Surgical Management of Indeterminate Thyroid Nodules across Different World Regions: Results from a Retrospective Multicentric (the MAIN-NODE) Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cabanillas, M.E.; McFadden, D.G.; Durante, C. Thyroid cancer. Lancet 2016, 388, 2783–2795. [Google Scholar] [CrossRef] [PubMed]
- Cibas, E.S.; Ali, S.Z. The 2017 Bethesda System for Reporting Thyroid Cytopathology. Thyroid Off. J. Am. Thyroid Assoc. 2017, 27, 1341–1346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cook, R.J.; Dickens, B.M.; Fathalla, M.F. World Medical Association Declaration of Helsinki: Ethical Principles for Medical Research Involving Human Subjects. In Reproductive Health and Human Rights: Integrating Medicine, Ethics, and Law; Oxford University Press: Oxford, UK, 2003. [Google Scholar]
- Lorenz, K.; Raffaeli, M.; Barczyński, M.; Lorente-Poch, L. Volume, outcomes, and quality standards in thyroid surgery: An evidence-based analysis-European Society of Endocrine Surgeons (ESES) positional statement. Langenbecks Arch. Surg. 2020, 405, 401–425. [Google Scholar] [CrossRef] [PubMed]
- Medas, F.; Dobrinja, C.; Al-Suhaimi, E.A.; Altmeier, J.; Anajar, S.; Arikan, A.E.; Azaryan, I.; Bains, L.; Basili, G.; Bolukbasi, H.; et al. Effect of the COVID-19 pandemic on surgery for indeterminate thyroid nodules (THYCOVID): A retrospective, international, multicentre, cross-sectional study. Lancet Diabetes Endocrinol. 2023, 11, 402–413. [Google Scholar] [CrossRef]
- Issa, P.P.; Omar, M.; Issa, C.P.; Hussein, M.; Aboueisha, M.; Abdelhady, A.; Shama, M.; Lee, G.S.; Toraih, E.; Kandil, E. Radiofrequency Ablation of Indeterminate Thyroid Nodules: The First North American Comparative Analysis. Int. J. Mol. Sci. 2022, 23, 11493. [Google Scholar] [CrossRef]
- Oh, H.-S.; Ha, J.; Kim, H.I.; Kim, T.H.; Kim, W.G.; Lim, D.-J.; Kim, T.Y.; Kim, S.W.; Kim, W.B.; Shong, Y.K.; et al. Active Surveillance of Low-Risk Papillary Thyroid Microcarcinoma: A Multi-Center Cohort Study in Korea. Thyroid Off. J. Am. Thyroid Assoc. 2018, 28, 1587–1594. [Google Scholar] [CrossRef]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [Green Version]
- Kakudo, K.; Kameyama, K.; Miyauchi, A.; Nakamura, H. Introducing the reporting system for thyroid fine-needle aspiration cytology according to the new guidelines of the Japan Thyroid Association. Endocr. J. 2014, 61, 539–552. [Google Scholar] [CrossRef] [Green Version]
- Kakudo, K.; Higuchi, M.; Hirokawa, M.; Satoh, S.; Jung, C.K.; Bychkov, A. Thyroid FNA cytology in Asian practice—Active surveillance for indeterminate thyroid nodules reduces overtreatment of thyroid carcinomas. Cytopathol. Off. J. Br. Soc. Clin. Cytol. 2017, 28, 455–466. [Google Scholar] [CrossRef]
- Vuong, H.G.; Ngo, H.T.T.; Bychkov, A.; Jung, C.K.; Vu, T.H.; Lu, K.B.; Kakudo, K.; Kondo, T. Differences in surgical resection rate and risk of malignancy in thyroid cytopathology practice between Western and Asian countries: A systematic review and meta-analysis. Cancer Cytopathol. 2020, 128, 238–249. [Google Scholar] [CrossRef]
- Nguyen, T.P.X.; Truong, V.T.; Kakudo, K.; Vuong, H.G. The diversities in thyroid cytopathology practices among Asian countries using the Bethesda system for reporting thyroid cytopathology. Gland Surg. 2020, 9, 1735–1746. [Google Scholar] [CrossRef]
- Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016, 26, 1–133. [Google Scholar] [CrossRef] [Green Version]
- Oda, H.; Miyauchi, A.; Ito, Y.; Sasai, H.; Masuoka, H.; Yabuta, T.; Fukushima, M.; Higashiyama, T.; Kihara, M.; Kobayashi, K.; et al. Comparison of the costs of active surveillance and immediate surgery in the management of low-risk papillary microcarcinoma of the thyroid. Endocr. J. 2017, 64, 59–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lang, B.H.-H.; Wong, C.K.H. A cost-effectiveness comparison between early surgery and non-surgical approach for incidental papillary thyroid microcarcinoma. Eur. J. Endocrinol. 2015, 173, 367–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tartaglia, F.; Giuliani, A.; Tromba, L.; Carbotta, S.; Karpathiotakis, M.; Tortorelli, G.; Pelle, F.; Merola, R.; Donello, C.; Carbotta, G.; et al. Fine needle aspiration cytology of 650 thyroid nodules operated for multinodular goiter: A cyto-histological correlation based on the new Italian cytological classification (SIAPEC 2014). J. Biol. Regul. Homeost. Agents 2016, 30, 1187–1193. [Google Scholar] [PubMed]
- Rao, S.N.; Bernet, V. Indeterminate thyroid nodules in the era of molecular genomics. Mol. Genet. Genom. Med. 2020, 8, e1288. [Google Scholar] [CrossRef]
- Hosseinkhan, N.; Honardoost, M.; Blighe, K.; Moore, C.B.T. Comprehensive transcriptomic analysis of papillary thyroid cancer: Potential biomarkers associated with tumor progression. J. Endocrinol. Investig. 2020, 43, 911–923. [Google Scholar] [CrossRef]
- Ucal, Y.; Ozpinar, A. Proteomics in thyroid cancer and other thyroid-related diseases: A review of the literature. Biochim. Biophys. Acta Proteins Proteom. 2020, 1868, 140510. [Google Scholar] [CrossRef]
- Coelho, M.; Raposo, L.; Goodfellow, B.J.; Atzori, L.; Jones, J.; Manadas, B. The Potential of Metabolomics in the Diagnosis of Thyroid Cancer. Int. J. Mol. Sci. 2020, 21, 5272. [Google Scholar] [CrossRef]
- Baldini, E.; Tuccilli, C.; Pironi, D.; Catania, A.; Tartaglia, F.; Di Matteo, F.M.; Palumbo, P.; Arcieri, S.; Mascagni, D.; Palazzini, G.; et al. Expression and Clinical Utility of Transcription Factors Involved in Epithelial–Mesenchymal Transition during Thyroid Cancer Progression. J. Clin. Med. 2021, 10, 4076. [Google Scholar] [CrossRef]
- Papale, F.; Cafiero, G.; Grimaldi, A.; Marino, G.; Rosso, F.; Mian, C.; Barollo, S.; Pennelli, G.; Sorrenti, S.; De Antoni, E.; et al. Galectin-3 expression in thyroid fine needle cytology (t-FNAC) uncertain cases: Validation of molecular markers and technology innovation. J. Cell. Physiol. 2013, 228, 968–974. [Google Scholar] [CrossRef]
- Romano, C.; Martorana, F.; Pennisi, M.S.; Stella, S.; Massimino, M.; Tirrò, E.; Vitale, S.R.; Di Gregorio, S.; Puma, A.; Tomarchio, C.; et al. Opportunities and Challenges of Liquid Biopsy in Thyroid Cancer. Int. J. Mol. Sci. 2021, 22, 7707. [Google Scholar] [CrossRef] [PubMed]
- Fussey, J.M.; Bryant, J.L.; Batis, N.; Spruce, R.J.; Hartley, A.; Good, J.S.; McCabe, C.J.; Boelaert, K.; Sharma, N.; Mehanna, H. The Clinical Utility of Cell-Free DNA Measurement in Differentiated Thyroid Cancer: A Systematic Review. Front. Oncol. 2018, 8, 132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salvianti, F.; Giuliani, C.; Petrone, L.; Mancini, I.; Vezzosi, V.; Pupilli, C.; Pinzani, P. Integrity and Quantity of Total Cell-Free DNA in the Diagnosis of Thyroid Cancer: Correlation with Cytological Classification. Int. J. Mol. Sci. 2017, 18, 1350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Vence, M.; Chantada-Vázquez, M.D.P.; Cameselle-Teijeiro, J.M.; Bravo, S.B.; Núñez, C. A Novel Nanoproteomic Approach for the Identification of Molecular Targets Associated with Thyroid Tumors. Nanomaterials 2020, 10, 2370. [Google Scholar] [CrossRef] [PubMed]
WHO Regions | Centre | Thyroidectomies Performed during the Study Period * | Mean Thyroidectomies Performed per Year | Thyroidectomies Performed for ITNs during the Study Period ** |
---|---|---|---|---|
South East Asian Region (SEAR) | Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Thailand | 1198 | 399.3 | 253 (21.1%) |
The Americas Region (AMR) | Head and Neck surgery, Hospital Universitario Nacional de Colombia, Bogotá D.C., Colombia | 1845 | 615 | 414 (22.4%) |
Eastern Mediterranean Region (EMR) | Surgical Oncology, Mansoura University, Mansoura, Egypt | 1239 | 413 | 283 (22.8%) |
Europe Region (EUR) | Department of Surgical Sciences, University of Cagliari, Italy | 874 | 291.3 | 329 (37.6%) |
Western Pacific Region (WPR) | The Royal Melbourne Hospital and Epworth Hospital | 581 | 193.7 | 137 (23.6%) |
Overall | 5737 | 1912.3 | 1340 (23.4%) |
South East Asian Region | Americas Region | Eastern Mediterranean Region | Europe Region | Western Pacific Region | p | |
---|---|---|---|---|---|---|
Patients with ITN | 253 | 414 | 283 | 329 | 137 | |
Sex | <0.0001 | |||||
Male | 28 (11.1%) | 35 (8.5%) | 46 (16.3%) | 95 (28.9%) | 23 (16.8%) | |
Female | 225 (88.9%) | 379 (91.5%) | 237 (83.7%) | 234 (71.1%) | 114 (83.2%) | |
Age (years) | 57.4 ± 14.1 | 48.8 ± 14.2 | 43.1 ± 13.8 | 53.9 ± 14.5 | 52.7 ± 14.5 | <0.0001 * |
Preoperative FNAC | ||||||
Bethesda III | 214 (84.6%) | 167 (40.3%) | 102 (36%) | 107 (32.5%) | 84 (61.3%) | <0.0001 |
Bethesda IV | 39 (15.4%) | 247 (59.7%) | 181 (64%) | 222 (67.5%) | 53 (38.7%) | |
Operation | ||||||
Total thyroidectomy | 105 (41.5%) | 191 (46.1%) | 155 (54.8%) | 184 (55.9%) | 23 (16.8%) | <0.0001 |
Lobectomy | 148 (58.5%) | 223 (53.9%) | 128 (45.2%) | 145 (44.1%) | 114 (83.2%) | |
CLND | 10 (4.0%) | 106 (25.6%) | 30 (10.6%) | 5 (1.5%) | 23 (16.8%) | <0.0001 |
Malignancies | 152 (60.1%) | 171 (41.3%) | 90 (31.8%) | 98 (29.8%) | 36 (26.3%) | <0.0001 |
South East Asian Region | Americas Region | Eastern Mediterranean Region | Europe Region | Western Pacific Region | p | |
---|---|---|---|---|---|---|
Malignancies | 152 | 171 | 90 | 98 | 36 | |
Size ≤ 10 mm | 44 (28.9%) | 64 (37.4%) | 13 (14.4%) | 15 (15.3%) | 9 (25%) | <0.0001 |
Size (mm) | 24.1 ± 19.2 | 16.4 ± 16.4 | 31.2 ± 20.6 | 22.8 ± 17.2 | 23.1 ± 20.9 | <0.0001 * |
Histotype | <0.0001 | |||||
PTC, classic | 126 (82.9%) | 144 (84.2%) | 68 (75.6%) | 35 (35.7%) | 23 (63.9%) | |
PTC, aggressive | 14 (9.2%) | 4 (2.3%) | 0 | 14 (14.4%) | 1 (2.8%) | |
FTC | 3 (2.0%) | 10 (5.8%) | 13 (14.4%) | 38 (38.8%) | 9 (25.0%) | |
HCC | 4 (2.6%) | 1 (0.6%) | 5 (5.6%) | 10 (10.2%) | 3 (8.3%) | |
Poorly differentiated | 1 (0.7%) | 1 (0.6%) | 1 (1.1%) | 0 | 0 | |
Anaplastic | 1 (0.7%) | 0 | 0 | 0 | 0 | |
Others | 3 (2.0%) | 11 (6.4%) | 3 (3.3%) | 1 (1.0%) | 0 | |
Extra thyroidal extension | 11 (7.2%) | 9 (5.3%) | 14 (15.6%) | 16 (16.3%) | 6 (16.7%) | 0.0060 |
Lymph node metastasis | 14 (9.2%) | 46 (26.9%) | 18 (20.0%) | 8 (8.2%) | 10 (27.8%) | 0.0001 |
Vascular invasion | 26 (17.1%) | 13 (7.6%) | 19 (21.1%) | 12 (12.2%) | 9 (25.0%) | 0.0066 |
Distant metastasis | 7 (4.6%) | 1 (0.6%) | 1 (1.1%) | 0 | 0 | 0.0188 |
South East Asian Region | Americas Region | Eastern Mediterranean Region | Europe Region | Western Pacific Region | p | |
---|---|---|---|---|---|---|
DTC | 148 | 160 | 87 | 97 | 36 | 0.0417 |
Low risk | 110 (74.3%) | 108 (67.5%) | 73 (83.9%) | 66 (68%) | 24 (66.7%) | |
Intermediate risk | 29 (19.6%) | 38 (23.8%) | 13 (14.9%) | 18 (18.6%) | 7 (19.4%) | |
High risk | 9 (6.1%) | 14 (8.8%) | 1 (1.1%) | 13 (13.4%) | 5 (13.9%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Canu, G.L.; Cappellacci, F.; Abdallah, A.; Elzahaby, I.; Figueroa-Bohorquez, D.; Lori, E.; Miller, J.A.; Pavia, S.Z.; Pinillos, P.; Pongtippan, A.; et al. Surgical Management of Indeterminate Thyroid Nodules across Different World Regions: Results from a Retrospective Multicentric (the MAIN-NODE) Study. Cancers 2023, 15, 3996. https://doi.org/10.3390/cancers15153996
Canu GL, Cappellacci F, Abdallah A, Elzahaby I, Figueroa-Bohorquez D, Lori E, Miller JA, Pavia SZ, Pinillos P, Pongtippan A, et al. Surgical Management of Indeterminate Thyroid Nodules across Different World Regions: Results from a Retrospective Multicentric (the MAIN-NODE) Study. Cancers. 2023; 15(15):3996. https://doi.org/10.3390/cancers15153996
Chicago/Turabian StyleCanu, Gian Luigi, Federico Cappellacci, Ahmed Abdallah, Islam Elzahaby, David Figueroa-Bohorquez, Eleonora Lori, Julie A. Miller, Sergio Zúñiga Pavia, Pilar Pinillos, Atcharaporn Pongtippan, and et al. 2023. "Surgical Management of Indeterminate Thyroid Nodules across Different World Regions: Results from a Retrospective Multicentric (the MAIN-NODE) Study" Cancers 15, no. 15: 3996. https://doi.org/10.3390/cancers15153996
APA StyleCanu, G. L., Cappellacci, F., Abdallah, A., Elzahaby, I., Figueroa-Bohorquez, D., Lori, E., Miller, J. A., Pavia, S. Z., Pinillos, P., Pongtippan, A., Saleh, S. S., Sorrenti, S., Sriphrapradang, C., Calò, P. G., & Medas, F. (2023). Surgical Management of Indeterminate Thyroid Nodules across Different World Regions: Results from a Retrospective Multicentric (the MAIN-NODE) Study. Cancers, 15(15), 3996. https://doi.org/10.3390/cancers15153996