799 T > A | pVal600E/c.1799 T > A | |||||
AF: 35.91% | AF: 36% | |||||
3 | 1200 | 100% | Wildtype | Wildtype | Negative | Negative |
4 | 2000 | 90% | Wildtype | Wildtype | Negative | Negative |
5 | 600 | 70% | BRAF | BRAF | - | - |
pVal600E/c.1799 T > A | pVal600E/c.1799 T > A | |||||
AF: 20.95% | AF: 33.6% | |||||
6 | 1500 | 70% | Wildtype | Wildtype | CUX1-RET. | CUX1-RET. |
C10R12 | C10R12 | |||||
7 | 1000 | 90% | BRAF | BRAF | - | - |
pVal600E/c.1799 T > A | pVal600E/c.1799 T > A | |||||
AF: 24.89% | AF: 10.84% | |||||
8 | 250 | 80% | n.v. | Wildtype | n.v. | n.v. |
9 | 700 | 90% | Wildtype | Wildtype | Negative | Negative |
10 | 1000 | 70% | Wildtype | Wildtype | Negative | Negative |
11 | 2200 | 80% | BRAF | BRAF | - | - |
pVal600E/c.1799 T > A | pVal600E/c.1799 T > A | |||||
AF: 38.11% | AF: 36.33% | |||||
12 | 1800 | 80% | BRAF | BRAF | - | - |
pVal600E/c.1799 T > A | pVal600E/c.1799 T > A | |||||
AF: 36.11% | AF: 18.66% | |||||
13 | 600 | 50% | Wildtype | Wildtype | Negative | Negative |
14 | 700 | 80% | BRAF | BRAF | - | - |
pVal600E/c.1799 T > A | pVal600E/c.1799 T > A | |||||
AF: 41.68% | AF: 33.5% | |||||
15 | 2500 | 70% | BRAF | BRAF | - | - |
pVal600E/c.1799 T > A | pVal600E/c.1799 T > A | |||||
AF: 20.99% | AF: 11.26% | |||||
16 | 500 | 80% | n.v. | n.v. | n.v. | n.v. |
17 | 1200 | 90% | Wildtype | Wildtype | Negative | Negative |
18 | 1700 | 90% | HRAS | HRAS | - | - |
p.Gln61arg/c.182 | p.Gln61arg/c.182 | |||||
A > G | A > G | |||||
AF: 47.05% | AF: 46.11% | |||||
19 | 3000 | 80% | Wildtype | Wildtype | Negative | Negative |
20 | 600 | 80% | Wildtype | Wildtype | Negative | Negative |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verri, M.; Scarpino, S.; Naciu, A.M.; Lopez, G.; Tabacco, G.; Taffon, C.; Pilozzi, E.; Palermo, A.; Crescenzi, A. Real-Time Evaluation of Thyroid Cytology Using New Digital Microscopy Allows for Sample Adequacy Assessment, Morphological Classification, and Supports Molecular Analysis. Cancers 2023, 15, 4215. https://doi.org/10.3390/cancers15174215
Verri M, Scarpino S, Naciu AM, Lopez G, Tabacco G, Taffon C, Pilozzi E, Palermo A, Crescenzi A. Real-Time Evaluation of Thyroid Cytology Using New Digital Microscopy Allows for Sample Adequacy Assessment, Morphological Classification, and Supports Molecular Analysis. Cancers. 2023; 15(17):4215. https://doi.org/10.3390/cancers15174215
Chicago/Turabian StyleVerri, Martina, Stefania Scarpino, Anda Mihaela Naciu, Gianluca Lopez, Gaia Tabacco, Chiara Taffon, Emanuela Pilozzi, Andrea Palermo, and Anna Crescenzi. 2023. "Real-Time Evaluation of Thyroid Cytology Using New Digital Microscopy Allows for Sample Adequacy Assessment, Morphological Classification, and Supports Molecular Analysis" Cancers 15, no. 17: 4215. https://doi.org/10.3390/cancers15174215
APA StyleVerri, M., Scarpino, S., Naciu, A. M., Lopez, G., Tabacco, G., Taffon, C., Pilozzi, E., Palermo, A., & Crescenzi, A. (2023). Real-Time Evaluation of Thyroid Cytology Using New Digital Microscopy Allows for Sample Adequacy Assessment, Morphological Classification, and Supports Molecular Analysis. Cancers, 15(17), 4215. https://doi.org/10.3390/cancers15174215