Radical Tumor Denervation Activates Potent Local and Global Cancer Treatment
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell Line and Animal Model
2.2. Histochemical Analysis
2.3. Micro-PET/CT Scan
2.4. Characterization of the Tumor Model
2.5. Surgical Procedure
2.6. Experimental Design
2.6.1. Group 1: Normal Control, (n = 6)
2.6.2. Group 2: Microsurgical Tumor Complex (n = 10)
2.6.3. Group 3: Vascular Tumor Complex (n = 10)
2.6.4. Group 4: Neurovascular Tumor Complex (n = 16)
2.6.5. Group 5: Complete Destruction of the Natural Tissue Continuity in 2-Steps, without Microvascular Anastomoses (n = 10)
2.6.6. Group 6: Microsurgical Tumor Complex, Membrane Sham Control Group (n = 6)
2.6.7. Group 7: Vascular Tumor Complex, Membrane Sham Control Group, (n = 6)
2.6.8. Group 8: 2-Step Destruction of Natural Tissue Continuity, Membrane Sham Control Group (n = 6)
2.6.9. Group 9: Tumor Complex Reperfusion Ischemia Sham Control (n = 6)
2.6.10. Group 10: Microsurgical Tumor Complex with Multiple Tumors (n = 7)
2.6.11. Group 11: Neurovascular Tumor Complex with Multiple Tumors (n = 6)
2.7. Statistical Analysis
3. Results
3.1. Radical and Persistent Denervation Constantly Leads to Primary Tumor Regression
3.2. High Rate of LTS following Primary Tumor Regression
3.3. The Crucial Role of Microvascular Anastomosis
3.4. The Importance of Natural Tissue Continuity between the Host and Tumor Complex
3.5. The Effect of Marginal Revascularization/Reinnervation Process
3.6. Possible Role of Surgical Traumatic Severity on Survival
3.7. Partial vs. Radical and Persistent Denervation
3.8. Multiple Tumor Experiment: Regression of the Remote, Non-Operated Tumors
4. Discussion
4.1. Why Wound Healing in Cancerous Tumors Is Always Triggered, but Never Completed?
4.2. Nerves: The Key Healing Promoters, Do They Do the Same in Tumors?
4.3. Why Nerves Cannot Grow Back into Microsurgically Treated Tumors?
4.4. Could Blood Flow Changes Be Responsible for Primary Tumor Regression?
4.5. Radical and Persistent Denervation or Denervation Alone?
4.6. Are Microsurgical Transplants the Manifestation of Neural-Target Interdependence?
4.7. Can a Tumor Entrapped into a Microsurgical Flap Eventually Survive?
4.8. Does Neuro-Immune Interplay Leverage Cancer Progression and Metastasis?
4.9. Abscopal Effect Induction: Can We Turn Cancer against Itself?
4.10. Do Nerves Interfere with the Abscopal Response, at All?
5. Conclusions and Perspectives
- Tumor denervation must be radical (100%), as well as persistent, otherwise treatment failure will occur.
- Local and global cancer treatment can be induced without tumor removal.
- Effective local treatment is a prerequisite for the triggering and propagation of the abscopal effect with an anticipated rate, strength, and reproducibility.
- If denervation is prompt and radical, there is no need for it to be permanent, but a short “denervation window” might be sufficient to induce an effective global treatment.
- Cancer treatment may be achieved without systemic toxicity, and in a fertility-preserving way.
- It provides direct evidence in vivo and consolidates the firm neuro–tumoral cross-talk, as has been speculated by many scientists for many centuries.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Riggi, N.; Aguet, M.; Stamenkovic, I. Cancer Metastasis: A Reappraisal of Its Underlying Mechanisms and Their Relevance to Treatment. Annu. Rev. Pathol. Mech. Dis. 2018, 13, 117–140. [Google Scholar] [CrossRef]
- Fares, J.; Fares, M.Y.; Khachfe, H.H.; Salhab, H.A.; Fares, Y. Molecular Principles of Metastasis: A Hallmark of Cancer Revisited. Signal Transduct. Target. Ther. 2020, 5, 28. [Google Scholar] [CrossRef]
- Correa, A.F.; Smaldone, M.C. Melancholia and Cancer: The Bladder Cancer Narrative. Cancer 2018, 124, 3080–3083. [Google Scholar] [CrossRef] [Green Version]
- Patterson, J.T.; Olson, J.S. The History of Cancer: An Annotated Bibliography. J. Am. Hist. 1991, 77, 1475. [Google Scholar] [CrossRef]
- Smith, J.B.; Bishop, V.L.M.; Francis, I.C.; Kos, S.; Kneale, K.A. Ophthalmic Manifestations of Perineural Spread of Facial Skin Malignancy. Aust. N. Z. J. Ophthalmol. 1990, 18, 197–205. [Google Scholar] [CrossRef]
- Levi-Montalcini, R. Effects of Mouse Tumor Transplantation on the Nervous System. Ann. N. Y. Acad. Sci. 1952, 55, 330–344. [Google Scholar] [CrossRef]
- The Spread of Tumors in the Human Body. Arch. Intern. Med. 1934, 54. [CrossRef]
- Batsakis, J.G. Nerves and Neurotropic Carcinomas. Available online: https://pubmed.ncbi.nlm.nih.gov/4026129/ (accessed on 9 February 2021).
- Baraldi, J.H.; Martyn, G.V.; Shurin, G.V.; Shurin, M.R. Tumor Innervation: History, Methodologies, and Significance. Cancers 2022, 14, 1979. [Google Scholar] [CrossRef]
- Jobert, M. New Treatment of Cancer. Lancet 1840, 34, 65–112. [Google Scholar] [CrossRef]
- De Sousa Pereira, A. A Basis for Sympathectomy for Cancer of the Cervix Uteri. Arch. Surg. 1946, 52, 260–285. [Google Scholar] [CrossRef]
- Barnbrook, D. Pheochromocytoma—An Alternative Surgical Approach. Can. Med. Assoc. J. 1953, 68, 245–247. [Google Scholar]
- Batkin, S.; Piette, L.H.; Wildman, E. Effect of Muscle Denervation on Growth of Transplanted Tumor in Mice. Proc. Natl. Acad. Sci. USA 1970, 67, 1521–1527. [Google Scholar] [CrossRef] [PubMed]
- Kaminishi, M.; Shimizu, N.; Shiomoyama, S.; Yamaguchi, H.; Ogawa, T.; Sakai, S.; Kuramoto, S.; Oohara, T. Etiology of Gastric Remnant Cancer with Special Reference to the Effects of Denervation of the Gastric Mucosa. Cancer 1995, 75, 1490–1496. [Google Scholar] [CrossRef] [PubMed]
- Partecke, L.I.; Käding, A.; Trung, D.N.; Diedrich, S.; Sendler, M.; Weiss, F.; Kühn, J.P.; Mayerle, J.; Beyer, K.; von Bernstorff, W.; et al. Subdiaphragmatic Vagotomy Promotes Tumor Growth and Reduces Survival via TNFα in a Murine Pancreatic Cancer Model. Oncotarget 2017, 8, 22501–22512. [Google Scholar] [CrossRef] [Green Version]
- Erin, N.; Zhao, W.; Bylander, J.; Chase, G.; Clawson, G. Capsaicin-Induced Inactivation of Sensory Neurons Promotes a More Aggressive Gene Expression Phenotype in Breast Cancer Cells. Breast Cancer Res. Treat. 2006, 99, 351–364. [Google Scholar] [CrossRef]
- Ayala, G.E.; Dai, H.; Powell, M.; Li, R.; Ding, Y.; Wheeler, T.M.; Shine, D.; Kadmon, D.; Thompson, T.; Miles, B.J.; et al. Cancer-Related Axonogenesis and Neurogenesis in Prostate Cancer. Clin. Cancer Res. 2008, 14, 7593–7603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zahalka, A.H.; Arnal-Estapé, A.; Maryanovich, M.; Nakahara, F.; Cruz, C.D.; Finley, L.W.S.S.; Frenette, P.S. Adrenergic Nerves Activate an Angio-Metabolic Switch in Prostate Cancer. Science 2017, 358, 321–326. [Google Scholar] [CrossRef] [Green Version]
- Hunt, P.J.; Kabotyanski, K.E.; Calin, G.A.; Xie, T.; Myers, J.N.; Amit, M. Interrupting Neuron—Tumor Interactions to Overcome Treatment Resistance. Cancers 2020, 12, 3741. [Google Scholar] [CrossRef]
- Bapat, A.A.; Hostetter, G.; Von Hoff, D.D.; Han, H. Perineural Invasion and Associated Pain in Pancreatic Cancer. Nat. Rev. Cancer 2011, 11, 695–707. [Google Scholar] [CrossRef]
- Cole, S.W.; Nagaraja, A.S.; Lutgendorf, S.K.; Green, P.A.; Sood, A.K. Sympathetic Nervous System Regulation of the Tumour Microenvironment; Nature Publishing Group: London, UK, 2015; Volume 15, pp. 563–572. [Google Scholar]
- Boilly, B.; Faulkner, S.; Jobling, P.; Hondermarck, H. Nerve Dependence: From Regeneration to Cancer; Cell Press: Palo Alto, CA, USA, 2017; Volume 31, pp. 342–354. [Google Scholar]
- Magnon, C.; Hondermarck, H. The Neural Addiction of Cancer. Nat. Rev. Cancer 2023, 23, 317–334. [Google Scholar] [CrossRef] [PubMed]
- Winkler, F.; Venkatesh, H.S.; Amit, M.; Batchelor, T.; Demir, I.E.; Deneen, B.; Gutmann, D.H.; Hervey-Jumper, S.; Kuner, T.; Mabbott, D.; et al. Cancer Neuroscience: State of the Field, Emerging Directions. Cell 2023, 186, 1689–1707. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, B.S.; Schumacher, U.; Kaiserling, E. Are Tumours Innervated? Immunohistological lnvestigations Using Antibodies against the Neuronal Marker Protein Gene Product 9.5 (PGP 9.5) in Benign, Malignant and Experimental Tumours. Tumor Biol. 1994, 15, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, B.S.; Schumacher, U.; Stauber, V.V.; Kaiserling, E. Are Breast Tumours Innervated? Immunohistological Investigations Using Antibodies against the Neuronal Marker Protein Gene Product 9.5 (PGP 9.5) in Benign and Malignant Breast Lesions. Eur. J. Cancer 1994, 30, 1100–1103. [Google Scholar] [CrossRef]
- Terada, T.; Matsunaga, Y. S-100-Positive Nerve Fibers in Hepatocellular Carcinoma and Intrahepatic Cholangiocarcinoma: An Immunohistochemical Study. Pathol. Int. 2001, 51, 89–93. [Google Scholar] [CrossRef]
- Magnon, C.; Hall, S.J.; Lin, J.; Xue, X.; Gerber, L.; Freedland, S.J.; Frenette, P.S. Autonomic Nerve Development Contributes to Prostate Cancer Progression. Science 2013, 341, 1236361. [Google Scholar] [CrossRef] [Green Version]
- Zhao, C.M.; Hayakawa, Y.; Kodama, Y.; Muthupalani, S.; Westphalen, C.B.; Andersen, G.T.; Flatberg, A.; Johannessen, H.; Friedman, R.A.; Renz, B.W.; et al. Denervation Suppresses Gastric Tumorigenesis. Sci. Transl. Med. 2014, 6, 1458–1473. [Google Scholar] [CrossRef] [Green Version]
- Peterson, S.C.; Eberl, M.; Vagnozzi, A.N.; Belkadi, A.; Veniaminova, N.A.; Verhaegen, M.E.; Bichakjian, C.K.; Ward, N.L.; Dlugosz, A.A.; Wong, S.Y. Basal Cell Carcinoma Preferentially Arises from Stem Cells within Hair Follicle and Mechanosensory Niches. Cell Stem Cell 2015, 16, 400–412. [Google Scholar] [CrossRef] [Green Version]
- Al-Wadei, H.A.; Al-Wadei, M.H.; Schuller, H.M. Prevention of Pancreatic Cancer by the Beta-Blocker Propranolol. Anticancer Drugs 2009, 20, 477. [Google Scholar] [CrossRef] [Green Version]
- Powe, D.G.; Voss, M.J.; Zänker, K.S.; Habashy, H.O.; Green, A.R.; Ellis, I.O.; Entschladen, F. Beta-Blocker Drug Therapy Reduces Secondary Cancer Formation in Breast Cancer and Improves Cancer Specific Survival. Oncotarget 2010, 1, 628. [Google Scholar] [CrossRef]
- Coarfa, C.; Florentin, D.; Putluri, N.R.; Ding, Y.; Au, J.; He, D.; Ragheb, A.; Frolov, A.; Michailidis, G.; Lee, M.J.; et al. Influence of the Neural Microenvironment on Prostate Cancer. Prostate 2018, 78, 128–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaminishi, M.; Shimizu, N.; Shimoyama, S.; Yamaguchi, H.; Tsuji, E.; Aoki, F.; Nomura, S.; Yoshikawa, A.; Kuramoto, S.; Oohara, T.; et al. Denervation Promotes the Development of Cancer-Related Lesions in the Gastric Remnant. J. Clin. Gastroenterol. 1997, 25, S129–S134. [Google Scholar] [CrossRef] [PubMed]
- Erin, N.; Akdas Barkan, G.; Harms, J.F.; Clawson, G.A. Vagotomy Enhances Experimental Metastases of 4THMpc Breast Cancer Cells and Alters Substance P Level. Regul. Pept. 2008, 151, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Herndon, J.M.; Sojka, D.K.; Kim, K.W.; Knolhoff, B.L.; Zuo, C.; Cullinan, D.R.; Luo, J.; Bearden, A.R.; Lavine, K.J.; et al. Tissue-Resident Macrophages in Pancreatic Ductal Adenocarcinoma Originate from Embryonic Hematopoiesis and Promote Tumor Progression. Immunity 2017, 47, 323–338. [Google Scholar] [CrossRef]
- Erin, N.; Boyer, P.J.; Bonneau, R.H.; Clawson, G.A.; Welch, D.R. Capsaicin-Mediated Denervation of Sensory Neurons Promotes Mammary Tumor Metastasis to Lung and Heart. Anticancer Res. 2004, 24, 1003–1010. [Google Scholar]
- Clarke, E.; Jacyna, L.S. Nineteenth-Century Origins of Neuroscientific Concepts; University of California Press: Berkeley, CA, USA, 1987. [Google Scholar]
- Crowe, R.; Mitsou, J.; McGrouther, D.A.; Burnstock, G. An Increase in the Growth of Hair Associated with Hyperinnervation of the Underlying Vessels in Rabbit Skin. Neurosci. Lett. 1993, 161, 105–108. [Google Scholar] [CrossRef]
- Richards, A.M.; Mitsou, J.; Floyd, D.C.; Terenghi, G.; McGrouther, D.A. Neural Innervation and Healing. Lancet 1997, 350, 339–340. [Google Scholar] [CrossRef]
- Zahalka, A.H.; Frenette, P.S. Nerves in Cancer. Nat. Rev. Cancer 2020, 20, 143–157. [Google Scholar] [CrossRef]
- Wang, H.; Zheng, Q.; Lu, Z.; Wang, L.; Ding, L.; Xia, L.; Zhang, H.; Wang, M.; Chen, Y.; Li, G. Role of the Nervous System in Cancers: A Review. Cell Death Discov. 2021, 7, 76. [Google Scholar] [CrossRef]
- Mutlu, L.; Manavella, D.D.; Gullo, G.; McNamara, B.; Santin, A.D.; Patrizio, P. Endometrial Cancer in Reproductive Age: Fertility-Sparing Approach and Reproductive Outcomes. Cancers 2022, 14, 5187. [Google Scholar] [CrossRef]
- Hanahan, D.; Weinberg, R.A. The Hallmarks of Cancer. Cell 2000, 100, 57–70. [Google Scholar] [CrossRef] [Green Version]
- Schäfer, M.; Werner, S. Cancer as an Overhealing Wound: An Old Hypothesis Revisited. Nat. Rev. Mol. Cell Biol. 2008, 9, 628–638. [Google Scholar] [CrossRef] [PubMed]
- Wong, A.Y.; Whited, J.L. Parallels between Wound Healing, Epimorphic Regeneration and Solid Tumors. Development (Cambridge) 2020, 147, dev181636. [Google Scholar] [CrossRef]
- Flier, J.S.; Underhill, L.H.; Dvorak, H.F. Tumors: Wounds That Do Not Heal. N. Engl. J. Med. 1986, 315, 1650–1659. [Google Scholar] [CrossRef]
- MacCarthy-Morrogh, L.; Martin, P. The Hallmarks of Cancer Are Also the Hallmarks of Wound Healing. Sci. Signal. 2020, 13, eaay8690. [Google Scholar] [CrossRef]
- Caddy, J.; Wilanowski, T.; Darido, C.; Dworkin, S.; Ting, S.B.; Zhao, Q.; Rank, G.; Auden, A.; Srivastava, S.; Papenfuss, T.A.; et al. Epidermal Wound Repair Is Regulated by the Planar Cell Polarity Signaling Pathway. Dev. Cell 2010, 19, 138–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marín, D.; Martín, M.; Sabater, B. Entropy Decrease Associated to Solute Compartmentalization in the Cell. Biosystems 2009, 98, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Robert, J. Comparative Study of Tumorigenesis and Tumor Immunity in Invertebrates and Nonmammalian Vertebrates. Dev. Comp. Immunol. 2010, 34, 915–925. [Google Scholar] [CrossRef] [Green Version]
- Howlader, N.; Noone, A.M.; Krapcho, M.; Miller, D.; Brest, A.; Yu, M.; Ruhl, J.; Tatalovich, Z.; Mariotto, A.; Lewis, D.R.; et al. (Eds.) SEER Cancer Statistics Review, 1975–2016; National Cancer Institute: Bethesda, MD, USA, 2016.
- Effron, M.; Griner, L.; Benirschke, K. Nature and Rate of Neoplasia Found in Captive Wild Mammals, Birds, and Reptiles at Necropsy. JNCI J. Natl. Cancer Inst. 1977, 59, 185–198. [Google Scholar] [CrossRef]
- Van De Water, L.; French-Constant, C.; Brown, L. Fibronectin Expression during Cutaneous Wound Healing. In Fetal Wound Healing; Adzick, N.S., Longaker, M.T., Eds.; Elsevier: New York, NY, USA, 1992; pp. 281–301. [Google Scholar]
- Carmeliet, P. Mechanisms of Angiogenesis and Arteriogenesis. Nat. Med. 2000, 6, 389–395. [Google Scholar] [CrossRef]
- Martin, P.; Parkhurst, S.M. Parallels between Tissue Repair and Embryo Morphogenesis. Development 2004, 131, 3021–3034. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Lin, F.; Xing, K.; He, X. The Reverse Evolution from Multicellularity to Unicellularity during Carcinogenesis. Nat. Commun. 2015, 6, 6367. [Google Scholar] [CrossRef] [Green Version]
- Todd, M.E. Trophic Interactions between Rat Nerves and Blood Vessels in Denervated Peripheral Arteries and in Anterior Eye Chamber Transplants. Circ. Res. 1986, 58, 641–652. [Google Scholar] [CrossRef] [PubMed]
- Karanth, S.S.; Dhital, S.; Springall, D.R.; Polak, J.M. Reinnervation and Neuropeptides in Mouse Skin Flaps. J. Auton. Nerv. Syst. 1990, 31, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Burnstock, G. Physiology and Pathophysiology of Purinergic Neurotransmission. Physiol. Rev. 2007, 87, 1471–1483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dvorak, H.F. Tumors: Wounds That Do Not Heal—Redux. Cancer Immunol. Res. 2015, 3, 1–11. [Google Scholar] [CrossRef]
- Burnet, F.M. The Concept of Immunological Surveillance. Prog. Exp. Tumor Res. Fortschr. Exp. Tumorforschung. Prog. Rech. Exp. Tumeurs 1970, 13, 1–27. [Google Scholar]
- Basson, M.D.; Burney, R.E. Defective Wound Healing in Patients with Paraplegia and Quadriplegia. Available online: https://pubmed.ncbi.nlm.nih.gov/7089844/ (accessed on 9 February 2021).
- Cheng, C.; Singh, V.; Krishnan, A.; Kan, M.; Martinez, J.A.; Zochodne, D.W. Loss of Innervation and Axon Plasticity Accompanies Impaired Diabetic Wound Healing. PLoS ONE 2013, 8, e75877. [Google Scholar] [CrossRef] [Green Version]
- Li, A.K.C.; Koroly, M.J.; Schattenkerk, M.E.; Malt, R.A.; Young, M. Nerve Growth Factor: Acceleration of the Rate of Wound Healing in Mice. Proc. Natl. Acad. Sci. USA 1980, 77, 4379–4381. [Google Scholar] [CrossRef]
- Engin, C.; Demirkan, F.; Ayhan, S.; Atabay, K.; Baran, N.K. Delayed Effect of Denervation on Wound Contraction in Rat Skin. Plast. Reconstr. Surg. 1996, 98, 1063–1067. [Google Scholar] [CrossRef]
- Ekstrand, A.J.; Cao, R.; Björndahl, M.; Nyström, S.; Jönsson-Rylander, A.C.; Hassani, H.; Hallberg, B.; Nordlander, M.; Cao, Y. Deletion of Neuropeptide Y (NPY) 2 Receptor in Mice Results in Blockage of NPY-Induced Angiogenesis and Delayed Wound Healing. Proc. Natl. Acad. Sci. USA 2003, 100, 6033–6038. [Google Scholar] [CrossRef] [PubMed]
- Fukai, T.; Takeda, A.; Uchinuma, E. Wound Healing in Denervated Rat Skin. Wound Repair Regen. 2005, 13, 175–180. [Google Scholar] [CrossRef] [PubMed]
- Parfejevs, V.; Debbache, J.; Shakhova, O.; Schaefer, S.M.; Glausch, M.; Wegner, M.; Suter, U.; Riekstina, U.; Werner, S.; Sommer, L. Injury-Activated Glial Cells Promote Wound Healing of the Adult Skin in Mice. Nat. Commun. 2018, 9, 236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Entschladen, F.; Palm, D.; Lang, K.; Drell, T.L., IV; Zaenker, K.S. Neoneurogenesis: Tumors May Initiate Their Own Innervation by the Release of Neurotrophic Factors in Analogy to Lymphangiogenesis and Neoangiogenesis. Med. Hypotheses 2006, 67, 33–35. [Google Scholar] [CrossRef] [PubMed]
- Banh, R.S.; Biancur, D.E.; Yamamoto, K.; Sohn, A.S.W.; Walters, B.; Kuljanin, M.; Gikandi, A.; Wang, H.; Mancias, J.D.; Schneider, R.J.; et al. Neurons Release Serine to Support MRNA Translation in Pancreatic Cancer. Cell 2020, 183, 1202–1218.e25. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.; Sivakumar, S.; Bednarsch, J.; Wiltberger, G.; Kather, J.N.; Niehues, J.; de Vos-Geelen, J.; Valkenburg-van Iersel, L.; Kintsler, S.; Roeth, A.; et al. Nerve Fibers in the Tumor Microenvironment in Neurotropic Cancer—Pancreatic Cancer and Cholangiocarcinoma. Oncogene 2020, 40, 899–908. [Google Scholar] [CrossRef]
- Ketterer, K.; Rao, S.; Friess, H.; Weiss, J.; Büchler, M.W.; Korc, M. Reverse Transcription-PCR Analysis of Laser-Captured Cells Points to Potential Paracrine and Autocrine Actions of Neurotrophins in Pancreatic Cancer. Clin. Cancer Res. 2003, 9, 5127. [Google Scholar]
- Jobling, P.; Pundavela, J.; Oliveira, S.M.R.; Roselli, S.; Walker, M.M.; Hondermarck, H. Nerve-Cancer Cell Cross-Talk: A Novel Promoter of Tumor Progression. Cancer Res. 2015, 75, 1777–1781. [Google Scholar] [CrossRef] [Green Version]
- Amit, M.; Takahashi, H.; Dragomir, M.P.; Lindemann, A.; Gleber-Netto, F.O.; Pickering, C.R.; Anfossi, S.; Osman, A.A.; Cai, Y.; Wang, R.; et al. Loss of P53 Drives Neuron Reprogramming in Head and Neck Cancer. Nature 2020, 578, 449–454. [Google Scholar] [CrossRef]
- Shi, D.D.; Guo, J.A.; Hoffman, H.I.; Su, J.; Mino-Kenudson, M.; Barth, J.L.; Schenkel, J.M.; Loeffler, J.S.; Shih, H.A.; Hong, T.S.; et al. Therapeutic Avenues for Cancer Neuroscience: Translational Frontiers and Clinical Opportunities. Lancet Oncol. 2022, 23, e62–e74. [Google Scholar] [CrossRef]
- Roda, N.; Blandano, G.; Pelicci, P.G. Blood Vessels and Peripheral Nerves as Key Players in Cancer Progression and Therapy Resistance. Cancers 2021, 13, 4471. [Google Scholar] [CrossRef]
- Li, X.; Peng, X.; Yang, S.; Wei, S.; Fan, Q.; Liu, J.; Yang, L.; Li, H. Targeting Tumor Innervation: Premises, Promises, and Challenges. Cell Death Discov. 2022, 8, 131. [Google Scholar] [CrossRef]
- Cervantes-Villagrana, R.D.; Albores-García, D.; Cervantes-Villagrana, A.R.; García-Acevez, S.J. Tumor-Induced Neurogenesis and Immune Evasion as Targets of Innovative Anti-Cancer Therapies. Signal Transduct. Target. Ther. 2020, 5, 99. [Google Scholar] [CrossRef] [PubMed]
- Raju, B.; Haug, S.R.; Ibrahim, S.O.; Heyeraas, K.J. Sympathectomy Decreases Size and Invasiveness of Tongue Cancer in Rats. Neuroscience 2007, 149, 715–725. [Google Scholar] [CrossRef] [PubMed]
- Saloman, J.L.; Albers, K.M.; Rhim, A.D.; Davis, B.M. Can Stopping Nerves, Stop Cancer? Trends Neurosci. 2016, 39, 880–889. [Google Scholar] [CrossRef] [Green Version]
- Reavis, H.D.; Chen, H.I.; Drapkin, R. Tumor Innervation: Cancer Has Some Nerve. Trends Cancer 2020, 6, 1059–1067. [Google Scholar] [CrossRef]
- Conceição, F.; Sousa, D.M.; Paredes, J.; Lamghari, M. Sympathetic Activity in Breast Cancer and Metastasis: Partners in Crime. Bone Res. 2021, 9, 9. [Google Scholar] [CrossRef] [PubMed]
- Zitvogel, L.; Tesniere, A.; Kroemer, G. Cancer despite Immunosurveillance: Immunoselection and Immunosubversion. Nat. Rev. Immunol. 2006, 6, 715–727. [Google Scholar] [CrossRef] [PubMed]
- Whiteside, T.L. The Tumor Microenvironment and Its Role in Promoting Tumor Growth. Oncogene 2008, 27, 5904–5912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, R.; Fan, C.; Shangguan, W.; Liu, Y.; Li, Y.; Shang, Y.; Yin, D.; Zhang, S.; Huang, Q.; Li, X.; et al. Neurons Generated from Carcinoma Stem Cells Support Cancer Progression. Signal Transduct. Target. Ther. 2017, 2, 16036. [Google Scholar] [CrossRef] [Green Version]
- Murray, J.G.; Thompson, J.W. Collateral Sprouting in Response to Injury of the Autonomic Nervous System, and Its Consequences. Br. Med. Bull. 1957, 13, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Martin, P. Wound Healing-Aiming for Perfect Skin Regeneration. Science 1997, 276, 75–81. [Google Scholar] [CrossRef]
- Waris, T. Degeneration and Regeneration of Nerves in a Dorsal Skin Flap in the Rat. Scand. J. Plast. Reconstr. Surg. Hand Surg. 1978, 12, 95–103. [Google Scholar] [CrossRef]
- Waris, T.; Hukki, J.; Lähteenmäki, T.; Husa, T.; Bäck, N.; v Smitten, K. Degeneration and Regrowth of Adrenergic Nerves after Microvascular Anastomosis: A Fluorescence Histochemical Study on End-to-End Anastomoses of Femoral Vessels in the Rat. Scand. J. Plast. Reconstr. Surg. Hand Surg. 1988, 22, 211–216. [Google Scholar] [CrossRef] [PubMed]
- Manek, S.; Terenghi, G.; Shurey, C.; Nishikawa, H.; Green, C.J.; Polak, J.M. Neovascularisation Precedes Neural Changes in the Rat Groin Skin Flap Following Denervation: An Immunohistochemical Study. Br. J. Plast. Surg. 1993, 46, 48–55. [Google Scholar] [CrossRef]
- Lähteenmäki, T. The Regeneration of Adrenergic Nerves in a Free Microvascular Groin Flap in the Rat. Scand. J. Plast. Reconstr. Surg. Hand Surg. 1986, 20, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Ranne, J.; Kalimo, H.; Pyykkö, K.; Scheinin, M.; Aaltonen, V.; Niinikoski, J.; Laato, M. Wound Healing in Denervated Rat Groin Skin Flap. Eur. Surg. Res. 2000, 32, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Ranne, J.O.; Lähteenmäki, P.T.; Vaalasti, A.; Waris, T.H.; Lindholm, T.S. Reinnervation after Nerve Suture in Rat Groin Flaps. Microsurgery 1998, 18, 1–5. [Google Scholar] [CrossRef]
- Numata, T.; Iida, Y.; Shiba, K.; Hanazawa, T.; Terada, N.; Nagata, H.; Konno, A. Usefulness of Color Doppler Sonography for Assessing Hemodynamics of Free Flaps for Head and Neck Reconstruction. Ann. Plast. Surg. 2002, 48, 607–612. [Google Scholar] [CrossRef]
- Pabst, A.M.; Kämmerer, P.W.; Krüger, M.; Jäger, L.; Ackermann, M. Vascular Architecture in Free Flaps: Analysis of Vessel Morphology and Morphometry in Murine Free Flaps. Microvasc. Res. 2018, 118, 128–136. [Google Scholar] [CrossRef]
- Rauh, A.; Henn, D.; Nagel, S.S.; Bigdeli, A.K.; Kneser, U.; Hirche, C. Continuous Video-Rate Laser Speckle Imaging for Intra- and Postoperative Cutaneous Perfusion Imaging of Free Flaps. J. Reconstr. Microsurg. 2019, 35, 489–498. [Google Scholar] [CrossRef] [PubMed]
- Anderson, C.R.; McLachlan, E.M. The Time Course of the Development of the Sympathetic Innervation of the Vasculature of the Rat Tail. J. Auton. Nerv. Syst. 1991, 35, 117–132. [Google Scholar] [CrossRef]
- Waris, T.; Kyosola, K.; Partanen, S. The Adrenergic Innervation of Arteriovenous Anastomoses in the Subcutaneous Fascia of Rat Skin. Scand. J. Plast. Reconstr. Surg. Hand Surg. 1980, 14, 215–220. [Google Scholar] [CrossRef]
- McKee, N.H.; Clarke, H.M.; Nigra, C.A.L.; Manktelow, R.T. A Study of Blood Flow and Pressure in the Vessels Supplying a Free Flap. Available online: https://pubmed.ncbi.nlm.nih.gov/7053512/ (accessed on 11 February 2021).
- Siemionow, M.; Andreasen, T.; Chick, L.; Lister, G. Effect of Muscle Flap Denervation on Flow Hemodynamics: A New Model for Chronic in Vivo Studies. Microsurgery 1994, 15, 891–894. [Google Scholar] [CrossRef] [PubMed]
- Lorenzetti, F.; Salmi, A.; Ahovuo, J.; Tukiainen, E.; Asko-Seljavaara, S. Postoperative Changes in Blood Flow in Free Muscle Flaps: A Prospective Study. Microsurgery 1999, 19, 196–199. [Google Scholar] [CrossRef]
- Finseth, F.; Cutting, C. An Experimental Neurovascular Island Skin Flap for the Study of the Delay Phenomenon. Plast. Reconstr. Surg. 1978, 61, 412–420. [Google Scholar] [CrossRef] [PubMed]
- Siemionow, M.; Andreasen, T.; Lister, G. Microcirculatory Response to Surgical Trauma in Composite-Tissue Transfer. J. Reconstr. Microsurg. 1995, 11, 7–13. [Google Scholar] [CrossRef]
- Romeo, H.E.; Colombo, L.L.; Esquifino, A.I.; Rosenstein, R.E.; Chuluyan, H.E.; Cardinali, D.P. Slower Growth of Tumours in Sympathetically Denervated Murine Skin. J. Auton. Nerv. Syst. 1991, 32, 159–164. [Google Scholar] [CrossRef]
- Papageorgiou, A.; Trontzos, C.; Kallistratos, H.; Kokkas, B.; Grigoriadis, N.; Grammaticos, P. Slowing Growth and Histology Changes in Lewis Lung Carcinoma Implanted in a Partly Denervated Muscle. Cancer Investig. 2003, 21, 869–872. [Google Scholar] [CrossRef]
- Saloman, J.L.; Albers, K.M.; Li, D.; Hartman, D.J.; Crawford, H.C.; Muha, E.A.; Rhim, A.D.; Davis, B.M. Ablation of Sensory Neurons in a Genetic Model of Pancreatic Ductal Adenocarcinoma Slows Initiation and Progression of Cancer. Proc. Natl. Acad. Sci. USA 2016, 113, 3078–3083. [Google Scholar] [CrossRef]
- Kappos, E.A.; Engels, P.E.; Tremp, M.; Sieber, P.K.; von Felten, S.; Madduri, S.; Meyer zu Schwabedissen, M.; Fischmann, A.; Schaefer, D.J.; Kalbermatten, D.F. Denervation Leads to Volume Regression in Breast Cancer. J. Plast. Reconstr. Aesthetic Surg. 2018, 71, 833–839. [Google Scholar] [CrossRef] [Green Version]
- Lillemoe, K.D.; Cameron, J.L.; Kaufman, H.S.; Yeo, C.J.; Pitt, H.A.; Sauter, P.K. Chemical Splanchnicectomy in Patients with Unresectable Pancreatic Cancer: A Prospective Randomized Trial. Ann. Surg. 1993, 217, 447–457. [Google Scholar] [CrossRef]
- Venier, N.A.; Yamamoto, T.; Sugar, L.M.; Adomat, H.; Fleshner, N.E.; Klotz, L.H.; Venkateswaran, V. Capsaicin Reduces the Metastatic Burden in the Transgenic Adenocarcinoma of the Mouse Prostate Model. Prostate 2015, 75, 1300–1311. [Google Scholar] [CrossRef] [PubMed]
- Szpunar, M.J.; Belcher, E.K.; Dawes, R.P.; Madden, K.S. Sympathetic Innervation, Norepinephrine Content, and Norepinephrine Turnover in Orthotopic and Spontaneous Models of Breast Cancer. Brain Behav. Immun. 2016, 53, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Renz, B.W.; Takahashi, R.; Tanaka, T.; Macchini, M.; Hayakawa, Y.; Dantes, Z.; Maurer, H.C.; Chen, X.; Jiang, Z.; Westphalen, C.B.; et al. Β2 Adrenergic-Neurotrophin Feedforward Loop Promotes Pancreatic Cancer. Cancer Cell 2018, 33, 75–90.e7. [Google Scholar] [CrossRef] [Green Version]
- Polli-Lopes, A.C.; Zucoloto, S.; De Queirós Cunha, F.; Alves Da Silva Figueiredo, L.; Garcia, S.B. Myenteric Denervation Reduces the Incidence of Gastric Tumors in Rats. Cancer Lett. 2003, 190, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Renz, B.W.; Tanaka, T.; Sunagawa, M.; Takahashi, R.; Jiang, Z.; Macchini, M.; Dantes, Z.; Valenti, G.; White, R.A.; Middelhoff, M.A.; et al. Cholinergic Signaling via Muscarinic Receptors Directly and Indirectly Suppresses Pancreatic Tumorigenesis and Cancer Stemness. Cancer Discov. 2018, 8, 1458–1473. [Google Scholar] [CrossRef] [Green Version]
- Prazeres, P.H.D.M.; Leonel, C.; Silva, W.N.; Rocha, B.G.S.; Santos, G.S.P.; Costa, A.C.; Picoli, C.C.; Sena, I.F.G.; Gonçalves, W.A.; Vieira, M.S.; et al. Ablation of Sensory Nerves Favours Melanoma Progression. J. Cell. Mol. Med. 2020, 24, 9574–9589. [Google Scholar] [CrossRef]
- Gidron, Y.; Perry, H.; Glennie, M. Does the Vagus Nerve Inform the Brain about Preclinical Tumours and Modulate Them? Lancet Oncol. 2005, 6, 245–248. [Google Scholar] [CrossRef]
- Hermanson, A.; Dalsgaard, C.J.; Arnander, C.; Lindblom, U. Sensibility and Cutaneous Reinnervation in Free Flaps. Plast. Reconstr. Surg. 1987, 79, 422–425. [Google Scholar] [CrossRef]
- Baas, M.; Duraku, L.S.; Corten, E.M.L.; Mureau, M.A.M. A Systematic Review on the Sensory Reinnervation of Free Flaps for Tongue Reconstruction: Does Improved Sensibility Imply Functional Benefits? J. Plast. Reconstr. Aesthet. Surg. 2015, 68, 1025–1035. [Google Scholar] [CrossRef]
- Becker, M.H.J.; Wermter, T.B.; Brenner, B.; Walter, G.F.; Berger, A. Comparison of Clinical Performance, Histology and Single-Fiber Contractility in Free Neurovascular Muscle Flaps. J. Reconstr. Microsurg. 2000, 16, 525–534. [Google Scholar] [CrossRef]
- Wettstein, R.; Largo, R.D.; Raffoul, W.; Schumacher, R.; Schaefer, D.J.; Kalbermatten, D.F. Laser Scanning Evaluation of Atrophy after Autologous Free Muscle Transfer. Ann. Plast. Surg. 2014, 72, 680–684. [Google Scholar] [CrossRef] [PubMed]
- De Boer, H.H.; Wood, M.B.; Hermans, J. Reconstruction of Large Skeletal Defects by Vascularized Fibula Transfer—Factors That Influenced the Outcome of Union in 62 Cases. Int. Orthop. 1990, 14, 121–128. [Google Scholar] [CrossRef]
- Itoh, Y.; Sasaki, T.; Ishiguro, T.; Uchinishi, K.; Yabe, Y.; Fukuda, H. Transfer of Latissimus Dorsi to Replace a Paralysed Anterior Deltoid. A New Technique Using an Inverted Pedicled Graft. J. Bone Jt. Surg.-Ser. B 1987, 69, 647–651. [Google Scholar] [CrossRef]
- Ihara, K.; Kido, K.; Shigetomi, M.; Kawai, S.; Doi, K.; Sakai, K. Experience with the Pedicled Latissimus Dorsi Flap for Finger Reconstruction. J. Hand Surg. 2000, 25, 668–673. [Google Scholar] [CrossRef]
- Sinis, N.; Lamia, A.; Gudrun, H.; Schoeller, T.; Werdin, F. Sensory Reinnervation of Free Flaps in Reconstruction of the Breast and the Upper and Lower Extremities. Neural Regen. Res. 2012, 7, 2279–2285. [Google Scholar] [CrossRef]
- Wang, H.; Yu, M.; Ochani, M.; Amella, C.A.; Tanovic, M.; Susarla, S.; Li, J.H.; Wang, H.; Yang, H.; Ulloa, L.; et al. Nicotinic Acetylcholine Receptor A7 Subunit Is an Essential Regulator of Inflammation. Nature 2003, 421, 384–388. [Google Scholar] [CrossRef] [PubMed]
- Friedman, J.R.; Richbart, S.D.; Merritt, J.C.; Brown, K.C.; Nolan, N.A.; Akers, A.T.; Lau, J.K.; Robateau, Z.R.; Miles, S.L.; Dasgupta, P. Acetylcholine Signaling System in Progression of Lung Cancers. Pharmacol. Ther. 2019, 194, 222–254. [Google Scholar] [CrossRef] [PubMed]
- Wrona, D. Neural–Immune Interactions: An Integrative View of the Bidirectional Relationship between the Brain and Immune Systems. J. Neuroimmunol. 2006, 172, 38–58. [Google Scholar] [CrossRef] [PubMed]
- Kamiya, A.; Hayama, Y.; Kato, S.; Shimomura, A.; Shimomura, T.; Irie, K.; Kaneko, R.; Yanagawa, Y.; Kobayashi, K.; Ochiya, T. Genetic Manipulation of Autonomic Nerve Fiber Innervation and Activity and Its Effect on Breast Cancer Progression. Nat. Neurosci. 2019, 22, 1289–1305. [Google Scholar] [CrossRef]
- Mole, R.H. Whole Body Irradiation; Radiobiology or Medicine? Br. J. Radiol. 1953, 26, 234–241. [Google Scholar] [CrossRef] [PubMed]
- Demaria, S.; Ng, B.; Devitt, M.L.; Babb, J.S.; Kawashima, N.; Liebes, L.; Formenti, S.C. Ionizing Radiation Inhibition of Distant Untreated Tumors (Abscopal Effect) Is Immune Mediated. Int. J. Radiat. Oncol. Biol. Phys. 2004, 58, 862–870. [Google Scholar] [CrossRef]
- Akutsu, Y.; Matsubara, H.; Urashima, T.; Komatsu, A.; Sakata, H.; Nishimori, T.; Yoneyama, Y.; Hoshino, I.; Murakami, K.; Usui, A.; et al. Combination of Direct Intratumoral Administration of Dendritic Cells and Irradiation Induces Strong Systemic Antitumor Effect Mediated by GRP94/Gp96 against Squamous Cell Carcinoma in Mice. Int. J. Oncol. 2007, 31, 509–515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dewan, M.Z.; Vanpouille-Box, C.; Kawashima, N.; DiNapoli, S.; Babb, J.S.; Formenti, S.C.; Adams, S.; Demaria, S. Synergy of Topical Toll-like Receptor 7 Agonist with Radiation and Low-Dose Cyclophosphamide in a Mouse Model of Cutaneous Breast Cancer. Clin. Cancer Res. 2012, 18, 6668–6678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, L.; Liang, H.; Burnette, B.; Beckett, M.; Darga, T.; Weichselbaum, R.R.; Fu, Y.X. Irradiation and Anti-PD-L1 Treatment Synergistically Promote Antitumor Immunity in Mice. J. Clin. Investig. 2014, 124, 687–695. [Google Scholar] [CrossRef] [PubMed]
- Twyman-Saint Victor, C.; Rech, A.J.; Maity, A.; Rengan, R.; Pauken, K.E.; Stelekati, E.; Benci, J.L.; Xu, B.; Dada, H.; Odorizzi, P.M.; et al. Radiation and Dual Checkpoint Blockade Activate Non-Redundant Immune Mechanisms in Cancer. Nature 2015, 520, 373–377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Young, K.H.; Baird, J.R.; Savage, T.; Cottam, B.; Friedman, D.; Bambina, S.; Messenheimer, D.J.; Fox, B.; Newel, P.; Bahjat, K.S.; et al. Optimizing Timing of Immunotherapy Improves Control of Tumors by Hypofractionated Radiation Therapy. PLoS ONE 2016, 11, e0157164. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Ruiz, M.E.; Rodriguez, I.; Garasa, S.; Barbes, B.; Solorzano, J.L.; Perez-Gracia, J.L.; Labiano, S.; Sanmamed, M.F.; Azpilikueta, A.; Bolaños, E.; et al. Abscopal Effects of Radiotherapy Are Enhanced by Combined Immunostimulatory MAbs and Are Dependent on CD8 T Cells and Crosspriming. Cancer Res. 2016, 76, 5994–6005. [Google Scholar] [CrossRef] [Green Version]
- Habets, T.H.P.M.; Oth, T.; Houben, A.W.; Huijskens, M.J.A.J.; Senden-Gijsbers, B.L.M.G.; Schnijderberg, M.C.A.; Brans, B.; Dubois, L.J.; Lambin, P.; De Saint-Hubert, M.; et al. Fractionated Radiotherapy with 3 x 8 Gy Induces Systemic Anti-Tumour Responses and Abscopal Tumour Inhibition without Modulating the Humoral Anti-Tumour Response. PLoS ONE 2016, 11, e0159515. [Google Scholar] [CrossRef]
- Ngwa, W.; Irabor, O.C.; Schoenfeld, J.D.; Hesser, J.; Demaria, S.; Formenti, S.C. Using Immunotherapy to Boost the Abscopal Effect. Nat. Rev. Cancer 2018, 18, 313–322. [Google Scholar] [CrossRef] [PubMed]
- Marconi, R.; Strolin, S.; Bossi, G.; Strigari, L. A Meta-Analysis of the Abscopal Effect in Preclinical Models: Is the Biologically Effective Dose a Relevant Physical Trigger? PLoS ONE 2017, 12, e0171559. [Google Scholar] [CrossRef] [Green Version]
- Formenti, S.C.; Demaria, S. Systemic Effects of Local Radiotherapy. Lancet Oncol. 2009, 10, 718–726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Golden, E.B.; Chhabra, A.; Chachoua, A.; Adams, S.; Donach, M.; Fenton-Kerimian, M.; Friedman, K.; Ponzo, F.; Babb, J.S.; Goldberg, J.; et al. Local Radiotherapy and Granulocyte-Macrophage Colony-Stimulating Factor to Generate Abscopal Responses in Patients with Metastatic Solid Tumours: A Proof-of-Principle Trial. Lancet Oncol. 2015, 16, 795–803. [Google Scholar] [CrossRef] [PubMed]
- Sodji, Q.H.; Gutkin, P.M.; Swetter, S.M.; Reddy, S.A.; Hiniker, S.M.; Knox, S.J. Durability of Response in Metastatic Melanoma Patients after Combined Treatment with Radiation Therapy and Ipilimumab. Melanoma Manag. 2020, 7, MMT36. [Google Scholar] [CrossRef] [Green Version]
- Daguenet, E.; Louati, S.; Wozny, A.S.; Vial, N.; Gras, M.; Guy, J.B.; Vallard, A.; Rodriguez-Lafrasse, C.; Magné, N. Radiation-Induced Bystander and Abscopal Effects: Important Lessons from Preclinical Models. Br. J. Cancer 2020, 123, 339–348. [Google Scholar] [CrossRef] [PubMed]
- Siva, S.; MacManus, M.P.; Martin, R.F.; Martin, O.A. Abscopal Effects of Radiation Therapy: A Clinical Review for the Radiobiologist. Cancer Lett. 2015, 356, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Zenkoh, J.; Gerelchuluun, A.; Wang, Y.; Miwa, Y.; Ohno, T.; Tsuboi, K. The Abscopal Effect Induced by in Situ-Irradiated Peripheral Tumor Cells in a Murine GL261 Brain Tumor Model. Transl. Cancer Res. 2017, 6, 136–148. [Google Scholar] [CrossRef] [Green Version]
- Koh, A.J.; Novince, C.M.; Li, X.; Wang, T.; Taichman, R.S.; McCauley, L.K. An Irradiation-Altered Bone Marrow Microenvironment Impacts Anabolic Actions of PTH. Endocrinology 2011, 152, 4525–4536. [Google Scholar] [CrossRef]
- Pappas, A.M.; Cohen, J. The Abscopal Effect of X-Irradiation on Bone Growth in Rats. JBJS 1963, 45, 765–772. [Google Scholar] [CrossRef]
- Rubin, P. The Radiation Spectrum of Normal Tissue Toxicity and Tolerance—Multiorgan Domino Effect. In Cured II LENT Cancer Survivorship Research and Education. Medical Radiology (Radiation Oncology); Rubin, P., Constine, L.S., Marks, L.B., Okunieff, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar] [CrossRef]
- Wara, W.M.; Phillips, T.L.; Sheline, G.E.; Schwade, J.G. Radiation Tolerance of the Spinal Cord. Cancer 1975, 35, 1558–1562. [Google Scholar] [CrossRef] [PubMed]
- Reynders, K.; Illidge, T.; Siva, S.; Chang, J.Y.; De Ruysscher, D. The Abscopal Effect of Local Radiotherapy: Using Immunotherapy to Make a Rare Event Clinically Relevant. Cancer Treat. Rev. 2015, 41, 503–510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, M.; Qiao, G.; Hylander, B.L.; Mohammadpour, H.; Wang, X.Y.; Subjeck, J.R.; Singh, A.K.; Repasky, E.A. Adrenergic Stress Constrains the Development of Anti-Tumor Immunity and Abscopal Responses Following Local Radiation. Nat. Commun. 2020, 11, 1821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mitsou, J.D.; Tseveleki, V.; Dimitrakopoulos, F.-I.; Konstantinidis, K.; Kalofonos, H. Radical Tumor Denervation Activates Potent Local and Global Cancer Treatment. Cancers 2023, 15, 3758. https://doi.org/10.3390/cancers15153758
Mitsou JD, Tseveleki V, Dimitrakopoulos F-I, Konstantinidis K, Kalofonos H. Radical Tumor Denervation Activates Potent Local and Global Cancer Treatment. Cancers. 2023; 15(15):3758. https://doi.org/10.3390/cancers15153758
Chicago/Turabian StyleMitsou, John D., Vivian Tseveleki, Foteinos-Ioannis Dimitrakopoulos, Konstantinos Konstantinidis, and Haralabos Kalofonos. 2023. "Radical Tumor Denervation Activates Potent Local and Global Cancer Treatment" Cancers 15, no. 15: 3758. https://doi.org/10.3390/cancers15153758
APA StyleMitsou, J. D., Tseveleki, V., Dimitrakopoulos, F. -I., Konstantinidis, K., & Kalofonos, H. (2023). Radical Tumor Denervation Activates Potent Local and Global Cancer Treatment. Cancers, 15(15), 3758. https://doi.org/10.3390/cancers15153758