Does Human Papillomavirus Play a Causative Role in Prostate Cancer? A Systematic Review Using Bradford Hill’s Criteria
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methodology
2.1. Literature Search
2.2. Paper Selection
2.3. Quality Criteria Using the Newcastle–Ottawa Quality Assessment Scale
2.4. Relevant Data Extraction
3. Result and Discussion
3.1. Analogy
3.2. Biological Plausibility and Coherence
3.3. Identification of Human Papillomaviruses in Prostate Tissues
4. Strength of Association
4.1. Serology
4.2. Polymerase Chain Reaction
4.3. Specificity
4.4. Transmission of Virus
4.5. Temporality
4.6. Oncogenic Mechanism
5. Consistency
5.1. Consistency in Tissue Collection
Consistency in Tissue Storage
6. Biological Gradient
7. Experimental Evidence
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Rawla, P. Epidemiology of Prostate Cancer. World J. Oncol. 2019, 10, 63–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leitzmann, M.F.; Rohrmann, S. Risk factors for the onset of prostatic cancer: Age, location, and behavioral correlates. Clin. Epidemiol. 2012, 4, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Pernar, C.H.; Ebot, E.M.; Wilson, K.M.; Mucci, L.A. The Epidemiology of Prostate Cancer. Cold Spring Harb. Perspect. Med. 2018, 8, a030361. [Google Scholar] [CrossRef] [Green Version]
- Gandaglia, G.; Leni, R.; Bray, F.; Fleshner, N.; Freedland, S.J.; Kibel, A.; Stattin, P.; Van Poppel, H.; La Vecchia, C. Epidemiology and Prevention of Prostate Cancer. Eur. Urol. Oncol. 2021, 4, 877–892. [Google Scholar] [CrossRef]
- Bostwick, D.G.; Burke, H.B.; Djakiew, D.; Euling, S.; Ho, S.-M.; Landolph, J.; Morrison, H.; Sonawane, B.; Shifflett, T.; Waters, D.J.; et al. Human prostate cancer risk factors. Cancer 2004, 101, 2371–2490. [Google Scholar] [CrossRef]
- Dagnelie, P.C.; Schuurman, A.G.; Goldbohm, R.A.; van den Brandt, P.A. Diet, anthropometric measures and prostate cancer risk: A review of prospective cohort and intervention studies. BJU Int. 2004, 93, 1139–1150. [Google Scholar] [CrossRef]
- Chang, R.T.M.; Kirby, R.; Challacombe, B.J. Is there a link between BPH and prostate cancer? Practitioner 2012, 256, 2+13–16. [Google Scholar] [PubMed]
- Chughtai, B.; Forde, J.C.; Thomas, D.D.M.; Laor, L.; Hossack, T.; Woo, H.H.; Te, A.E.; Kaplan, S.A. Benign prostatic hyperplasia. Nat. Rev. Dis. Prim. 2016, 2, 16031. [Google Scholar] [CrossRef] [Green Version]
- Zambrano, A.; Kalantari, M.; Simoneau, A.; Jensen, J.L.; Villarreal, L.P. Detection of human polyomaviruses and papillomaviruses in prostatic tissue reveals the prostate as a habitat for multiple viral infections. Prostate 2002, 53, 263–276. [Google Scholar] [CrossRef]
- Sfanos, K.S.; Sauvageot, J.; Fedor, H.L.; Dick, J.D.; De Marzo, A.M.; Isaacs, W.B. A molecular analysis of prokaryotic and viral DNA sequences in prostate tissue from patients with prostate cancer indicates the presence of multiple and diverse microorganisms. Prostate 2008, 68, 306–320. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wei, J. Identification of Pathogen Signatures in Prostate Cancer Using RNA-seq. PLoS ONE 2015, 10, e0128955. [Google Scholar] [CrossRef] [PubMed]
- Heidegger, I.; Borena, W.; Pichler, R. The role of human papilloma virus in urological malignan-cies. Anticancer. Res. 2015, 35, 2513–2519. [Google Scholar]
- Leechanachai, P.; Banks, L.; Moreau, F.; Matlashewski, G. The E5 gene from human papillomavirus type 16 is an oncogene which enhances growth factor-mediated signal transduction to the nucleus. Oncogene 1992, 7, 19–25. [Google Scholar]
- Williams, S.M.G.; Disbrow, G.L.; Schlegel, R.; Lee, D.; Threadgill, D.W.; Lambert, P.F. Requirement of Epidermal Growth Factor Receptor for Hyperplasia Induced by E5, a High-Risk Human Papillomavirus Oncogene. Cancer Res. 2005, 15, 6534–6542. [Google Scholar] [CrossRef] [Green Version]
- Jeon, S.; Allen-hoffmann, B.L.; Lambert, P.F. Integration of human papillomavirus type 16 into the human genome correlates with a selective growth advantage of cells. J. Virol. 1995, 69, 2989–2997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mcbride, A.A.; Warburton, A. The role of integration in oncogenic progression of HPV-associated cancers. PLoS Pathog. 2017, 13, e1006211. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Xie, S.; Feng, X.; Chen, Y.; Zheng, T.; Dai, M.; Zhou, C.K.; Hu, Z.; Li, N.; Hang, D. Worldwide Prevalence of Human Papillomavirus and Relative Risk of Prostate Cancer: A Meta-analysis. Sci. Rep. 2015, 5, 14667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.; Abel, G.; Hamilton, W.; Pritchard-Jones, K.; Gross, C.P.; Walter, F.; Renzi, C.; Johnson, S.; McPhail, S.; Elliss-Brookes, L.; et al. Diagnosis of cancer as an emergency: A critical review of current evidence. Nat. Rev. Clin. Oncol. 2016, 14, 45–56. [Google Scholar] [CrossRef] [PubMed]
- Moghoofei, M.; Keshavarz, M.; Ghorbani, S.; Babaei, F.; Nahand, J.S.; Tavakoli, A.; Mortazavi, H.; Marjani, A.; Mostafaei, S.; Monavari, S.H. Association between human papillomavirus infection and prostate cancer: A global systematic review and meta-analysis. Asia-Pac. J. Clin. Oncol. 2019, 15, e59–e67. [Google Scholar] [CrossRef] [Green Version]
- Hill, A. President’s Address the Environment and Disease: Association or causation? Proc. R Soc. Med. 1965, 58, 295–300. [Google Scholar]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Group. Preferred reporting items for system-atic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [Green Version]
- Wells, G.A.; Shea, B.; O’Connell, D.; Peterson, J.; Welch, V.; Losos, M.; Tugwell, P. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses. 2021. Available online: https://www.ohri.ca/programs/clinical_epidemiology/oxford.asp (accessed on 9 January 2023).
- Medel-Flores, O.; Valenzuela-Rodríguez, V.A.; Ocadiz-Delgado, R.; Castro-Muñoz, L.J.; Hernández-Leyva, S.; Lara-Hernández, G.; Silva-Escobedo, J.-G.; Vidal, P.G.; Sánchez-Monroy, V. Association between HPV infection and prostate cancer in a Mexican population. Genet. Mol. Biol. 2018, 41, 781–789. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Yeh, C.-R.; Chang, H.-C.; Vitkus, S.; Wen, X.-Q.; Bhowmick, N.A.; Wolfe, A.; Yeh, S. Loss of epithelial oestrogen receptor α inhibits oestrogen-stimulated prostate proliferation and squamous metaplasia via in vivo tissue selective knockout models. J. Pathol. 2012, 226, 17–27. [Google Scholar] [CrossRef] [Green Version]
- Aghakhani, A.; Hamkar, R.; Parvin, M.; Ghavami, N.; Nadri, M.; Pakfetrat, A.; Banifazl, M.; Eslamifar, A.; Izadi, N.; Jam, S.; et al. The role of human papillomavirus infection in prostate carcinoma. Scand. J. Infect. Dis. 2010, 43, 64–69. [Google Scholar] [CrossRef]
- Zhao, X.; Zhou, Z.; Chen, Y.; Chen, W.; Ma, H.; Pu, J. Role of antibodies to human papillomavirus 16 in prostate cancer: A seroscreening by peptide microarray. Tumor Biol. 2017, 39, 1010428317698371. [Google Scholar] [CrossRef] [Green Version]
- Tachezy, R.; Hrbacek, J.; Heracek, J.; Salakova, M.; Smahelova, J.; Ludvikova, V.; Svec, A.; Urban, M.; Hamsikova, E. HPV persistence and its oncogenic role in prostate tumors. J. Med. Virol. 2012, 84, 1636–1645. [Google Scholar] [CrossRef] [PubMed]
- Ghasemian, E.; Monavari, S.H.R.; Irajian, G.R.; Nodoshan, M.R.J.; Roudsari, R.V.; Yahyapour, Y. Evaluation of Human Papillomavirus Infections in Prostatic Disease: A Cross-Sectional Study in Iran. Asian Pac. J. Cancer Prev. 2013, 14, 3305–3308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez, M.I.D.; Morales, C.V.I.; Tovar, A.R.A.; Jimenez, D.O.; Maldonado, E.C.; Miranda, S.L.; Gutiérrez, E.I.C. Human Papilloma Virus Detection by INNOLiPA HPV in Prostate Tissue from Men of Northeast Mexico. Asian Pac. J. Cancer Prev. 2016, 17, 4863–4865. [Google Scholar] [CrossRef]
- Khatami, A.; Nahand, J.S.; Kiani, S.J.; Khoshmirsafa, M.; Moghoofei, M.; Khanaliha, K.; Tavakoli, A.; Emtiazi, N.; Bokharaei-Salim, F. Human papilloma virus (HPV) and prostate cancer (PCa): The potential role of HPV gene expression and selected cellular MiRNAs in PCa development. Microb. Pathog. 2022, 166, 105503. [Google Scholar] [CrossRef] [PubMed]
- Rotola, A.; Monini, P.; di Luca, D.; Savioli, A.; Simone, R.; Secchiero, P.; Reggiani, A.; Cassai, E. Presence and physical state of HPV DNA in prostate and urinary-tract tissues. Int. J. Cancer 1992, 52, 359–365. [Google Scholar] [CrossRef] [PubMed]
- Moyret-Lalle, C.; Marcais, C.; Jacquemier, J.; Moles, J.-P.; Daver, A.; Soret, J.-Y.; Jeanteur, P.; Ozturk, M.; Theillet, C. ras, p53 and hpv status in benign and malignant prostate tumors. Int. J. Cancer 1995, 64, 124–129. [Google Scholar] [CrossRef] [PubMed]
- Atashafrooz, F.; Rokhbakhsh-Zamin, F. Frequency and type distribution of human papilloma virus in patients with prostate cancer, Kerman, southeast of Iran. Asian Pac. J. Cancer Prev. 2016, 17, 3951–3956. [Google Scholar]
- Singh, N.; Hussain, S.; Kakkar, N.; Singh, S.K.; Sobti, R.C.; Bharadwaj, M. Implication of high risk Human papillomavirus HR-HPV infection in prostate cancer in Indian population—A pioneering case-control analysis. Sci. Rep. 2015, 5, 7822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarkar, F.H.; Sakr, W.A.; Li, Y.-W.; Sreepathi, P.; Crissman, J.D. Detection of human papillomavirus (HPV) DNA in human prostatic tissues by polymerase chain reaction (PCR). Prostate 1993, 22, 171–180. [Google Scholar] [CrossRef]
- Noda, T.; Sasagawa, T.; Dong, Y.; Fuse, H.; Namiki, M.; Inoue, M. Detection of human papillomavirus (HPV) DNA in archival specimens of benign prostatic hyperplasia and prostatic cancer using a highly sensitive nested PCR method’. Urol. Res. 1998, 26, 165–169. [Google Scholar] [CrossRef]
- Korodi, Z.; Dillner, J.; Jellum, E.; Lumme, S.; Hallmans, G.; Thoresen, S.; Hakulinen, T.; Stattin, P.; Luostarinen, T.; Lehtinen, M.; et al. Human Papillomavirus 16, 18, and 33 Infections and Risk of Prostate Cancer: A Nordic Nested Case-Control Study. Cancer Epidemiol. Biomark. Prev. 2005, 14, 2952–2955. [Google Scholar] [CrossRef] [Green Version]
- Carozzi, F.; Lombardi, F.; Zendron, P.; Confortini, M.; Sani, C.; Bisanzi, S.; Pontenani, G.; Ciatto, S. Association of Human Papillomavirus with Prostate Cancer: Analysis of a Consecutive Series of Prostate Biopsies. Int. J. Biol. Markers 2004, 19, 257–261. [Google Scholar] [CrossRef]
- Adami, H.-O.; Kuper, H.; Andersson, S.-O.; Bergström, R.; Dillner, J. Prostate cancer risk and serologic evidence of human papilloma virus infection: A population-based case-control study. Cancer Epidemiol. Biomark. Prev. 2003, 12, 872–875. [Google Scholar]
- Leiros, G.J.; Galliano, S.R.; Sember, M.E.; Kahn, T.; Schwarz, E.; Eiguchi, K. Detection of human papillomavirus DNA and p53 codon 72 polymorphism in prostate carcinomas of patients from Argentina. BMC Urol. 2005, 5, 15–17. [Google Scholar] [CrossRef]
- Wideroff, L.; Schottenfeld, D.; Carey, T.E.; Beals, T.; Fu, G.; Sakr, W.; Sarkar, F.; Schork, A.; Grossman, H.B.; Shaw, M.W. Human papillomavirus DNA in malignant and hyperplastic prostate tissue of black and white males. Prostate 1996, 28, 117–123. [Google Scholar] [CrossRef]
- Martinez-Fierro, M.L.; Leach, R.J.; Gomez-Guerra, L.S.; Garza-Guajardo, R.; Johnson-Pais, T.; Beuten, J.; Morales-Rodriguez, I.B.; A Hernandez-Ordoñez, M.; Calderon-Cardenas, G.; Ortiz-Lopez, R.; et al. Identification of viral infections in the prostate and evaluation of their association with cancer. BMC Cancer 2010, 10, 326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sutcliffe, S.; Viscidi, R.P.; Till, C.; Goodman, P.J.; Hoque, A.M.; Hsing, A.W.; Thompson, I.M.; Zenilman, J.M.; De Marzo, A.M.; Platz, E.A. Human Papillomavirus Types 16, 18, and 31 Serostatus and Prostate Cancer Risk in the Prostate Cancer Prevention Trial. Cancer Epidemiol. Biomark. Prev. 2010, 19, 614–618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silvestre, R.V.D.; Leal, M.F.; Demachki, S.; Nahum, M.C.d.S.; Bernardes, J.G.B.; Rabenhorst, S.H.B.; Smith, M.d.A.C.; Mello WAd Guimarães, A.C.; Burbano, R.R. Low frequency of human papillomavirus detection in prostate tissue from individuals from Northern Brazil. Mem. Do Inst. Oswaldo Cruz 2009, 104, 665–667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michopoulou, V.; Derdas, S.P.; Symvoulakis, E.; Mourmouras, N.; Nomikos, A.; Delakas, D.; Sourvinos, G.; Spandidos, D.A. Detection of human papillomavirus (HPV) DNA prevalence and p53 codon 72 (Arg72Pro) polymorphism in prostate cancer in a Greek group of patients. Tumor Biol. 2014, 35, 12765–12773. [Google Scholar] [CrossRef]
- McNicol, P.J.; Dodd, J.G. Detection of human papillomavirus DNA in prostate gland tissue by using the polymerase chain reaction amplification assay. J. Clin. Microbiol. 1990, 28, 409–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenblatt, K.A.; Carter, J.J.; Iwasaki, L.M.; Galloway, D.A.; Stanford, J.L. Serologic evidence of human papillomavirus 16 and 18 infections and risk of prostate cancer. Cancer Epidemiol. Biomark. Prev. 2003, 12, 763–768. [Google Scholar]
- Aydin, M.; Bozkurt, A.; Cikman, A.; Gulhan, B.; Karabakan, M.; Gokce, A.; Alper, M.; Kara, M. Lack of evidence of HPV etiology of prostate cancer following radical surgery and higher frequency of the Arg/Pro genotype in turkish men with prostate cancer. Int. Braz J. Urol 2017, 43, 36–46. [Google Scholar] [CrossRef] [Green Version]
- McNicol, P.J.; Dodd, J.G. High Prevalence of Human Papillomavirus in Prostate Tissues. J. Urol. 1991, 145, 850–853. [Google Scholar] [CrossRef]
- Masood, S.; Rhatigan, R.M.; Powell, S.; Thompson, J.; Rodenroth, N. Human Papillomavirus in Prostatic Cancer: No evidence found by in situ DNA hybridization. S. Med. J. 1991, 84, 235–236. [Google Scholar] [CrossRef]
- Anwar, K.; Nakakuki, K.; Shiraishi, T.; Naiki, H.; Yatani, R.; Inuzuka, M. Presence of ras oncogene mutations and human papillomavirus DNA in human prostate carcinomas. Cancer Res. 1992, 52, 5991–5996. [Google Scholar] [PubMed]
- Terris, M.K.; Peehl, D.M. Human papillomavirus detection by polymerase chain reaction in benign and malignant prostate tissue is dependent on the primer set utilized. Urology 1997, 50, 150–156. [Google Scholar] [CrossRef]
- Suzuki, H.; Komiya, A.; Aida, S.; Ito, H.; Yatani, R.; Shimazaki, J. Detection of human papillomavirus DNA and p53 gene mutations in human prostate cancer. Prostate 1996, 28, 318–324. [Google Scholar] [CrossRef]
- Ibrahim, G.K.; Gravitt, P.E.; Dittrich, K.L.; Ibrahim, S.N.; Melhus, O.; Anderson, S.M.; Robertson, C.N. Detection of Human Papillomavirus in the Prostate by Polymerase Chain Reaction and in Situ Hybridization. J. Urol. 1992, 148, 1822–1826. [Google Scholar] [CrossRef] [PubMed]
- Serth, J.; Panitz, F.; Paeslack, U.; Kuczyk, M.A.; Jonas, U. Increased levels of human papillomavirus type 16 DNA in a subset of prostate cancers. Cancer Res. 1999, 59, 823–825. [Google Scholar]
- Dodd, J.G.; Paraskevas, M.; McNicol, P.J. Detection of Human Papillomavirus 16 Transcription in Human Prostate Tissue. J. Urol. 1993, 149, 400–402. [Google Scholar] [CrossRef]
- Salehi, Z.; Hadavi, M. Analysis of the codon 72 polymorphism of TP53 and human papillomavirus infec-tion in Iranian patients with prostate cancer. J. Med. Virol. 2012, 84, 1423–1427. [Google Scholar] [CrossRef]
- Strickler, H.D.; Burk, R.; Shah, K.; Viscidi, R.; Jackson, A.; Pizza, G.; Bertoni, F.; Schiller, J.T.; Manns, A.; Metcalf, R.; et al. A multifaceted study of human papillomavirus and prostate carcinoma. Cancer 1998, 82, 1118–1125. [Google Scholar] [CrossRef]
- Hrbacek, J.; Urban, M.; Hamsikova, E.; Tachezy, R.; Eis, V.; Brabec, M.; Heracek, J. Serum antibodies against genitourinary infectious agents in prostate cancer and benign prostate hyperplasia patients: A case-control study. BMC Cancer 2011, 11, 53. [Google Scholar] [CrossRef] [Green Version]
- Sutcliffe, S.; Giovannucci, E.; Gaydos, C.A.; Viscidi, R.P.; Jenkins, F.J.; Zenilman, J.M.; Jacobson, L.P.; De Marzo, A.M.; Willett, W.C.; Platz, E.A. Plasma Antibodies against Chlamydia trachomatis, Human Papillomavirus, and Human Herpesvirus Type 8 in Relation to Prostate Cancer: A Prospective Study. Cancer Epidemiol. Biomark. Prev. 2007, 16, 1573–1580. [Google Scholar] [CrossRef] [Green Version]
- Bergh, J.; Marklund, I.; Gustavsson, C.; Wiklund, F.; Grönberg, H.; Allard, A.; Alexeyev, O.; Elgh, F. No link between viral findings in the prostate and subsequent cancer development. Br. J. Cancer 2006, 96, 137–139. [Google Scholar] [CrossRef] [PubMed]
- Groom, H.C.T.; Warren, A.Y.; Neal, D.E.; Bishop, K.N. No Evidence for Infection of UK Prostate Cancer Patients with XMRV, BK Virus, Trichomonas vaginalis or Human Papilloma Viruses. PLoS ONE 2012, 7, e34221. [Google Scholar] [CrossRef] [PubMed]
- Tu, H.; Jacobs, S.C.; Mergner, W.J.; Kyprianou, N. Rare incidence of human papillomavirus types 16 and 18 in primary and metastatic human prostate cancer. Urology 1994, 44, 726–731. [Google Scholar] [CrossRef]
- Sitas, F.; Urban, M.; Stein, L.; Beral, V.; Ruff, P.; Hale, M.; Patel, M.; O’Connell, D.; Yu, X.Q.; Verzijden, A.; et al. The relationship between anti-HPV-16 IgG seropositivity and cancer of the cervix, anogenital organs, oral cavity and pharynx, oesophagus and prostate in a black South African population. Infect. Agents Cancer 2007, 2, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, M.; Handley, J.; Hopwood, L.; Murant, S.; Stower, M.; Maitland, N.J. Analysis of prostate tissue DNA for the presence of human papillomavirus by polymerase chain reaction, cloning, and automated sequencing. J. Med. Virol. 1997, 52, 8–13. [Google Scholar] [CrossRef]
- Effert, P.J.; Frye, R.A.; Neubauer, A.; Liu, E.T.; Walther, P.J. Human Papillomavirus Types 16 and 18 are not Involved in Human Prostate Carcinogenesis: Analysis of Archival Human Prostate Cancer Specimens by Dif-ferential Polymerase Chain Reaction. J. Urol. 1992, 147, 192–196. [Google Scholar] [CrossRef]
- Afshar, R.M.; Mollaie, H.R.; Fazlalipour, M.; Arabzadeh, S.A. Prevalence and type distribution of hu-man papillomavirus infection using the INNo-Lipa assay, Kerman, Southeast Iran. Asian Pac. J. Cancer Pre-Vention APJCP 2013, 14, 5287–5291. [Google Scholar] [CrossRef]
- Araujo-Neto, A.P.; Ferreira-Fernandes, H.; Amaral, C.M.M.; Santos, L.G.; Freitas, A.C.; Silva-Neto, J.C.; Rey, J.A.; Burbano, R.R.; Silva BB da Yoshioka, F.K.N.; Pinto, G.R. Lack of detection of human papillomavirus DNA in prostate carcinomas in patients from northeastern Brazil. Genet. Mol. Biol. 2016, 39, 24–29. [Google Scholar] [CrossRef] [Green Version]
- Balis, V.; Sourvinos, G.; Soulitzis, N.; Giannikaki, E.; Sofras, F.; Spandidos, D.A. Prevalence of BK virus and human papillomavirus in human prostate cancer. Int. J. Biol. Markers 2007, 22, 245–251. [Google Scholar] [CrossRef]
- Mokhtari, M.; Taghizadeh, F.; Hani, M. Is prostatic adenocarcinoma in a relationship with Human Papilloma Virus in Isfahan–Iran. J. Res. Med. Sci. 2013, 18, 707–710. [Google Scholar]
- Pascale, M.; Pracella, D.; Barbazza, R.; Marongiu, B.; Roggero, E.; Bonin, S.; Stanta, G. Is Human Papillomavirus Associated with Prostate Cancer Survival? Dis. Markers 2013, 35, 607–613. [Google Scholar] [CrossRef] [Green Version]
- Abumsimir, B.; Mrabti, M.; Laraqui, A.; Ameur, A.; Koraishi, S.I.; Mzibri, M.; Lamsisi, M.; Ennaji, Y.; Almahasneh, I.; Ennaji, M.M. Molecular characterization of human papillomavirus and mouse mammary tumor virus-like infections in prostate cancer tissue and relevance with tumor characteristics. Mol. Clin. Oncol. 2022, 16, 97. [Google Scholar] [CrossRef]
- Sadri Nahand, J.; Esghaei, M.; Hamidreza Monavari, S.; Moghoofei, M.; Jalal Kiani, S.; Mostafaei, S.; Mirzaei, H.; Bokharaei-Salim, F. The assessment of a possible link between HPV-mediated inflammation, apoptosis, and angiogenesis in Prostate cancer. Int. Immunopharmacol. 2020, 88, 106913. [Google Scholar] [CrossRef] [PubMed]
- Pereira, N.M.; Martins EA, C.; Quintela, M.G.; Cunha AA, D.; Santos Netto MM, D.; Waisberg, J. Presence of HPV in prostate tissue from patients submitted to prostate biopsy. Acta Cir. Bras. 2023, 37, e371205. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, H.; Levican, J.; Muñoz, J.P.; Carrillo, D.; Acevedo, M.L.; Gaggero, A.; León, O.; Gheit, T.; Espino-za-Navarro, O.; Castillo, J.; et al. Viral infections in prostate carcinomas in Chilean patients. Infect. Agents Cancer 2015, 10, 27. [Google Scholar] [CrossRef] [Green Version]
- Yow, M.A.; Tabrizi, S.N.; Severi, G.; Bolton, D.M.; Pedersen, J.; Longano, A.; Garland, S.M.; Southey, M.C.; Giles, G.G. Detection of infectious organisms in archival prostate cancer tissues. BMC Cancer 2014, 14, 579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whitaker, N.J.; Glenn, W.K.; Sahrudin, A.; Orde, M.M.; Delprado, W.; Lawson, J.S. Human papillomavirus and Epstein Barr virus in prostate cancer: Koilocytes indicate potential oncogenic influences of human papillomavirus in prostate cancer. Prostate 2012, 73, 236–241. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.Y.; Salman, N.A.; Sandhu, S.; Cakir, M.O.; Seddon, A.M.; Kuehne, C.; Ashrafi, G.H. Detection of high-risk Human Papillomavirus in prostate cancer from a UK based population. Sci. Rep. 2023, 13, 7633. [Google Scholar] [CrossRef]
- Chang, H.-J.; Pong, Y.-H.; Chiang, C.-Y.; Huang, P.-C.; Wang, M.-H.; Chan, Y.-J.; Lan, T.-Y. A matched case-control study in Taiwan to evaluate potential risk factors for prostate cancer. Sci. Rep. 2023, 13, 4382. [Google Scholar] [CrossRef] [PubMed]
- Dillner, J.; Knekt, P.; Boman, J.; Lehtinen, M.; Af Geijersstam, V.; Sapp, M.; Schiller, J.; Maatela, J.; Aromaa, A. Sero-epidemiologal association between human-papillomavirus infection and risk of prostate cancer. Int. J. Cancer 1998, 75, 564–567. [Google Scholar] [CrossRef]
- Gazzaz, F.S.; Mosli, H.A. Lack of detection of human papillomavirus infection by hybridization test in prostatic biopsies. Saudi Med. J. 2009, 30, 633–637. [Google Scholar]
- Glenn, W.K.; Ngan, C.C.; Amos, T.G.; Edwards, R.J.; Swift, J.; Lutze-Mann, L.; Shang, F.; Whitaker, N.J.; Lawson, J.S. High risk human papilloma viruses (HPVs) are present in benign prostate tissues before development of HPV associated prostate cancer. Infect. Agents Cancer 2017, 12, 46. [Google Scholar] [CrossRef] [PubMed]
- Dennis, L.K.; Coughlin, J.A.; McKinnon, B.C.; Wells, T.S.; Gaydos, C.A.; Hamsikova, E.; Gray, G.C. Sexually transmitted infections and prostate cancer among men in the U.S. military. Cancer Epidemiol. Biomark. Prev. 2009, 18, 2665–2671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graham, S.V. The human papillomavirus replication cycle, and its links to cancer progression: A comprehensive review. Clin. Sci. 2017, 131, 2201–2221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Araldi, R.P.; Sant’Ana, T.A.; Módolo, D.G.; de Melo, T.C.; Spadacci-Morena, D.D.; de Cassia Stocco, R.; Cerutti, J.M.; de Souza, E.B. The human papillomavirus (HPV)-related cancer biology: An overview. Biomed. Pharmacother. 2018, 106, 1537–1556. [Google Scholar] [CrossRef] [Green Version]
- Okunade, K.S. Human papillomavirus and cervical cancer. J. Obstet. Gynaecol. 2019, 40, 602–608. [Google Scholar] [CrossRef]
- Ittmann, M. Anatomy and Histology of the Human and Murine Prostate. Cold Spring Harb. Perspect. Med. 2017, 8, a030346. [Google Scholar] [CrossRef]
- Lee, C.H.; Akin-olugbade, O.; Kirschenbaum, A. Overview of Prostate Anatomy, Histology, and Pathology. Endocrinol. Metab. Clin. North. Am. 2011, 40, 565–575. [Google Scholar] [CrossRef] [PubMed]
- Quintanal-Villalonga; Chan, J.M.; Yu, H.A.; Pe’er, D.; Sawyers, C.L.; Sen, T.; Rudin, C.M. Lineage plasticity in cancer: A shared pathway of therapeutic resistance. Nat. Rev. Clin. Oncol. 2020, 17, 360–371. [Google Scholar] [CrossRef] [PubMed]
- Brawer, M.K. Prostatic intraepithelial neoplasia: An overview. Rev. Urol. 2005, 7 (Suppl. S3), S11–S18. [Google Scholar]
- Khieu, M.; Butler, S.L. High Grade Squamous Intraepithelial Lesion. In StatPearls; StatPearls Publishing: St. Petersburg, FL, USA, 2023. [Google Scholar]
- Stolnicu, S.; Barsan, I.; Hoang, L.; Patel, P.; Terinte, C.; Pesci, A.; Aviel-Ronen, S.; Kiyokawa, T.; Alvarado-Cabrero, I.; Pike, M.C.; et al. International Endocervical Adenocarcinoma Criteria and Classification (IECC): A New Pathogenetic Classification for Invasive Adenocarcinomas of the Endocervix. Am. J. Surg. Pathol. 2018, 42, 214–226. [Google Scholar] [CrossRef]
- Hodgson, A.; Olkhov-Mitsel, E.; Howitt, B.E.; Nucci, M.R.; Parra-Herran, C. International Endocervical Adenocarcinoma Criteria and Classification (IECC): Correlation with adverse clinicopathological features and patient outcome. J. Clin. Pathol. 2019, 72, 347–353. [Google Scholar] [CrossRef] [PubMed]
- Pim, D.; Banks, L. Interaction of viral oncoproteins with cellular target molecules: Infection with high-risk vs low-risk human papillomaviruses. Apmis 2010, 118, 471–493. [Google Scholar] [CrossRef] [PubMed]
- Roman, A.; Munger, K. The papillomavirus E7 proteins. Virology 2013, 445, 138–168. [Google Scholar] [CrossRef] [Green Version]
- Vande Pol, S.B.; Klingelhutz, A.J. Papillomavirus E6 oncoproteins. Virology 2013, 445, 115–137. [Google Scholar] [CrossRef] [Green Version]
- Fedak, K.M.; Bernal, A.; Capshaw, Z.A.; Gross, S. Applying the Bradford Hill criteria in the 21st century: How data integration has changed causal inference in molecular epidemiology. Emerg. Themes Epidemiol. 2015, 12, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lenze, D.; Müller, H.H.; Hummel, M. Considerations for the use of formalin-fixed and paraffin-embedded tissue specimens for clonality analysis. J. Hematop. 2012, 5, 27–34. [Google Scholar] [CrossRef] [Green Version]
- Lawson, J.S.; Glenn, W.K. Evidence for a causal role by human papillomaviruses in prostate cancer—A systematic review. Infect. Agents Cancer 2020, 15, 41. [Google Scholar] [CrossRef]
- Combes, J.-D.; Pawlita, M.; Waterboer, T.; Hammouda, D.; Rajkumar, T.; Vanhems, P.; Snijders, P.; Herrero, R.; Franceschi, S.; Clifford, G. Antibodies against high-risk human papillomavirus proteins as markers for invasive cervical cancer. Int. J. Cancer 2014, 135, 2453–2461. [Google Scholar] [CrossRef]
- Cirakoglu, A.; Benli, E.; Yuce, A. Polygamy, sexual behavior in a population under risk for prostate cancer diagnostic: An observational study from the Black Sea Region in Turkey. Int. Braz J. Urol. 2018, 44, 704–708. [Google Scholar] [CrossRef]
- Jian, Z.; Ye, D.; Chen, Y.; Li, H.; Wang, K. Sexual Activity and Risk of Prostate Cancer: A Dose–Response Meta-Analysis. J. Sex. Med. 2018, 15, 1300–1309. [Google Scholar] [CrossRef]
- Johnson, A.M.; Mercer, C.H.; Beddows, S.; de Silva, N.; Desai, S.; Howell-Jones, R.; Carder, C.; Sonnenberg, P.; Fenton, K.A.; Lowndes, C.; et al. Epidemiology of, and behavioural risk factors for, sexually transmitted human papillomavirus infection in men and women in Britain. Sex. Transm. Infect. 2012, 88, 212–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guenat, D.; Hermetet, F.; Prétet, J.-L.; Mougin, C. Exosomes and Other Extracellular Vesicles in HPV Transmission and Carcinogenesis. Viruses 2017, 9, 211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Carolis, S.; Storci, G.; Ceccarelli, C.; Savini, C.; Gallucci, L.; Sansone, P.; Santini, D.; Seracchioli, R.; Taffurelli, M.; Fabbri, F.; et al. HPV DNA Associates with Breast Cancer Malignancy and It Is Transferred to Breast Cancer Stromal Cells by Extracellular Vesicles. Front. Oncol. 2019, 9, 860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madani, T.A. Sexually transmitted infections in Saudi Arabia. BMC Infect. Dis. 2006, 6, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eghbali, S.S.; Amirinejad, R.; Obeidi, N.; Mosadeghzadeh, S.; Vahdat, K.; Azizi, F.; Pazoki, R.; Sanjdideh, Z.; Amiri, Z.; Nabipour, I.; et al. Oncogenic human papillomavirus genital infection in southern Iranian women: Population-based study versus clinic-based data. Virol. J. 2012, 9, 194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [Green Version]
- Hanahan, D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022, 12, 31–46. [Google Scholar] [CrossRef]
- McLaughlin-Drubin, M.E.; Münger, K. Oncogenic activities of human papillomaviruses. Virus Res. 2009, 143, 195–208. [Google Scholar] [CrossRef] [Green Version]
- Moody, C.A.; Laimins, L.A. Human papillomavirus oncoproteins: Pathways to transformation. Nat. Rev. Cancer 2010, 10, 550–560. [Google Scholar] [CrossRef]
- Zhao, H.; Wu, L.; Yan, G.; Chen, Y.; Zhou, M.; Wu, Y.; Li, Y. Inflammation and tumor progression: Signaling pathways and targeted intervention. Signal Transduct. Target. Ther. 2021, 6, 263. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Croce, C.M. The role of MicroRNAs in human cancer. Signal Transduct. Target. Ther. 2016, 1, 15004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fabbri, M.; Paone, A.; Calore, F.; Galli, R.; Gaudio, E.; Santhanam, R.; Lovat, F.; Fadda, P.; Mao, C.; Nuovo, G.J.; et al. MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. Proc. Natl. Acad. Sci. USA 2012, 109, E2110–E2116. [Google Scholar] [CrossRef] [PubMed]
- Tung, C.-H.; Kuo, L.-W.; Huang, M.-F.; Wu, Y.-Y.; Tsai, Y.-T.; Wu, J.-E.; Hsu, K.-F.; Chen, Y.-L.; Hong, T.-M. MicroRNA-150-5p promotes cell motility by inhibiting c-Myb-mediated Slug suppression and is a prognostic biomarker for recurrent ovarian cancer. Oncogene 2019, 39, 862–876. [Google Scholar] [CrossRef]
- Gironella, M.; Seux, M.; Xie, M.-J.; Cano, C.; Tomasini, R.; Gommeaux, J.; Garcia, S.; Nowak, J.; Yeung, M.L.; Jeang, K.-T.; et al. Tumor protein 53-induced nuclear protein 1 expression is repressed by miR-155, and its restoration inhibits pancreatic tumor development. Proc. Natl. Acad. Sci. USA 2007, 104, 16170–16175. [Google Scholar] [CrossRef]
- Faraoni, I.; Antonetti, F.R.; Cardone, J.; Bonmassar, E. miR-155 gene: A typical multifunctional microRNA. Biochim. Biophys. Acta 2009, 1792, 497–505. [Google Scholar] [CrossRef]
- Mahesh, G.; Biswas, R. MicroRNA-155: A Master Regulator of Inflammation. J. Interf. Cytokine Res. 2019, 39, 321–330. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, J.; Li, J.; Wang, X.; Song, W. MicroRNA-150 promotes cell proliferation, migration, and invasion of cervical cancer through targeting PDCD4. Biomed. Pharmacother. 2018, 97, 511–517. [Google Scholar] [CrossRef]
- Miller, D.M.; Thomas, S.D.; Islam, A.; Muench, D.; Sedoris, K. c-Myc and Cancer Metabolism. Clin. Cancer Res. 2012, 18, 5546–5553. [Google Scholar] [CrossRef] [Green Version]
- Madden, S.K.; de Araujo, A.D.; Gerhardt, M.; Fairlie, D.P.; Mason, J.M. Making the Myc out of cancer: Toward therapeutic strategies to directly inhibit c-Myc. Mol. Cancer 2021, 20, 3. [Google Scholar] [CrossRef]
- Itoh, Y.; Nagase, H. Matrix metalloproteinases in cancer. Essays Biochem. 2002, 38, 21–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fatemipour, M.; Nahand, J.S.; Azar, M.E.F.; Baghi, H.B.; Taghizadieh, M.; Sorayyayi, S.; Hussen, B.M.; Mirzaei, H.; Moghoofei, M.; Bokharaei-Salim, F. Human papillomavirus and prostate cancer: The role of viral expressed proteins in the inhibition of anoikis and induction of metastasis. Microb. Pathog. 2020, 152, 104576. [Google Scholar] [CrossRef] [PubMed]
- Stoler, M.H.; Mills, S.E.; Gersell, D.J.; Walker, A.N. Small-Cell Neuroendocrine Carcinoma of the Cervix. A Human Papillomavirus Type 18-Associated Cancer. Am. J. Surg. Pathol. 1991, 15, 28–32. [Google Scholar] [CrossRef]
- Ohba, K.; Ichiyama, K.; Yajima, M.; Gemma, N.; Nikaido, M.; Wu, Q.; Chong, P.; Mori, S.; Yamamoto, R.; Wong, J.E.L.; et al. In Vivo and In Vitro Studies Suggest a Possible Involvement of HPV Infection in the Early Stage of Breast Carcinogenesis via APOBEC3B Induction. PLoS ONE 2014, 9, e97787. [Google Scholar] [CrossRef]
- Vieira, V.C.; Leonard, B.; White, E.A.; Starrett, G.J.; Temiz, N.A.; Lorenz, L.D.; Lee, D.; Soares, M.A.; Lambert, P.F.; Howley, P.M.; et al. Human Papillomavirus E6 Triggers Upregulation of the Antiviral and Cancer Genomic DNA Deaminase APOBEC3B. mBio 2014, 5, e02234-14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gansmo, L.B.; Romundstad, P.; Hveem, K.; Vatten, L.; Nik-Zainal, S.; Lønning, P.E.; Knappskog, S. APOBEC3A/B deletion polymorphism and cancer risk. Carcinogenesis 2017, 39, 118–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burns, M.B.; Temiz, N.A.; Harris, R.S. Evidence for APOBEC3B mutagenesis in multiple human cancers. Nat. Genet. 2013, 45, 977–983. [Google Scholar] [CrossRef] [Green Version]
- Caval, V.; Suspène, R.; Shapira, M.; Vartanian, J.-P.; Wain-Hobson, S. A prevalent cancer susceptibility APOBEC3A hybrid allele bearing APOBEC3B 3′UTR enhances chromosomal DNA damage. Nat. Commun. 2014, 5, 5129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nik-Zainal, S.; Wedge, D.C.; Alexandrov, L.B.; Petljak, M.; Butler, A.P.; Bolli, N.; Davies, H.R.; Knappskog, S.; Martin, S.; Papaemmanuil, E.; et al. Association of a germline copy number polymorphism of APOBEC3A and APOBEC3B with burden of putative APOBEC-dependent mutations in breast cancer. Nat. Genet. 2014, 46, 487–491. [Google Scholar] [CrossRef] [Green Version]
- Cheng, A.Z.; Yockteng-Melgar, J.; Jarvis, M.C.; Malik-Soni, N.; Borozan, I.; Carpenter, M.A.; McCann, J.L.; Ebrahimi, D.; Shaban, N.M.; Marcon, E.; et al. Epstein–Barr virus BORF2 inhibits cellular APOBEC3B to preserve viral genome integrity. Nat. Microbiol. 2018, 4, 78–88. [Google Scholar] [CrossRef]
- Murphy, W.M.; Fu, Y.S.; Lancaster, W.D.; Jenson, A.B. Papillomavirus Structural Antigens in Condyloma Acuminatum of the Male Urethra. J. Urol. 1983, 130, 84–85. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Cano, S.J.; Brady, S.P. DNA extraction from formalin-fixed, paraffin-embedded tissues: Protein digestion as a limiting step for retrieval of high-quality DNA. Diagn. Mol. Pathol. Am. J. Surg. Pathol. Part B 1997, 6, 342–346. [Google Scholar] [CrossRef] [PubMed]
- Falcaro, M.; Castañon, A.; Ndlela, B.; Checchi, M.; Soldan, K.; Lopez-Bernal, J.; Elliss-Brookes, L.; Sasieni, P. The effects of the national HPV vaccination programme in England, UK, on cervical cancer and grade 3 cervical intraepithelial neoplasia incidence: A register-based observational study. Lancet 2021, 398, 2084–2092. [Google Scholar] [CrossRef]
- Torjesen, I. HPV vaccine cut cervical cancer rates in England by 87%. BMJ 2021, 375, e2689. [Google Scholar] [CrossRef] [PubMed]
- Choo, C.K.; Ling, M.T.; Chan, K.W.; Tsao, S.W.; Zheng, Z.; Zhang, D.; Chan, L.C.; Wong, Y.C. Immortalization of human prostate epithelial cells by HPV 16 E6/E7 open reading frames. Prostate 1999, 40, 150–158. [Google Scholar] [CrossRef]
Inclusion Criteria | Exclusion Criteria |
---|---|
Primary studies | Secondary data (e.g., Meta-Analysis and Systematic reviews) |
Tissues only infected with HPV | Coinfections |
Male participants over the age of 18 | Male participants aged <18 |
Paper in English | Studies published languages other than English |
Duplicated papers |
S/N | Study | Selection | Comparability | Exposure | Total | ||||
---|---|---|---|---|---|---|---|---|---|
1′ | 2 | 3 | 4 | 5 | 6 | 7 | |||
1 | Medel Flores et al. (2018) [24] | * | * | - | * | * | * | * | 6 |
2 | Chen et al. (2011) [25] | * | * | - | * | * | * | * | 6 |
3 | Aghakhani et al. (2011) [26] | * | * | - | * | * | * | * | 6 |
4 | Zhao et al. (2017) [27] | * | * | - | * | - | * | * | 5 |
5 | Tachezy et al. (2012) [28] | * | * | - | * | * | * | * | 6 |
6 | Ghasemian et al. (2013) [29] | * | * | - | * | * | * | * | 6 |
7 | Rodriguez et al. (2016) [30] | * | * | - | * | * | * | * | 6 |
8 | Khatami et al. (2022) [31] | * | * | - | * | * | * | * | 6 |
9 | Rotola et al. (1992) [32] | * | * | - | * | * | * | * | 6 |
10 | Moyret-Lalle et al. (1995) [33] | * | * | - | * | * | * | * | 6 |
11 | Atashafrooz et al. (2016) [34] | * | * | - | * | * | * | * | 6 |
12 | Singh et al. (2015) [35] | * | * | - | * | * | * | * | 6 |
13 | Sarkar et al. (1993) [36] | * | * | - | - | * | * | * | 5 |
14 | Noda et al. (1998) [37] | * | * | - | * | * | * | * | 6 |
15 | Korodi et al. (2005) [38] | * | * | * | * | - | * | * | 6 |
16 | Carozzi et al. (2004) [39] | * | * | - | * | * | * | * | 6 |
17 | Adami et al. (2003) [40] | * | * | * | * | - | * | * | 6 |
18 | Leiros et al. (2005) [41] | * | * | - | * | * | * | * | 6 |
19 | Wideroff et al. (1996) [42] | * | * | - | * | * | * | * | 6 |
20 | Martinez-Fierro et al. (2010) [43] | * | * | * | * | * | * | * | 7 |
21 | Sutcliffe et al. (2010) [44] | * | * | * | * | - | * | * | 6 |
22 | Silvestre et al. (2009) [45] | * | * | - | * | * | * | * | 6 |
23 | Michopoulou et al. (2014) [46] | * | * | - | * | * | * | * | 6 |
24 | McNicol and Dodd (1990) [47] | * | * | - | * | * | * | * | 6 |
25 | Rosenblatt et al. (2003) [48] | * | * | * | * | - | * | * | 6 |
26 | Aydin et al. (2017) [49] | * | * | - | * | * | * | * | 6 |
27 | McNicol and Dodd (1991) [50] | * | * | - | * | * | * | * | 6 |
28 | Masood et al. (1991) [51] | * | * | - | * | - | * | * | 5 |
29 | Anwar et al. (1992) [52] | * | * | - | * | - | * | * | 5 |
30 | Terris and Peehl (1997) [53] | * | * | - | - | * | * | * | 5 |
31 | Suzuki et al. (1996) [54] | * | * | - | * | - | * | * | 5 |
32 | Ibrahim et al. (1992) [55] | * | * | - | * | * | * | * | 6 |
33 | Serth et al. (1999) [56] | * | * | - | * | * | * | * | 6 |
34 | Dodd et al. (1993) [57] | * | * | - | * | * | * | * | 6 |
35 | Salehi and Hadavi (2012) [58] | * | * | - | * | * | * | * | 6 |
36 | Strickler et al. (1998) [59] | * | * | - | * | * | * | * | 6 |
37 | Hrbacek et al. (2011) [60] | * | * | - | * | - | * | * | 5 |
38 | Sutcliffe et al. (2007) [61] | * | * | * | * | - | * | * | 6 |
39 | Bergh et al. (2006) [62] | * | * | - | * | * | * | * | 6 |
40 | Groom et al. (2012) [63] | * | * | - | * | * | * | * | 6 |
41 | Tu et al. (1994) [64] | * | * | - | * | * | * | * | 6 |
42 | Sitas et al. (2007) [65] | * | * | - | * | - | * | * | 6 |
43 | Anderson et al. (1997) [66] | * | * | - | * | * | * | * | 6 |
44 | Effert et al. (1992) [67] | * | * | - | - | - | * | 3 | |
45 | Afshar et al. (2013) [68] | * | * | * | - | - | * | * | 5 |
46 | Araujo-Neto et al. (2016) [69] | * | * | - | - | - | * | * | 4 |
47 | Balis et al. (2007) [70] | * | * | - | - | - | * | 3 | |
48 | Mokhtari et al. (2013) [71] | - | * | - | * | * | - | * | 4 |
49 | Pascale et al. (2013) [72] | * | * | - | - | - | * | - | 3 |
50 | Abumsimir et al. (2022) [73] | * | * | - | - | - | * | - | 3 |
50 | Nahand et al. (2020) [74] | * | * | - | * | * | * | 5 | |
51 | Pereira et al. (2023) [75] | * | * | - | - | - | * | - | 3 |
52 | Rodriguez et al. (2015) [76] | * | * | - | - | - | * | - | 3 |
53 | Yow et al. (2014) [77] | * | * | - | - | - | * | 3 | |
54 | Whitaker et al. (2012) [78] | * | * | - | * | - | * | * | 5 |
55 | Ahmed et al. (2023) [79] | * | * | * | * | * | * | * | 7 |
56 | Chang et al. (2023) [80] | * | * | * | * | * | * | * | 7 |
S/N | Study | Selection | Comparability | Outcome | Total Score | |||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |||
1 | Dillner et al. (1998) [81] | * | * | * | - | - | * | * | - | 5 |
2 | Gazzaz and Mosli (2009) [82] | * | * | * | * | - | * | - | - | 5 |
3 | Glenn et al. (2017) [83] | * | - | * | - | - | * | * | 4 | |
4 | Dennis et al. (2009) [84] | * | * | * | * | * | * | - | - | 6 |
Subjects | HPV Types | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
S/N | Author | HPV Detection | Collection (Storage) | No. | Type | HPV | 6 | 16 | 18 | Other |
1 | Medel Flores et al. (2018) [24] | L1 PCR consensus primers E6/E7 PCR for HPV 16HPV16, 18, 31, 33, 52b, 58 | RP (FFPE) | 189 | PCa cases | 37 (20%) | 6 | 7 | 8 | 52 (17), 58 (12) |
RP (FFPE) | 167 | BPH controls | 16 (10%) | 1 | 3 | 52 (16), 58 (5) | ||||
2 | Pascale et al. (2013) [75] | E7 IHC staining L1 PCR consensus primer | Surgery, not fine needle biopsies (FFPE) | 150 | PCa cases | 19 (13%) | 9 | |||
3 | Chen et al. (2011) [25] | L1 PCR consensus primer Type-specific PCR primer for HPV 18 ISH for HPV 18 | Collection not specified (snap frozen) | 51 | PCa cases | 7 (14%) | 7 | |||
Collection not specified (snap frozen) | 11 | BPH controls | 3 (27%) | 3 | ||||||
4 | Aghakhani et al. (2011) [26] | L1 PCR consensus primers | RP, TURP (FFPE) | 104 | PCa cases | 13 (13%) | 1 | 7 | 3 | 11 (2) |
RP, TURP (FFPE) | 104 | BPH controls | 8 (8%) | 1 | 3 | 2 | 11 (2) | |||
5 | Tachezy et al. (2012) [28] | L1 PCR consensus primers | RRP (FFPE) | 51 | PCa cases | 1 (2%) | 42 (1) | |||
11 SP, 84 TURP (FFPE) | 95 | BPH controls | 2 (2%) | 1 | 1 unknown | |||||
6 | Mokhtari et al. (2013) [71] | IHC staining | Collection not specified (PE) | 30 | PCa cases | 3 (10%) | ||||
Collection not specified (PE) | 90 | BPH controls | 1 (1%) | |||||||
7 | Balis et al. (2007) [70] | L1 PCR consensus primer Type-specific PCR primers for HPV 11, 16, 18, 33 | Collection not specified (22 FFPE, 20 fresh frozen) | 42 | PCa cases | 2 (5%) | Unknown | |||
8 | Ghasemian et al. (2013) [29] | L1 PCR consensus primers | Collection not specified (FFPE) | 29 | PCa cases | 5 (17%) | ||||
Collection not specified (FFPE) | 167 | BPH controls | 8 (5%) | |||||||
9 | Rodriguez et al. (2016) [30] | INNO-LiPA HPV kit—L1 and 28 HPV genotypes | OP (FFPE) | 62 | PCa cases | 12 (20%) | 11 (46.1%), 51, 52, and 66 (15.4%) | |||
TURP (FFPE) | 25 | BPH controls | 1 (4%) | 1 | ||||||
10 | Khatami et al. (2022) [31] | L1 PCR consensus primer | Collection not specified (snap frozen) | 73 | PCa cases | 21 (29%) | 1 | 9 | 7 | 11 (1), 33 (3) |
Collection not specified (snap frozen) | 39 | Healthy controls | 7 (8%) | 3 | 3 | 11 (1) | ||||
11 | Rotola et al. (1992) [32] | E6 PCR for HPV 6/11, 16 | Collection not specified (snap frozen) | 8 | PCa cases | N/A | 4 | 6 | 11 (4) | |
Collection not specified (snap frozen) | 17 | BPH controls | N/A | 11 | 14 | 11 (11) | ||||
12 | Moyret-Lalle et al. (1995) [33] | E6 PCR for HPV 16HPV16 and 18 | Collection not specified (snap frozen) | 17 | PCa cases | 9 (53%) | 9 | |||
Collection not specified (snap frozen) | 22 | BPH controls | 7 (32%) | 7 | ||||||
13 | Atashafrooz et al. (2016) [34] | Real-Time PCR HPV detection/genotyping assay kit—13 genotypes | Collection not specified (PE) | 100 | PCa cases | 20 (20%) | 1 | 16/18 (8), 31/33 (6), 54 (2), 6/11 (3) | ||
Collection not specified (PE) | 100 | BPH Controls | 8 (8%) | 2 | 16/18 (1), 31/33 (1), 6/11 (4) | |||||
14 | Araujo-Neto et al. (2016) [69] | L1 PCR consensus primers E6/E6 PCR for HPV 16HPV16 | RP (fresh frozen) | 104 | PCa cases | 0 (0%) | ||||
15 | Singh et al. (2015) [35] | L1 PCR consensus primers Type-specific PCR primers for HPV 6, 11, 16, 18 | Collection not specified (storage not specified) | 95 | PCa cases | 39 (41%) | 2 | 30 | 6 | 11 (1) |
Collection not specified (storage not specified) | 55 | BPH controls | 11 (20%) | 6 | 3 | 1 | 11 (1) | |||
16 | Sarkar et al. (1993) [36] | E6/E7 PCR for HPV 6, 11, 16, and 18 Southern blot hybridisation | Surgical resection, not TURP (PE) | 23 | PCa cases | 3 (13%) | 3 | |||
Surgical resection, not TURP (PE) | 23 | PIN controls | 0 (0%) | |||||||
17 | Noda et al. (1998) [37] | PCR primers for LCR and E7 for HPV 16HPV16, 18, 31, 33, 52, 58 | TP (FFPE) | 38 | PCa cases | 0 (0%) | ||||
10 SCP, 61 TURP (FFPE) | 71 | BPH controls | 3 (4%) | 3 | ||||||
18 | Carozzi et al. (2004) [39] | L1 PCR consensus primer E6/E7 PCR for HPV types 16, 18, 31, 33, 35, 45, 52, 58 Hybridisation | TPB (formalin) | 26 | PCa cases | 17 (65%) | 1 | 3 | 3 | 58 (4) |
TPB (formalin) | 25 | BPH controls | 12 (48%) | 1 | 2 | 53 (4) | ||||
19 | Leiros et al. (2005) [41] | Type-specific PCR primers for HPV 6, 11, 16, 18 L1 PCR consensus primer Southern blot hybridisation | TRB (FFPE) | 41 | PCa cases | 17 (42%) | 5 | 11 (2) | ||
TRB (FFPE) | 30 | BPH controls | 0 (0%) | |||||||
20 | Wideroff et al. (1996) [42] | L1 PCR consensus primers E6 PCR for HPV 6, 11, 16, 18, 31, 33, 45 Hybridisation | TURP, RP, excision biopsy (FFPE) | 56 | PCa cases | 7 (13%) | ||||
TURP (FFPE) | 42 | BPH controls | 4 (10%) | |||||||
21 | Martinez-Fierro et al. (2010) [43] | L1 PCR consensus primers Linear Array HPV Genotyping Test | TRB, TURP (storage not specified) | 55 | PCa cases | 11 (20%) | ||||
TRB, TURP (storage not specified) | 75 | Non-PCa controls | 4 (5%) | |||||||
22 | Silvestre et al. (2009) [45] | L1 PCR consensus primer Linear Array HPV Genotyping Test | Collection and storage not specified | 65 | PCa cases | 2 (3%) | 2 | 84 (coinfection) | ||
Collection and storage not specified | 6 | BPH controls | 0 (0%) | |||||||
23 | Michopoulo et al. (2014) [46] | L1 PCR consensus primer | Collection not specified (FFPE) | 50 | PCa cases | 8 (16%) | 2 | 4 | 31 (1), unknown (1) | |
Collection not specified (FFPE) | 30 | Healthy controls | 1 (3%) | Unknown (1) | ||||||
24 | McNiol and Dodd (1990) [47] | E6 PCR for HPV 16HPV16 and 18 | 2 SPP, 17 TURP (fresh frozen) | 4 | PCa cases | 4 (100%) | 4 | |||
15 | BPH controls | 14 (93%) | 11 | 16 + 18 (3) | ||||||
Autopsy (fresh frozen) | 5 | Healthy controls | 1 (20%) | 1 | ||||||
25 | Aydin et al. (2017) [49] | L1 PCR consensus primer HPV sign® Q24 for genotyping | RP (FFPE) | 60 | PCa cases | 1 (2%) | 57 | |||
TVP (FFPE) | 36 | BPH controls | 0 (0%) | |||||||
26 | McNiol and Dodd (1991) [50] | E6 PCR for HPV 16HPV16 and 18 Hybridisation | TURP, SPP (fresh frozen) | 27 | PCa cases | 14 (52%) | 14 | 1 | ||
TURP, SPP (fresh frozen) | 56 | BPH controls | 34 (63%) | 34 | 3 | |||||
Autopsy (fresh frozen) | 5 | Healthy controls | 1 (20%) | 1 | ||||||
27 | Masood et al. (1991) [51] | In situ hybridisation for HPV 6, 11, 16, 18, 31, 33, 35 | Core needle biopsy, TURP (FFPE) | 20 | PCa cases | 0 (0%) | ||||
Core needle biopsy, TURP (FFPE) | 20 | BPH controls | 0 (0%) | |||||||
28 | Anwar et al. (1992) [52] | E6 PCR for HPV 16HPV16, 18, 33 | TURP, SPP (FFPE) | 68 | PCa cases | 28 (41%) | 11 | 7 | 33 (5) | |
TURP, SPP (FFPE) | 10 | BPH controls | 0 (0%) | |||||||
Autopsy (FFPE) | 10 | Healthy controls | 0 (0%) | |||||||
29 | Rodriguez et al. (2015) [76] | L1 PCR consensus primer Type-specific PCR for 19 HPV genotypes | Collection not specified (FFPE) | 69 | PCa cases | 0 (0%) | ||||
30 | Terris and Peehl (1997) [53] | L1 PCR consensus primer E6 PCR for HPV 16HPV16 | RRP (FFPE) | 53 | PCa cases | 12 (23%) | 12 | |||
41 | Peripheral benign tissue | 15 (37%) | 15 | |||||||
37 | Healthy controls | 6 (16%) | 6 | |||||||
31 | Suzuki et al. (1996) [54] | L1 PCR consensus primer | 29 TP, 22 autopsy (storage not specified) | 51 | PCa cases | 8 (16%) | 8 | |||
32 | Ibrahim et al. (1992) [55] | L1 PCR consensus primer ISH | RP, TURP, TRB (FFPE and fresh frozen) | 40 | PCa cases | 6 (15%) | 6 | |||
RP, TURP, TRB (FFPE) | 12 | BPH controls | 0 (0%) | |||||||
RP, TURP, TRB (FFPE) | 17 | Healthy controls | 2 (12%) | 2 | ||||||
33 | Serth et al. (1999) [56] | E6 PCR for HPV 16HPV16 | RP (snap frozen) | 47 | PCa cases | 10 (21%) | 10 | |||
TVP (snap frozen) | 37 | BPH controls | 1 (3%) | 1 | ||||||
34 | Dodd et al. (1993) [57] | Reverse transcription PCR for E6/E7 mRNA of HPV16 | Collection not specified (fresh frozen) | 7 | PCa cases | 3 (43%) | 3 | |||
Collection not specified (fresh frozen) | 10 | BPH controls | 5 (50%) | 5 | ||||||
35 | Salehi and Hadavi (2012) [58] | L1 PCR consensus primer | Collection not specified (snap frozen) | 68 | PCa cases | 3 (4%) | ||||
Collection not specified (snap frozen) | 85 | BPH controls | 0 (0%) | |||||||
36 | Abumsimir et al. (2022) [73] | L1 PCR consensus primers | Biopsies (fresh) | 50 | PCa cases | 8 (16%) | 8 | |||
37 | Strickler et al. (1998) [59] | L1 PCR consensus primers E6 PCR for HPV 11, 16, 18, 51, 61 Southern blot hybridisation | Surgery, TURP (fresh frozen) | 63 | PCa cases | 0 (0%) | ||||
Surgery, TURP (fresh frozen) | 61 | BPH controls | 0 (0%) | |||||||
38 | Glenn et al. (2017) [83] | L1 PCR consensus primer E7 PCR for HPV 16HPV16 and 18 IHC for E7 oncoprotein | Collection not specified (FFPE) | 28 | PCa cases | L1 8 (29%) E7 19 (68%) E7P 8 (29%) | ||||
28 | BPH controls—years before | L1 13 (46%) E7 23 (82%) E7P 23 (82%) | ||||||||
39 | Bergh et al. (2006) [62] | L1 PCR consensus primer | TURP (FFPE) | 201 | PCa cases | 0 (0%) | ||||
TURP (FFPE) | 201 | BPH controls | 0 (0%) | |||||||
40 | Groom et al. (2012) [63] | INNO-LiPA HPV Genotyping kit Hybridisation to HPV 16HPV16 | Collection and storage not specified | 100 | PCa cases | 1 (1%) | 1 | |||
Collection and storage not specified | 62 | Healthy controls | 0 (0%) | |||||||
41 | Tu et al. (1994) [64] | L1 PCR consensus primer Hybridisation | RP (FFPE) | 43 | PCa cases | 1 (2%) | 1 | |||
Collection not specified (snap frozen) | 17 | Metastatic pelvic lymph nodes | 1 (6%) | 1 | ||||||
RRP (not specified) | 1 | Normal prostate | 0 (0%) | |||||||
42 | Effert et al. (1992) [67] | E6 PCR for HPV 16HPV16 and 18 | RP (FFPE) | 30 | PCa cases | 0 (0%) | ||||
43 | Gazzaz and Mosli (2009) [82] | Hybridisation using Hybrid Capture 2 kit | TURP, TRB (fresh) | 6 | PCa cases | 0 (0%) | ||||
TURP, TRB (fresh) | 50 | 21 BPH, 29 nodular hyperplasia | 0 (0%) | |||||||
44 | Anderson et al. (1997) [66] | L1 PCR consensus primer E6 and E2 ORF PCR for HPV 16HPV16 | TURP (fresh frozen) | 14 | PCa cases | 0 (0%) | ||||
TURP (fresh frozen) | 10 | Benign controls | 0 (0%) | |||||||
45 | Pereira et al. (2023) [75] | L1 PCR consensus primer for HPV 16HPV16, 18, 56, 59 and 66. | TRUS Biopsies | 162 | PCa cases, | 10 (6.2%) | ||||
46 | Afshar et al. (2013) [68] | PCR and INNo- Lipa assays | Paraffin embedded blocks | 410 | PCa cases | 108 (26.34%) | 53 | 11 | 11 (10), others (34) | |
47 | Nahand et al. (2020) [74] | L1 and E7 PCR consensus primer and INNO-LiPA HPV Genotyping Kit | Surgery | 58 | PCa cases | 19 (32.7%) | 9 | 6 | 33 (3) | |
48 | Yow et al. (2014) [77] | PapType High-Risk (HR) HPV Detection and Genotyping kit | TRUP (FFPE) RP (FFPE) | 221 | PCa cases | 0 (0%) | ||||
49 | Whitaker et al. (2012) [78] | L1 PCR consensus primer, and In Situ PCR | Collection not specified (FFPE; Fresh frozen) | 10 | PCa cases | 7 (70%) | 1 | |||
50 | Ahmed et al. (2023) [79] | HPV-HCR Genotype-Eph kit | Biopsies (Fresh) | 49 | PCa cases, Benign controls | 16 (32.7%) | 4 | 33, 35, 45, 52, 56, 58 | ||
51 | Chang et al. (2023) [80] | Cobas 4800 HPV Test and DR HPV Genotyping IVD Kit | FFPE | 178 | PCa cases, Benign controls | 12 (6.7%) | 2 | 52 (1), 53 (3), 62 (1), others (5) |
S/N | Author | Year | Pathogen Studied | PCa Present | % Seropositive | No. of Controls without PCa | % Seropositive | RR/OR | 95% CI | Evidence of Association? | Method |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | Chen et al. [25] | 2011 | HPV 16HPV16, 18, 31, 33, 52, 58 | 26/53 | 49 | 35/104 | 33.7 | OR = 0.71–4.16 | 0.18–48.0 | No | Fluorescent assay |
2 | Zhao et al. [27] | 2017 | HPV 16HPV16 | 48/75 | 64 | 14/80 | 17.5 | N/A | N/A | Yes (p < 0.001) | Peptide microarray |
3 | Tachezy et al. [28] | 2012 | HPV 16HPV16, 18, 31, 33 | 14/51 | 27 | 172 | 21.5 | 1.44 | 0.69–2.97 | p = 0.329 | ELISA |
4 | Dillner et al. [81] | 1998 | HPV 16HPV16, 18, 33 | 31/165 | 18.8 | 35/290 | 12.1 | RR = 2.59, 2.38, 0.66 | 1.17–5.75 0.75–7.58 0.26–1.66 | Yes for HPV 16HPV16 and 18 (p < 0.001) | ELISA |
5 | Korodi et al. [38] | 2005 | HPV 16HPV16, 18, 33 | 107/799 | 13.4 | 363/2596 | 14.0 | OR 0.94 | 0.74–1.19 | No | ELISA |
6 | Adami et al. [40] | 2003 | HPV 16HPV16, 18, 33 | 129/238 | 54 | 105/210 | 50 | OR = 0.7, 0.9, 1.6 | 0.4–1.3, 0.5–1.9, 1.0–2.7 | Yes for HPV 33 | ELISA |
7 | Sutcliffe et al. [44] | 2010 | HPV 16HPV16, 18, 33 | 180/616 | 29.2 | 179/616 | 29 | OR 1.07, 0.87, 1.15 | 0.77–1.48 0.47–1.63 | No | ELISA |
8 | Rosenblatt et al. [48] | 2003 | HPV 16HPV16, 18 | 81/642 | 12.6 | 64/570 | 11.3 | OR = 1.06, 1.36 | 0.71–1.57 0.69–2.69 | No | ELISA |
9 | Strickler et al. [59] | 1998 | HPV 16HPV16 | 1/63 | 1.6 | 7/144 | 4.9 | N/A | N/A | No (p = 0.44) | ELISA |
10 | Hrbacek et al. [60] | 2011 | HPV 16HPV16, 18, 31, 33 | 50/329 | 15.2 | 33/105 | 31 | OR = 0.48, 023, 073, 0.43 | 0.21–1.13 0.09–0.61 0.32–1.83 0.13–1.48 | No | ELISA |
11 | Sutcliffe et al. [61] | 2007 | HPV 16HPV16 | 144/691 | 20.8 | 145/691 | 21 | OR = 0.83, 1.04, 1.14 | 0.57–1.23 0.66–1.64 0.76–1.72 | No | ELISA |
12 | Sitas et al. [65] | 2007 | HPV 16HPV16 | 59/205 | 28.78 | 173/673 | 25.71 | OR 1.33 | 0.86–2.07 | No | ELISA |
13 | Dennis et al. [84] | 2009 | HPV 16HPV16 and 18 | 50/267 | 19 | 45/267 | 17 | OR 1.33 | 0.73–1.75 | No | ELISA |
S/N | Author | OR (95% Cl) | p-Value |
---|---|---|---|
1 | Chen et al. (2011) [25] | p > 0.05 | |
2 | Aghakhani et al. (2011) [26] | - | p > 0.05 |
3 | Khatami et al. (2022) [31] | 2.01 (0.8–5.68) | p = 0.102 |
4 | Atashafrooz et al. (2016) [34] | - | p = 0.413 |
5 | Noda et al. (1998) [37] | - | p = 0.19 |
6 | Wideroff et al. (1996) [42] | 1.36 (0.37, 4.98) | p > 0.05 |
7 | Michopoulou et al. (2014) [46] | 5.52 (0.66–45.6) | p = 0.086 |
8 | Rotola et al. (1992) [32] | - | p > 0.05 |
9 | McNicol and Dodd (1991) [50] | p > 0.05 | |
10 | Ibrahim et al. (1992) [55] | - | p = 0.343 |
11 | Salehi and Hadavi (2012) [58] | p = 0.71 | |
12 | Nahand et al. (2020) [74] | p = 0.078 | |
13 | Periera et al. (2023) [75] | p = 0.487 | |
14 | Ahmed et al. (2023) [79] | p > 0.05 | |
15 | Chang et al. (2023) [80] | p > 0.005 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Opeyemi Bello, R.; Willis-Powell, L.; James, O.; Sharma, A.; Marsh, E.; Ellis, L.; Gaston, K.; Siddiqui, Y. Does Human Papillomavirus Play a Causative Role in Prostate Cancer? A Systematic Review Using Bradford Hill’s Criteria. Cancers 2023, 15, 3897. https://doi.org/10.3390/cancers15153897
Opeyemi Bello R, Willis-Powell L, James O, Sharma A, Marsh E, Ellis L, Gaston K, Siddiqui Y. Does Human Papillomavirus Play a Causative Role in Prostate Cancer? A Systematic Review Using Bradford Hill’s Criteria. Cancers. 2023; 15(15):3897. https://doi.org/10.3390/cancers15153897
Chicago/Turabian StyleOpeyemi Bello, Ridwan, Lily Willis-Powell, Olivia James, Avyay Sharma, Elizabeth Marsh, Libby Ellis, Kevin Gaston, and Yusra Siddiqui. 2023. "Does Human Papillomavirus Play a Causative Role in Prostate Cancer? A Systematic Review Using Bradford Hill’s Criteria" Cancers 15, no. 15: 3897. https://doi.org/10.3390/cancers15153897
APA StyleOpeyemi Bello, R., Willis-Powell, L., James, O., Sharma, A., Marsh, E., Ellis, L., Gaston, K., & Siddiqui, Y. (2023). Does Human Papillomavirus Play a Causative Role in Prostate Cancer? A Systematic Review Using Bradford Hill’s Criteria. Cancers, 15(15), 3897. https://doi.org/10.3390/cancers15153897