Intake of the Total, Classes, and Subclasses of (Poly)Phenols and Risk of Prostate Cancer: A Prospective Analysis of the EPIC Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Follow-Up and Case Assessment
2.3. Dietary Collection
2.4. Lifestyle Assessment
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Cirne, F.; Kappel, C.; Zhou, S.; Mukherjee, S.D.; Dehghan, M.; Petropoulos, J.; Leong, D.P. Modifiable Risk Factors for Prostate Cancer in Low- and Lower-Middle-Income Countries: A Systematic Review and a Meta-Analysis. Prostate Cancer Prostatic Dis. 2022, 25, 453–462. [Google Scholar] [CrossRef]
- Gandaglia, G.; Leni, R.; Bray, F.; Fleshner, N.; Freedland, S.J.; Kibel, A.; Stattin, P.; Van Poppel, H.; La Vecchia, C. Epidemiology and Prevention of Prostate Cancer. Eur. Urol. Oncol. 2021, 4, 877–892. [Google Scholar] [CrossRef] [PubMed]
- Pernar, C.H.; Ebot, E.M.; Wilson, K.M.; Mucci, L.A. The Epidemiology of Prostate Cancer. Cold Spring Harb. Perspect. Med. 2018, 8, a030361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Cancer Report: Cancer Research for Cancer Prevention; Wild, C.P.; Weiderpass, E.; Stewart, B.W. (Eds.) International Agency for Research on Cancer: Lyon, France, 2020.
- Oczkowski, M.; Dziendzikowska, K.; Pasternak-Winiarska, A.; Włodarek, D.; Gromadzka-Ostrowska, J. Dietary Factors and Prostate Cancer Development, Progression, and Reduction. Nutrients 2021, 13, 496. [Google Scholar] [CrossRef]
- Pérez-Jiménez, J.; Neveu, V.; Vos, F.; Scalbert, A. Identification of the 100 Richest Dietary Sources of Polyphenols: An Application of the Phenol-Explorer Database. Eur. J. Clin. Nutr. 2010, 64 (Suppl. S3), S112–S120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singla, R.K.; Dubey, A.K.; Garg, A.; Sharma, R.K.; Fiorino, M.; Ameen, S.M.; Haddad, M.A.; Al-Hiary, M. Natural Polyphenols: Chemical Classification, Definition of Classes, Subcategories, and Structures. J. AOAC Int. 2019, 102, 1397–1400. [Google Scholar] [CrossRef]
- Zamora-Ros, R.; Knaze, V.; Rothwell, J.A.; Hémon, B.; Moskal, A.; Overvad, K.; Tjønneland, A.; Kyrø, C.; Fagherazzi, G.; Boutron-Ruault, M.-C.; et al. Dietary Polyphenol Intake in Europe: The European Prospective Investigation into Cancer and Nutrition (EPIC) Study. Eur. J. Nutr. 2016, 55, 1359–1375. [Google Scholar] [CrossRef] [Green Version]
- Costea, T.; Nagy, P.; Ganea, C.; Szöllősi, J.; Mocanu, M.-M. Molecular Mechanisms and Bioavailability of Polyphenols in Prostate Cancer. Int. J. Mol. Sci. 2019, 20, 1062. [Google Scholar] [CrossRef] [Green Version]
- Galván-Portillo, M.; Vázquez-Salas, R.A.; Hernández-Pérez, J.G.; Blanco-Muñoz, J.; López-Carrillo, L.; Torres-Sánchez, L. Dietary Flavonoid Patterns and Prostate Cancer: Evidence from a Mexican Population-Based Case-Control Study. Br. J. Nutr. 2021, 127, 1695–1703. [Google Scholar] [CrossRef]
- Russo, G.I.; Di Mauro, M.; Regis, F.; Reale, G.; Campisi, D.; Marranzano, M.; Lo Giudice, A.; Solinas, T.; Madonia, M.; Cimino, S.; et al. Association between Dietary Phytoestrogens Intakes and Prostate Cancer Risk in Sicily. Aging Male 2018, 21, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Reale, G.; Russo, G.I.; Di Mauro, M.; Regis, F.; Campisi, D.; Giudice, A.L.; Marranzano, M.; Ragusa, R.; Castelli, T.; Cimino, S.; et al. Association between Dietary Flavonoids Intake and Prostate Cancer Risk: A Case-Control Study in Sicily. Complement. Ther. Med. 2018, 39, 14–18. [Google Scholar] [CrossRef] [PubMed]
- Wallström, P.; Drake, I.; Sonestedt, E.; Gullberg, B.; Bjartell, A.; Olsson, H.; Adlercreutz, H.; Tikkanen, M.J.; Wirfält, E. Plasma Enterolactone and Risk of Prostate Cancer in Middle-Aged Swedish Men. Eur. J. Nutr. 2018, 57, 2595–2606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, F.; Peng, Y.; Qiao, Y.; Huang, Y.; Song, F.; Zhang, M.; Song, F. Consumption of Flavonoids and Risk of Hormone-Related Cancers: A Systematic Review and Meta-Analysis of Observational Studies. Nutr. J. 2022, 21, 27. [Google Scholar] [CrossRef] [PubMed]
- Riboli, E.; Hunt, K.J.; Slimani, N.; Ferrari, P.; Norat, T.; Fahey, M.; Charrondière, U.R.; Hémon, B.; Casagrande, C.; Vignat, J.; et al. European Prospective Investigation into Cancer and Nutrition (EPIC): Study Populations and Data Collection. Public Health Nutr. 2002, 5, 1113–1124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Margetts, B.M.; Pietinen, P. European Prospective Investigation into Cancer and Nutrition: Validity Studies on Dietary Assessment Methods. Int. J. Epidemiol. 1997, 26 (Suppl. S1), S1–S5. [Google Scholar] [CrossRef] [Green Version]
- Slimani, N.; Deharveng, G.; Unwin, I.; Southgate, D.A.T.; Vignat, J.; Skeie, G.; Salvini, S.; Parpinel, M.; Møller, A.; Ireland, J.; et al. The EPIC Nutrient Database Project (ENDB): A First Attempt to Standardize Nutrient Databases across the 10 European Countries Participating in the EPIC Study. Eur. J. Clin. Nutr. 2007, 61, 1037–1056. [Google Scholar] [CrossRef] [Green Version]
- Neveu, V.; Perez-Jiménez, J.; Vos, F.; Crespy, V.; du Chaffaut, L.; Mennen, L.; Knox, C.; Eisner, R.; Cruz, J.; Wishart, D.; et al. Phenol-Explorer: An Online Comprehensive Database on Polyphenol Contents in Foods. Database 2010, 2010, bap024. [Google Scholar] [CrossRef]
- Rothwell, J.A.; Perez-Jimenez, J.; Neveu, V.; Medina-Remón, A.; M’hiri, N.; García-Lobato, P.; Manach, C.; Knox, C.; Eisner, R.; Wishart, D.S.; et al. Phenol-Explorer 3.0: A Major Update of the Phenol-Explorer Database to Incorporate Data on the Effects of Food Processing on Polyphenol Content. Database 2013, 2013, bat070. [Google Scholar] [CrossRef]
- Knaze, V.; Rothwell, J.A.; Zamora-Ros, R.; Moskal, A.; Kyrø, C.; Jakszyn, P.; Skeie, G.; Weiderpass, E.; Santucci de Magistris, M.; Agnoli, C.; et al. A New Food-Composition Database for 437 Polyphenols in 19,899 Raw and Prepared Foods Used to Estimate Polyphenol Intakes in Adults from 10 European Countries. Am. J. Clin. Nutr. 2018, 108, 517–524. [Google Scholar] [CrossRef] [Green Version]
- Spencer, E.A.; Appleby, P.N.; Davey, G.K.; Key, T.J. Validity of Self-Reported Height and Weight in 4808 EPIC-Oxford Participants. Public Health Nutr. 2002, 5, 561–565. [Google Scholar] [CrossRef]
- Wareham, N.J.; Jakes, R.W.; Rennie, K.L.; Schuit, J.; Mitchell, J.; Hennings, S.; Day, N.E. Validity and Repeatability of a Simple Index Derived from the Short Physical Activity Questionnaire Used in the European Prospective Investigation into Cancer and Nutrition (EPIC) Study. Public Health Nutr. 2003, 6, 407–413. [Google Scholar] [CrossRef] [Green Version]
- Ghanavati, M.; Clark, C.C.T.; Bahrami, A.; Teymoori, F.; Movahed, M.; Sohrab, G.; Hejazi, E. Dietary Intake of Polyphenols and Total Antioxidant Capacity and Risk of Prostate Cancer: A Case-Control Study in Iranian Men. Eur. J. Cancer Care 2021, 30, e13364. [Google Scholar] [CrossRef]
- Russo, G.I.; Campisi, D.; Di Mauro, M.; Regis, F.; Reale, G.; Marranzano, M.; Ragusa, R.; Solinas, T.; Madonia, M.; Cimino, S.; et al. Dietary Consumption of Phenolic Acids and Prostate Cancer: A Case-Control Study in Sicily, Southern Italy. Molecules 2017, 22, 2159. [Google Scholar] [CrossRef] [Green Version]
- Knekt, P.; Kumpulainen, J.; Järvinen, R.; Rissanen, H.; Heliövaara, M.; Reunanen, A.; Hakulinen, T.; Aromaa, A. Flavonoid Intake and Risk of Chronic Diseases. Am. J. Clin. Nutr. 2002, 76, 560–568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mursu, J.; Nurmi, T.; Tuomainen, T.-P.; Salonen, J.T.; Pukkala, E.; Voutilainen, S. Intake of Flavonoids and Risk of Cancer in Finnish Men: The Kuopio Ischaemic Heart Disease Risk Factor Study. Int. J. Cancer 2008, 123, 660–663. [Google Scholar] [CrossRef]
- Wang, Y.; Stevens, V.L.; Shah, R.; Peterson, J.J.; Dwyer, J.T.; Gapstur, S.M.; McCullough, M.L. Dietary Flavonoid and Proanthocyanidin Intakes and Prostate Cancer Risk in a Prospective Cohort of US Men. Am. J. Epidemiol. 2014, 179, 974–986. [Google Scholar] [CrossRef] [Green Version]
- Lanuza, F.; Bondonno, N.P.; Zamora-Ros, R.; Rostgaard-Hansen, A.L.; Tjønneland, A.; Landberg, R.; Halkjær, J.; Andres-Lacueva, C. Comparison of Flavonoid Intake Assessment Methods Using USDA and Phenol Explorer Databases: Subcohort Diet, Cancer and Health-Next Generations-MAX Study. Front. Nutr. 2022, 9, 873774. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Wang, S.; Zhou, M.; Yu, W.; Zhang, Y.; He, X. Phytoestrogens and Risk of Prostate Cancer: A Meta-Analysis of Observational Studies. World J. Surg. Oncol. 2015, 13, 231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sen, A.; Papadimitriou, N.; Lagiou, P.; Perez-Cornago, A.; Travis, R.C.; Key, T.J.; Murphy, N.; Gunter, M.; Freisling, H.; Tzoulaki, I.; et al. Coffee and Tea Consumption and Risk of Prostate Cancer in the European Prospective Investigation into Cancer and Nutrition. Int. J. Cancer 2019, 144, 240–250. [Google Scholar] [CrossRef]
- Wang, M.; Jian, Z.; Yuan, C.; Jin, X.; Li, H.; Wang, K. Coffee Consumption and Prostate Cancer Risk: Results from National Health and Nutrition Examination Survey 1999-2010 and Mendelian Randomization Analyses. Nutrients 2021, 13, 2317. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.Y.; Yoo, D.M.; Min, C.; Choi, H.G. Association between Coffee Consumption/Physical Exercise and Gastric, Hepatic, Colon, Breast, Uterine Cervix, Lung, Thyroid, Prostate, and Bladder Cancer. Nutrients 2021, 13, 3927. [Google Scholar] [CrossRef] [PubMed]
- Imatoh, T.; Sawada, N.; Yamaji, T.; Iwasaki, M.; Inoue, M.; Tsugane, S. Association between Coffee Consumption and Risk of Prostate Cancer in Japanese Men: A Population-Based Cohort Study in Japan. Cancer Epidemiol. Biomark. Prev. 2022, 31, 471–478. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhao, Y.; Tao, Z.; Wang, K. Coffee Consumption and Risk of Prostate Cancer: A Systematic Review and Meta-Analysis. BMJ Open 2021, 11, e038902. [Google Scholar] [CrossRef] [PubMed]
- Filippini, T.; Malavolti, M.; Borrelli, F.; Izzo, A.A.; Fairweather-Tait, S.J.; Horneber, M.; Vinceti, M. Green Tea (Camellia Sinensis) for the Prevention of Cancer. Cochrane Database Syst. Rev. 2020, 2020, CD005004. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.; Hu, Z.; Wang, X.; Mao, Q.; Qin, J.; Zheng, X.; Xie, L. Tea Consumption and Prostate Cancer: An Updated Meta-Analysis. World J. Surg. Oncol. 2014, 12, 38. [Google Scholar] [CrossRef] [Green Version]
- Perez-Cornago, A.; Travis, R.C.; Appleby, P.N.; Tsilidis, K.K.; Tjønneland, A.; Olsen, A.; Overvad, K.; Katzke, V.; Kühn, T.; Trichopoulou, A.; et al. Fruit and Vegetable Intake and Prostate Cancer Risk in the European Prospective Investigation into Cancer and Nutrition (EPIC). Int. J. Cancer 2017, 141, 287–297. [Google Scholar] [CrossRef] [Green Version]
- Yan, H.; Cui, X.; Zhang, P.; Li, R. Fruit and Vegetable Consumption and the Risk of Prostate Cancer: A Systematic Review and Meta-Analysis. Nutr. Cancer 2022, 74, 1235–1242. [Google Scholar] [CrossRef]
- Livingstone, T.L.; Beasy, G.; Mills, R.D.; Plumb, J.; Needs, P.W.; Mithen, R.; Traka, M.H. Plant Bioactives and the Prevention of Prostate Cancer: Evidence from Human Studies. Nutrients 2019, 11, 2245. [Google Scholar] [CrossRef] [Green Version]
- Feng, X.-L.; Zhan, X.-X.; Zuo, L.-S.-Y.; Mo, X.-F.; Zhang, X.; Liu, K.-Y.; Li, L.; Zhang, C.-X. Associations between Serum Concentration of Flavonoids and Breast Cancer Risk among Chinese Women. Eur. J. Nutr. 2021, 60, 1347–1362. [Google Scholar] [CrossRef]
- Murphy, N.; Achaintre, D.; Zamora-Ros, R.; Jenab, M.; Boutron-Ruault, M.-C.; Carbonnel, F.; Savoye, I.; Kaaks, R.; Kühn, T.; Boeing, H.; et al. A Prospective Evaluation of Plasma Polyphenol Levels and Colon Cancer Risk. Int. J. Cancer 2018, 143, 1620–1631. [Google Scholar] [CrossRef]
- Zamora-Ros, R.; Lujan-Barroso, L.; Achaintre, D.; Franceschi, S.; Kyrø, C.; Overvad, K.; Tjønneland, A.; Truong, T.; Lecuyer, L.; Boutron-Ruault, M.-C.; et al. Blood Polyphenol Concentrations and Differentiated Thyroid Carcinoma in Women from the European Prospective Investigation into Cancer and Nutrition (EPIC) Study. Am. J. Clin. Nutr. 2021, 113, 162–171. [Google Scholar] [CrossRef]
- Perez-Cornago, A.; Appleby, P.N.; Boeing, H.; Gil, L.; Kyrø, C.; Ricceri, F.; Murphy, N.; Trichopoulou, A.; Tsilidis, K.K.; Khaw, K.-T.; et al. Circulating Isoflavone and Lignan Concentrations and Prostate Cancer Risk: A Meta-Analysis of Individual Participant Data from Seven Prospective Studies Including 2828 Cases and 5593 Controls. Int. J. Cancer 2018, 143, 2677–2686. [Google Scholar] [CrossRef] [Green Version]
- Travis, R.C.; Allen, N.E.; Appleby, P.N.; Price, A.; Kaaks, R.; Chang-Claude, J.; Boeing, H.; Aleksandrova, K.; Tjønneland, A.; Johnsen, N.F.; et al. Prediagnostic Concentrations of Plasma Genistein and Prostate Cancer Risk in 1,605 Men with Prostate Cancer and 1,697 Matched Control Participants in EPIC. Cancer Causes Control 2012, 23, 1163–1171. [Google Scholar] [CrossRef] [Green Version]
- Travis, R.C.; Spencer, E.A.; Allen, N.E.; Appleby, P.N.; Roddam, A.W.; Overvad, K.; Johnsen, N.F.; Olsen, A.; Kaaks, R.; Linseisen, J.; et al. Plasma Phyto-Oestrogens and Prostate Cancer in the European Prospective Investigation into Cancer and Nutrition. Br. J. Cancer 2009, 100, 1817–1823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, F.; Peng, Y.; Qiao, Y.; Wang, P.; Si, C.; Wang, X.; Zhang, M.; Song, F. Association of Urinary Phytoestrogens with Hormone-Related Cancers and Cancer Biomarkers: NHANES 1999-2010. Br. J. Nutr. 2022, 130, 750–764. [Google Scholar] [CrossRef] [PubMed]
- Stattin, P.; Adlercreutz, H.; Tenkanen, L.; Jellum, E.; Lumme, S.; Hallmans, G.; Harvei, S.; Teppo, L.; Stumpf, K.; Luostarinen, T.; et al. Circulating Enterolactone and Prostate Cancer Risk: A Nordic Nested Case-Control Study. Int. J. Cancer 2002, 99, 124–129. [Google Scholar] [CrossRef] [PubMed]
- Nagata, Y.; Sugiyama, Y.; Fukuta, F.; Takayanagi, A.; Masumori, N.; Tsukamoto, T.; Akasaka, H.; Ohnishi, H.; Saitoh, S.; Miura, T.; et al. Relationship of Serum Levels and Dietary Intake of Isoflavone, and the Novel Bacterium Slackia Sp. Strain NATTS with the Risk of Prostate Cancer: A Case-Control Study among Japanese Men. Int. Urol. Nephrol. 2016, 48, 1453–1460. [Google Scholar] [CrossRef] [PubMed]
Country | n | Overall PCa | PCa Grade | PCa Stage | Fatal PCa | Total (Poly)Phenol Intake (mg/d) Median (P10–P90) | ||
---|---|---|---|---|---|---|---|---|
Low-Grade | High-Grade | Localized | Advanced | |||||
Sweden | 22,306 | 1833 | 476 | 79 | 556 | 86 | 224 | 887 (536–1375) |
Denmark | 26,294 | 1885 | 652 | 240 | 540 | 550 | 312 | 1593 (965–2236) |
The Netherlands | 9627 | 215 | 189 | 17 | 32 | 74 | 22 | 1154 (719–1662) |
Germany | 21,178 | 833 | 687 | 68 | 533 | 186 | 45 | 1093 (652–1778) |
United Kingdom | 22,849 | 1028 | 636 | 183 | 258 | 206 | 217 | 1508 (917–2108) |
Spain | 15,139 | 666 | 527 | 77 | 434 | 74 | 61 | 834 (418–1482) |
Italy | 14,032 | 479 | 334 | 46 | 93 | 92 | 33 | 1008 (615–1517) |
Total | 131,425 | 6939 | 3501 | 710 | 2446 | 1268 | 914 | 1167 (625–1931) |
Baseline Characteristics | Quintiles of Total (Poly)phenol Intake | Total | ||||
---|---|---|---|---|---|---|
Quintile 1 | Quintile 2 | Quintile 3 | Quintile 4 | Quintile 5 | ||
N | 26,285 | 26,285 | 26,285 | 26,285 | 26,285 | 131,425 |
Cut-off (poly)phenol intake (mg/d) | <783 | 783–1040 | 1040–1310 | 1310–1662 | >1662 | |
Mean (SD) | Mean (SD) | Mean (SD) | Mean (SD) | Mean (SD) | Mean (SD) | |
Age at recruitment (years) | 51.4 (10.0) | 51.2 (10.0) | 51.6 (10.1) | 52.9 (10.0) | 53.8 (9.20) | 52.2 (9.90) |
Total energy intake (kcal) | 2134 (603) | 2318 (601) | 2445 (633) | 2512 (658) | 2675 (681) | 2417 (662) |
Fiber intake (mg/d) | 20.5 (7.31) | 22.7 (7.40) | 24.3 (7.71) | 25.5 (8.20) | 28.6 (9.40) | 24.3 (8.50) |
Vitamin C intake (mg/d) | 97.9 (55.4) | 108 (59.3) | 115 (60.1) | 120 (62.2) | 128 (70.2) | 114.3 (62.5) |
Smoking status | n (%) | n (%) | n (%) | n (%) | n (%) | n (%) |
Never | 10,055 (38.3%) | 9491 (36.1%) | 8879 (33.8%) | 8297 (31.6%) | 7488 (28.5%) | 44,210 (33.6%) |
Former | 8969 (34.1%) | 9610 (36.6%) | 9931 (37.8%) | 10,017 (38.1%) | 9753 (37.1%) | 48,280 (36.7%) |
Current | 7019 (26.7%) | 6970 (26.5%) | 7229 (27.5%) | 7644 (29.1%) | 8690 (33.1%) | 37,552 (28.6%) |
Not specified | 242 (0.90%) | 214 (0.80%) | 246 (0.90%) | 327 (1.20%) | 354 (1.30%) | 1383 (1.10%) |
Physical activity level | ||||||
Inactive | 5254 (20.0%) | 4733 (18.0%) | 4348 (16.5%) | 4509 (17.2%) | 4231 (16.1%) | 23,075 (17.6%) |
Moderately inactive | 8614 (32.8%) | 8470 (32.2%) | 8187 (31.1%) | 7922 (30.1%) | 7453 (28.4%) | 40,646 (30.9%) |
Moderately active | 6571 (25.0%) | 6475 (24.6%) | 6384 (24.3%) | 6054 (23.0%) | 6195 (23.6%) | 31,679 (24.1%) |
Active | 5488 (20.9%) | 6041 (23.0%) | 6551 (24.9%) | 6984 (26.6%) | 7888 (30.0%) | 32,952 (25.1%) |
Not specified | 358 (1.4%) | 566 (2.2%) | 815 (3.1%) | 816 (3.1%) | 518 (2.0%) | 3073 (2.3%) |
Educational level | ||||||
None | 2048 (7.8%) | 896 (3.4%) | 638 (2.4%) | 426 (1.6%) | 257 (1.0%) | 4265 (3.2%) |
Primary | 8987 (34.2%) | 7910 (30.1%) | 7067 (26.9%) | 6794 (25.8%) | 6942 (26.4%) | 37,700 (28.7%) |
Technical/Professional | 5468 (20.8%) | 6205 (23.6%) | 6774 (25.8%) | 7094 (27.0%) | 7118 (27.1%) | 32,659 (24.8%) |
Secondary | 3932 (15.0%) | 4208 (16.0%) | 3779 (14.4%) | 3022 (11.5%) | 2508 (9.5%) | 17,449 (13.3%) |
Longer (University) | 5515 (21.0%) | 6651 (25.3%) | 7326 (27.9%) | 7822 (29.8%) | 8208 (31.2%) | 35,522 (27.0%) |
Not specified | 335 (1.3%) | 415 (1.6%) | 701 (2.7%) | 1127 (4.3%) | 1252 (4.8%) | 3830 (2.9%) |
Marital status | ||||||
Single | 4171 (15.9%) | 3922 (14.9%) | 3758 (14.3%) | 3224 (12.3%) | 2574 (9.80%) | 17,649 (13.4%) |
Together | 13,747 (52.3%) | 16,051 (61.1%) | 15,429 (58.7%) | 13,887 (52.8%) | 10,705 (40.7%) | 69,819 (53.1%) |
Not specified | 8367 (31.8%) | 6312 (24.0%) | 7098 (27.0%) | 9174 (34.9%) | 13,006 (49.5%) | 43,957 (33.4%) |
Diabetes prevalence | ||||||
No | 24,325 (92.5%) | 24,106 (91.7%) | 23,175 (88.2%) | 21,403 (81.4%) | 20,760 (79.0%) | 113,769 (86.6%) |
Yes | 1088 (4.1%) | 898 (3.4%) | 799 (3.0%) | 777 (3.0%) | 770 (2.9%) | 4332 (3.3%) |
Not specified | 872 (3.3%) | 1281 (4.9%) | 2311 (8.8%) | 4105 (15.6%) | 4755 (18.1%) | 13,324 (10.1%) |
Alcohol intake (g/d) | ||||||
0.0 | 2860 (10.9%) | 1487 (5.7%) | 1289 (4.9%) | 1278 (4.9%) | 1186 (4.5%) | 8100 (6.2%) |
>0.0–< 5.0 | 7763 (29.5%) | 6487 (24.7%) | 5244 (20.0%) | 4828 (18.4%) | 4536 (17.3%) | 28,858 (22.0%) |
5.0–14.9 | 6848 (26.1%) | 7263 (27.6%) | 6891 (26.2%) | 6835 (26.0%) | 7022 (26.7%) | 34,859 (26.5%) |
15.0–29.9 | 4658 (17.7%) | 5713 (21.7%) | 5927 (22.5%) | 5528 (21.0%) | 5330 (20.3%) | 27,156 (20.7%) |
≥30.0 | 4156 (15.8%) | 5335 (20.3%) | 6934 (26.4%) | 7816 (29.7%) | 8211 (31.2%) | 32,452 (24.7%) |
Body Mass Index (kg/m2) | ||||||
<22.5 | 2941 (11.2%) | 3134 (11.9%) | 3244 (12.3%) | 3292 (12.5%) | 3400 (12.9%) | 16,011 (12.2%) |
≥22.5–24.9 | 5731 (21.8%) | 6402 (24.4%) | 6611 (25.2%) | 6822 (26.0%) | 7126 (27.1%) | 32,692 (24.8%) |
≥25.0–29.9 | 13,015 (49.5%) | 12,849 (48.9%) | 12,780 (48.6%) | 12,613 (48.0%) | 12,453 (47.4%) | 63,710 (48.5%) |
≥30.0 | 4598 (17.5%) | 9536 (36.3%) | 3650 (13.9%) | 3558 (13.5%) | 3306 (12.6%) | 19,012 (14.4%) |
Intake (mg/d) Median (P10–P90) | Quintile 1 HR (95% CI) | Quintile 2 HR (95% CI) | Quintile 3 HR (95% CI) | Quintile 4 HR (95% CI) | Quintile 5 HR (95% CI) | P-Trend | Continuous (log2) HR (95% CI) | |
---|---|---|---|---|---|---|---|---|
Total (poly)phenols | 1167 (625–1931) | 1.00 (ref) | 1.10 (1.02–1.19) | 1.02 (0.93–1.11) | 1.02 (0.93–1.12) | 1.02 (0.92–1.13) | 0.77 | 0.99 (0.94–1.04) |
Flavonoids | 437 (159–1063) | 1.00 (ref) | 0.99 (0.92–1.07) | 1.01 (0.94–1.10) | 1.03 (0.94–1.12) | 0.97 (0.88–1.07) | 0.63 | 1.20 (0.98–1.04) |
Flavanols | 302 (96.1–853) | 1.00 (ref) | 0.99 (0.92–1.07) | 1.00 (0.92–1.08) | 1.03 (0.95–1.12) | 0.94 (0.85–1.03) | 0.23 | 1.01 (0.99–1.04) |
Flavan-3-ol monomers | 48.5 (11.6–430) | 1.00 (ref) | 1.01 (0.94–1.09) | 1.02 (0.94–1.11) | 1.03 (0.94–1.12) | 1.02 (0.93–1.11) | 0.89 | 1.01 (0.99–1.02) |
Proanthocyanidins | 211 (74.3–468) | 1.00 (ref) | 1.03 (0.96–1.11) | 1.04 (0.96–1.13) | 1.02 (0.94–1.12) | 1.03 (0.94–1.14) | 0.66 | 1.01 (1.00–1.02) |
Theaflavins | 2.05 (0.00–99.6) | 1.00 (ref) | 1.08 (0.96–1.22) | 1.08 (0.98–1.18) | 1.09 (1.00–1.20) | 1.03 (0.94–1.14) | 0.57 | 1.00 (1.00–1.01) |
Flavonols | 29.0 (10.2–93.8) | 1.00 (ref) | 0.94 (0.87–1.02) | 1.05 (0.97–1.14) | 1.01 (0.92–1.11) | 1.01 (0.92–1.12) | 0.62 | 1.01 (0.98–1.03) |
Flavanones | 22.5 (3.98–86.1) | 1.00 (ref) | 0.95 (0.88–1.02) | 0.97 (0.90–1.05) | 0.98 (0.90–1.06) | 0.97 (0.88–1.07) | 0.81 | 0.99 (0.98–1.01) |
Anthocyanins | 22.1 (4.87–90.1) | 1.00 (ref) | 1.03 (0.96–1.12) | 1.05 (0.97–1.14) | 1.09 (1.00–1.18) | 1.02 (0.93–1.12) | 0.87 | 1.01 (1.00–1.03) |
Flavones | 9.00 (3.15–23.1) | 1.00 (ref) | 1.02 (0.95–1.10) | 1.03 (0.95–1.11) | 1.10 (1.01–1.20) | 1.04 (0.93–1.16) | 0.37 | 1.02 (0.99–1.05) |
Dihydrochalcones | 1.67 (0.22–5.66) | 1.00 (ref) | 1.06 (0.98–1.15) | 1.10 (1.02–1.20) | 1.08 (1.00–1.18) | 1.05 (0.97–1.15) | 0.60 | 1.00 (0.99–1.01) |
Dihydroflavonols | 0.99 (0.00–12.8) | 1.00 (ref) | 1.07 (0.98–1.18) | 1.07 (0.97–1.17) | 1.06 (0.96–1.18) | 1.08 (0.96–1.22) | 0.57 | 1.00 (1.00–1.01) |
Isoflavones | 0.03 (0.01–0.78) | 1.00 (ref) | 1.03 (0.96–1.10) | 1.01 (0.94–1.09) | 0.99 (0.90–1.07) | 0.95 (0.85–1.07) | 0.27 | 1.00 (0.99–1.01) |
Phenolic acids | 564 (225–1152) | 1.00 (ref) | 0.98 (0.90–1.06) | 1.02 (0.94–1.11) | 0.98 (0.90–1.07) | 0.97 (0.88–1.06) | 0.48 | 0.98 (0.95–1.02) |
Hydroxycinnamic acids | 513 (167–1099) | 1.00 (ref) | 0.93 (0.86–1.01) | 0.98 (0.90–1.06) | 0.96 (0.88–1.05) | 0.96 (0.88–1.06) | 0.78 | 0.99 (0.96–1.02) |
Hydroxybenzoics acids | 24.1 (4.74–141) | 1.00 (ref) | 0.95 (0.87–1.02) | 0.98 (0.89–1.08) | 0.98 (0.89–1.08) | 0.96 (0.87–1.06) | 0.69 | 0.99 (0.97–1.01) |
Hydroxyphenylacetic acids | 0.20 (0.01–0.92) | 1.00 (ref) | 0.90 (0.83–0.98) | 0.98 (0.89–1.08) | 0.93 (0.83–1.04) | 0.86 (0.76–0.99) | 0.07 | 0.99 (0.98–1.01) |
Stilbenes | 0.84 (0.04–8.42) | 1.00 (ref) | 1.02 (0.93–1.11) | 1.06 (0.97–1.16) | 1.06 (0.96–1.17) | 1.07 (0.95–1.20) | 0.48 | 1.01 (1.00–1.02) |
Lignans | 1.51 (0.90–3.14) | 1.00 (ref) | 1.10 (1.02–1.19) | 1.06 (0.98–1.16) | 1.09 (0.98–1.20) | 1.02 (0.90–1.15) | 0.54 | 1.00 (0.95–1.05) |
Other (poly)phenols | 59.0 (23.7–115) | |||||||
Alkylphenols | 41.2 (4.01–99.0) | 1.00 (ref) | 0.98 (0.88–1.08) | 0.99 (0.89–1.09) | 1.01 (0.90–1.12) | 1.01 (0.89–1.15) | 0.59 | 1.02 (1.00–1.05) |
Tyrosols | 3.97 (0.77–24.5) | 1.00 (ref) | 0.97 (0.89–1.05) | 1.04 (0.95–1.13) | 1.02 (0.92–1.13) | 0.99 (0.86–1.14) | 0.75 | 1.00 (0.99–1.02) |
Alkylmethoxyphenols | 2.79 (0.64–6.17) | 1.00 (ref) | 0.96 (0.88–1.05) | 1.00 (0.92–1.09) | 0.96 (0.88–1.06) | 0.93 (0.84–1.03) | 0.13 | 0.99 (0.98–1.01) |
PCa Grade | PCa Stage | P-Heterogeneity 2 | Fatal PCa | ||||
---|---|---|---|---|---|---|---|
Low | High | P-Heterogeneity 1 | Localized | Advanced | Continuous (log2) HR (95% CI) | ||
Continuous (log2) HR (95% CI) | Continuous (log2) HR (95% CI) | Continuous (log2) HR (95% CI) | Continuous (log2) HR (95% CI) | ||||
Total (poly)phenols | 1.01 (0.94–1.08) | 1.05 (0.89–1.24) | 0.47 | 0.98 (0.90–1.07) | 1.03 (0.91–1.17) | 0.56 | 0.98 (0.90–1.06) |
Flavonoids | 1.01 (0.97–1.05) | 1.02 (0.93–1.12) | 0.74 | 1.01 (0.96–1.06) | 1.02 (0.95–1.09) | 0.05 | 0.98 (0.91–1.05) |
Total Flavanols | 1.01 (0.98–1.05) | 1.01 (0.93–1.09) | 0.89 | 1.01 (0.97–1.05) | 1.01 (0.95–1.07) | 0.06 | 0.99 (0.95–1.04) |
Flavan-3-ol monomers | 1.00 (0.98–1.02) | 1.00 (0.96–1.05) | 0.70 | 1.00 (0.98–1.03) | 0.99 (0.96–1.02) | 0.29 | 1.00 (0.97–1.03) |
Proanthocyanidins | 1.02 (1.00–1.04) | 0.98 (0.94–1.02) | 0.12 | 1.00 (0.99–1.02) | 1.02 (0.98–1.07) | 0.24 | 1.00 (0.99–1.02) |
Theaflavins | 1.01 (1.00–1.01) | 1.00 (0.99–1.01) | 0.49 | 1.00 (1.00–1.01) | 1.00 (0.99–1.01) | 0.45 | 0.99 (0.92–1.07) |
Flavonols | 1.00 (0.96–1.04) | 1.02 (0.94–1.11) | 0.61 | 1.02 (0.97–1.06) | 1.00 (0.94–1.06) | 0.25 | 0.98 (0.93–1.02) |
Flavanones | 0.99 (0.97–1.01) | 0.99 (0.94–1.04) | 0.72 | 0.98 (0.95–1.00) | 1.00 (0.96–1.05) | 0.72 | 1.01 (0.97–1.06) |
Anthocyanins | 1.01 (0.99–1.04) | 0.99 (0.94–1.04) | 0.34 | 1.02 (0.99–1.04) | 1.03 (0.99–1.08) | 0.08 | 1.02 (0.93–1.11) |
Flavones | 1.02 (0.98–1.07) | 0.99 (0.90–1.09) | 0.61 | 1.02 (0.97–1.07) | 1.02 (0.94–1.10) | 0.01 | 0.99 (0.96–1.01) |
Dihydrochalcones | 1.00 (0.99–1.02) | 0.99 (0.96–1.02) | 0.31 | 1.00 (0.98–1.01) | 1.02 (0.99–1.04) | 0.44 | 0.99 (0.97–1.01) |
Dihydroflavonols | 1.01 (1.00–1.02) | 0.99 (0.96–1.01) | 0.06 | 1.00 (0.99–1.02) | 0.99 (0.98–1.01) | 0.34 | 1.00 (0.97–1.04) |
Isoflavones | 0.99 (0.98–1.00) | 0.96 (0.96–1.02) | 0.20 | 0.99 (0.97–1.01) | 1.01 (0.99–1.04) | 0.77 | 0.97 (0.88–1.07) |
Phenolic acids | 1.00 (0.95–1.05) | 1.01 (0.91–1.13) | 0.23 | 0.98 (0.93–1.04) | 1.00 (0.92–1.08) | 0.23 | 0.97 (0.90–1.06) |
Hydroxycinnamic acids | 1.00 (0.96–1.04) | 1.00 (0.92–1.11) | 0.49 | 0.99 (0.94–1.04) | 0.99 (0.93–1.06) | 0.40 | 0.98 (0.93–1.03) |
Hydroxybenzoics acids | 0.99 (0.96–1.01) | 1.00 (0.95–1.06) | 0.74 | 0.99 (0.96–1.02) | 0.98 (0.94–1.03) | 0.51 | 0.99 (0.95–1.03) |
Hydroxyphenylacetic acids | 1.00 (0.98–1.02) | 0.98 (0.94–1.04) | 0.44 | 1.00 (0.98–1.03) | 0.99 (0.95–1.04) | 0.57 | 0.98 (0.95–1.02) |
Stilbenes | 1.01 (1.00–1.03) | 0.97 (0.94–1.01) | 0.06 | 1.02 (0.99–1.04) | 0.99 (0.96–1.02) | 0.16 | 1.03 (0.87–1.21) |
Lignans | 0.99 (0.92–1.06) | 0.94 (0.79–1.12) | 0.53 | 1.02 (0.94–1.12) | 1.02 (0.90–1.15) | 0.91 | 1.04 (0.93–1.15) |
Other (poly)phenol classes | |||||||
Alkylphenols | 1.01 (0.98–1.04) | 1.02 (0.95–1.08) | 0.54 | 1.02 (0.98–1.06) | 1.04 (0.98–1.10) | 0.01 | 0.98 (0.94–1.02) |
Tyrosols | 1.03 (0.99–1.06) | 0.97 (0.91–1.04) | 0.08 | 1.05 (1.01–1.09) | 0.98 (0.93–1.04) | 0.69 | 0.99 (0.95–1.04) |
Alkylmethoxyphenols | 1.00 (0.98–1.02) | 0.99 (0.95–1.04) | 0.78 | 1.00 (0.98–1.02) | 0.97 (0.93–1.01) | 0.78 | 0.99 (0.95–1.04) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almanza-Aguilera, E.; Guiñón-Fort, D.; Perez-Cornago, A.; Martínez-Huélamo, M.; Andrés-Lacueva, C.; Tjønneland, A.; Eriksen, A.K.; Katzke, V.; Bajracharya, R.; Schulze, M.B.; et al. Intake of the Total, Classes, and Subclasses of (Poly)Phenols and Risk of Prostate Cancer: A Prospective Analysis of the EPIC Study. Cancers 2023, 15, 4067. https://doi.org/10.3390/cancers15164067
Almanza-Aguilera E, Guiñón-Fort D, Perez-Cornago A, Martínez-Huélamo M, Andrés-Lacueva C, Tjønneland A, Eriksen AK, Katzke V, Bajracharya R, Schulze MB, et al. Intake of the Total, Classes, and Subclasses of (Poly)Phenols and Risk of Prostate Cancer: A Prospective Analysis of the EPIC Study. Cancers. 2023; 15(16):4067. https://doi.org/10.3390/cancers15164067
Chicago/Turabian StyleAlmanza-Aguilera, Enrique, Daniel Guiñón-Fort, Aurora Perez-Cornago, Miriam Martínez-Huélamo, Cristina Andrés-Lacueva, Anne Tjønneland, Anne Kirstine Eriksen, Verena Katzke, Rashmita Bajracharya, Matthias B. Schulze, and et al. 2023. "Intake of the Total, Classes, and Subclasses of (Poly)Phenols and Risk of Prostate Cancer: A Prospective Analysis of the EPIC Study" Cancers 15, no. 16: 4067. https://doi.org/10.3390/cancers15164067
APA StyleAlmanza-Aguilera, E., Guiñón-Fort, D., Perez-Cornago, A., Martínez-Huélamo, M., Andrés-Lacueva, C., Tjønneland, A., Eriksen, A. K., Katzke, V., Bajracharya, R., Schulze, M. B., Masala, G., Oliverio, A., Tumino, R., Manfredi, L., Lasheras, C., Crous-Bou, M., Sánchez, M. -J., Amiano, P., Colorado-Yohar, S. M., ... Zamora-Ros, R. (2023). Intake of the Total, Classes, and Subclasses of (Poly)Phenols and Risk of Prostate Cancer: A Prospective Analysis of the EPIC Study. Cancers, 15(16), 4067. https://doi.org/10.3390/cancers15164067