Image-Guided Ablation Therapies for Extrahepatic Metastases from Hepatocellular Carcinoma: A Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Literature Search and Screening
3. Techniques of Thermal Ablation
4. Outcomes of Thermal Ablation for HCC Extrahepatic Metastases in Various Organs
4.1. Lung
4.2. LNs
4.3. Bone
4.4. Adrenal Glands
5. Description in Guidelines
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ganne-Carrié, N.; Nahon, P. Hepatocellular carcinoma in the setting of alcohol-related liver disease. J. Hepatol. 2019, 70, 284–293. [Google Scholar] [CrossRef] [Green Version]
- Mahmud, N.; Fricker, Z.; Hubbard, R.A.; Ioannou, G.N.; Lewis, J.D.; Taddei, T.H.; Rothstein, K.D.; Serper, M.; Goldberg, D.S.; Kaplan, D.E. Risk prediction models for post-operative mortality in patients with cirrhosis. Hepatology 2021, 73, 204–218. [Google Scholar] [CrossRef]
- Uka, K.; Aikata, H.; Takaki, S.; Shirakawa, H.; Jeong, S.C.; Yamashina, K.; Hiramatsu, A.; Kodama, H.; Takahashi, S.; Chayama, K. Clinical features and prognosis of patients with extrahepatic metastases from hepatocellular carcinoma. World J. Gastroenterol. 2007, 13, 414–420. [Google Scholar] [CrossRef]
- Yi, J.; Gwak, G.Y.; Sinn, D.H.; Kim, Y.J.; Kim, H.N.; Choi, M.S.; Lee, J.H.; Koh, K.C.; Paik, S.W.; Yoo, B.C. Screening for extrahepatic metastases by additional staging modalities is required for hepatocellular carcinoma patients beyond modified UICC stage T1. Hepatogastroenterology 2013, 60, 328–332. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.J.; Lee, H.C.; Lee, D.; Shim, J.H.; Kim, K.M.; Lim, Y.S.; Do, K.H.; Ryu, J.S. Role of the routine use of chest computed tomography and bone scan in staging workup of hepatocellular carcinoma. J. Hepatol. 2012, 56, 1324–1329. [Google Scholar] [CrossRef]
- Yoon, K.T.; Kim, J.K.; Kim, D.Y.; Ahn, S.H.; Lee, J.D.; Yun, M.; Rha, S.Y.; Chon, C.Y.; Han, K.H. Role of 18F-fluorodeoxyglucose positron emission tomography in detecting extrahepatic metastasis in pretreatment staging of hepatocellular carcinoma. Oncology 2007, 72 (Suppl. S1), 104–110. [Google Scholar] [CrossRef] [PubMed]
- Yuki, K.; Hirohashi, S.; Sakamoto, M.; Kanai, T.; Shimosato, Y. Growth and spread of hepatocellular carcinoma. A review of 240 consecutive autopsy cases. Cancer 1990, 66, 2174–2179. [Google Scholar] [CrossRef]
- Asrani, S.K.; Devarbhavi, H.; Eaton, J.; Kamath, P.S. Burden of liver diseases in the world. J. Hepatol. 2019, 70, 151–171. [Google Scholar] [CrossRef]
- Park, J.W.; Chen, M.; Colombo, M.; Roberts, L.R.; Schwartz, M.; Chen, P.; Kudo, M.; Johnson, P.; Wagner, S.; Orcini, L.S.; et al. Global patterns of hepatocellular carcinoma management from diagnosis to death: The BRIDGE Study. Liver Int. 2015, 35, 2155–2166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Natsuizaka, M.; Omura, T.; Akaike, T.; Kuwata, Y.; Yamazaki, K.; Sato, T.; Karino, Y.; Toyota, J.; Suga, T.; Asaka, M. Clinical features of hepatocellular carcinoma with extrahepatic metastases. J. Gastroenterol. Hepatol. 2005, 20, 1781–1787. [Google Scholar] [CrossRef]
- Kanda, M.; Tateishi, R.; Yoshida, H.; Sato, T.; Masuzaki, R.; Ohki, T.; Imamura, J.; Goto, T.; Yoshida, H.; Hamamura, K.; et al. Extrahepatic metastasis of hepatocellular carcinoma: Incidence and risk factors. Liver Int. 2008, 28, 1256–1263. [Google Scholar] [CrossRef] [PubMed]
- Aino, H.; Sumie, S.; Niizeki, T.; Kuromatsu, R.; Tajiri, N.; Nakano, M.; Satani, M.; Yamada, S.; Okamura, S.; Shimose, S.; et al. Clinical characteristics and prognostic factors for advanced hepatocellular carcinoma with extrahepatic metastasis. Mol. Clin. Oncol. 2014, 2, 393–398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Nagano, H.; Ota, H.; Morimoto, O.; Nakamura, M.; Wada, H.; Noda, T.; Damdinsuren, B.; Marubashi, S.; Miyamoto, A.; et al. Patterns and clinicopathologic features of extrahepatic recurrence of hepatocellular carcinoma after curative resection. Surgery 2007, 141, 196–202. [Google Scholar] [CrossRef] [PubMed]
- Tonolini, M.; Solbiati, L.; Ierace, T.; Kirn, V.; Croce, F. Extrahepatic recurrence and second malignancies after treatment of hepatocellular carcinoma: Spectrum of imaging findings. Radiol. Med. 2002, 103, 196–205. [Google Scholar]
- Senthilnathan, S.; Memon, K.; Lewandowski, R.J.; Kulik, L.; Mulcahy, M.F.; Riaz, A.; Miller, F.H.; Yaghmai, V.; Nikolaidis, P.; Wang, E.; et al. Extrahepatic metastases occur in a minority of hepatocellular carcinoma patients treated with locoregional therapies: Analyzing patterns of progression in 285 patients. Hepatology 2012, 55, 1432–1442. [Google Scholar] [CrossRef] [Green Version]
- European Association for the Study of the Liver. EASL clinical practice guidelines: Management of hepatocellular carcinoma. J. Hepatol. 2018, 69, 182–236. [Google Scholar] [CrossRef] [Green Version]
- Chua, T.C.; Morris, D.L. Exploring the role of resection of extrahepatic metastases from hepatocellular carcinoma. Surg. Oncol. 2012, 21, 95–101. [Google Scholar] [CrossRef]
- Uchino, K.; Tateishi, R.; Shiina, S.; Kanda, M.; Masuzaki, R.; Kondo, Y.; Goto, T.; Omata, M.; Yoshida, H.; Koike, K. Hepatocellular carcinoma with extrahepatic metastasis: Clinical features and prognostic factors. Cancer 2011, 117, 4475–4483. [Google Scholar] [CrossRef]
- Doreille, A.; N’Kontchou, G.; Halimi, A.; Bouhafs, F.; Coderc, E.; Sellier, N.; Seror, O. Percutaneous treatment of extrahepatic recurrence of hepatocellular carcinoma. Diagn. Interv. Imaging 2016, 97, 1117–1123. [Google Scholar] [CrossRef]
- Mu, L.; Sun, L.; Pan, T.; Lyu, N.; Li, S.; Li, X.; Wang, J.; Xie, Q.; Deng, H.; Zheng, L.; et al. Percutaneous CT-guided radiofrequency ablation for patients with extrahepatic oligometastases of hepatocellular carcinoma: Long-term results. Int. J. Hyperth. 2018, 34, 59–67. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Fan, S.; Shi, Q.; Zhao, D.; Sun, H.; Sothea, Y.; Wu, M.; Song, H.; Chen, Y.; Cheng, J.; et al. Comparison of clinical outcomes between cone beam CT-guided thermal ablation and helical tomotherapy in pulmonary metastases from hepatocellular carcinoma. Front. Oncol. 2022, 12, 947284. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.; Liu, B.; Hu, C.; Li, Z.; Zheng, J.; Li, W. Clinical outcomes of percutaneous thermal ablation for pulmonary metastases from hepatocellular carcinoma: A retrospective study. Int. J. Hyperth. 2020, 37, 651–659. [Google Scholar] [CrossRef]
- Lassandro, G.; Picchi, S.G.; Bianco, A.; Di Costanzo, G.; Coppola, A.; Ierardi, A.M.; Lassandro, F. Effectiveness and safety in radiofrequency ablation of pulmonary metastases from HCC: A five years study. Med. Oncol. 2020, 37, 25. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, J.; Li, W.; Huang, Z.; Fan, W.; Chen, Y.; Shen, L.; Pan, T.; Wu, P.; Zhao, M. Percutaneous CT-guided radiofrequency ablation for unresectable hepatocellular carcinoma pulmonary metastases. Int. J. Hyperth. 2012, 28, 721–728. [Google Scholar] [CrossRef] [PubMed]
- Hiraki, T.; Yamakado, K.; Ikeda, O.; Matsuoka, T.; Kaminou, T.; Yamagami, T.; Gobara, H.; Mimura, H.; Kawanaka, K.; Takeda, K.; et al. Percutaneous radiofrequency ablation for pulmonary metastases from hepatocellular carcinoma: Results of a multicenter study in Japan. J. Vasc. Interv. Radiol. 2011, 22, 741–748. [Google Scholar] [CrossRef]
- Yuan, Z.; Xing, A.; Zheng, J.; Li, W. Safety and technical feasibility of percutaneous ablation for lymph node metastases of hepatocellular carcinoma. Int. J. Hyperth. 2019, 36, 159–167. [Google Scholar] [CrossRef] [Green Version]
- Pan, T.; Xie, Q.K.; Lv, N.; Li, X.S.; Mu, L.W.; Wu, P.H.; Zhao, M. Percutaneous CT-guided radiofrequency ablation for lymph node oligometastases from hepatocellular carcinoma: A propensity score-matching analysis. Radiology 2017, 282, 259–270. [Google Scholar] [CrossRef]
- Kashima, M.; Yamakado, K.; Takaki, H.; Kaminou, T.; Tanigawa, N.; Nakatsuka, A.; Takeda, K. Radiofrequency ablation for the treatment of bone metastases from hepatocellular carcinoma. AJR Am. J. Roentgenol. 2010, 194, 536–541. [Google Scholar] [CrossRef]
- Huang, J.; Xie, X.; Lin, J.; Wang, W.; Zhang, X.; Liu, M.; Li, X.; Huang, G.; Liu, B.; Xie, X. Percutaneous radiofrequency ablation of adrenal metastases from hepatocellular carcinoma: A single-center experience. Cancer Imaging 2019, 19, 44. [Google Scholar] [CrossRef] [Green Version]
- Lyu, N.; Kong, Y.; Pan, T.; Mu, L.; Sun, X.; Li, S.; Deng, H.; Lai, J.; Zhao, M. Survival benefits of computed tomography-guided thermal ablation for adrenal metastases from hepatocellular carcinoma. Int. J. Hyperth. 2019, 36, 1002–1010. [Google Scholar] [CrossRef]
- Yuan, H.; Liu, F.; Li, X.; Guan, Y.; Wang, M. Clinical efficacy of chemoembolization with simultaneous radiofrequency ablation for treatment of adrenal metastases from hepatocellular carcinoma. Cancer Imaging 2018, 18, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Facciorusso, A.; El Aziz, M.A.A.; Tartaglia, N.; Ramai, D.; Mohan, B.P.; Cotsoglou, C.; Pusceddu, S.; Giacomelli, L.; Ambrosi, A.; Sacco, R. Microwave Ablation Versus Radiofrequency Ablation for Treatment of Hepatocellular Carcinoma: A Meta-Analysis of Randomized Controlled Trials. Cancers 2020, 12, 3796. [Google Scholar] [CrossRef] [PubMed]
- Crocetti, L.; Iezzi, R.; Goldberg, S.N.; Bilbao, J.I.; Sami, A.; Akhan, O.; Giuliante, F.; Pompili, M.; Malagari, K.; Valentini, V.; et al. The ten commandments of liver ablation: Expert discussion and report from Mediterranean Interventional Oncology (MIOLive) congress 2017. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 3896–3904. [Google Scholar] [PubMed]
- Tomita, K.; Matsui, Y.; Uka, M.; Umakoshi, N.; Kawabata, T.; Munetomo, K.; Nagata, S.; Iguchi, T.; Hiraki, T. Evidence on percutaneous radiofrequency and microwave ablation for liver metastases over the last decade. Jpn. J. Radiol. 2022, 40, 1035–1045. [Google Scholar] [CrossRef] [PubMed]
- Fujimori, M.; Yamanaka, T.; Sugino, Y.; Matsushita, N.; Sakuma, H. Percutaneous image-guided thermal ablation for renal cell carcinoma. Interv. Radiol. 2020, 5, 32–42. [Google Scholar] [CrossRef]
- Matsui, Y.; Iguchi, T.; Tomita, K.; Uka, M.; Sakurai, J.; Gobara, H.; Kanazawa, S. Radiofrequency ablation for stage I non-small cell lung cancer: An updated review of literature from the last decade. Interv. Radiol. 2020, 5, 43–49. [Google Scholar] [CrossRef]
- Matsui, Y.; Tomita, K.; Uka, M.; Umakoshi, N.; Kawabata, T.; Munetomo, K.; Nagata, S.; Iguchi, T.; Hiraki, T. Up-to-date evidence on image-guided thermal ablation for metastatic lung tumors: A review. Jpn. J. Radiol. 2022, 40, 1024–1034. [Google Scholar] [CrossRef]
- Cazzato, R.L.; Auloge, P.; De Marini, P.; Rousseau, C.; Chiang, J.B.; Koch, G.; Caudrelier, J.; Rao, P.; Garnon, J.; Gangi, A. Percutaneous image-guided ablation of bone metastases: Local tumor control in oligometastatic patients. Int. J. Hyperth. 2018, 35, 493–499. [Google Scholar] [CrossRef] [Green Version]
- Zheng, B.; Wang, J.; Ju, J.; Wu, T.; Tong, G.; Ren, J. Efficacy and safety of cooled and uncooled microwave ablation for the treatment of benign thyroid nodules: A systematic review and meta-analysis. Endocrine 2018, 62, 307–317. [Google Scholar] [CrossRef]
- Ierardi, A.M.; Savasi, V.; Angileri, S.A.; Petrillo, M.; Sbaraini, S.; Pinto, A.; Hanozet, F.; Marconi, A.M.; Carrafiello, G. Percutaneous high frequency microwave ablation of uterine fibroids: Systematic review. BioMed Res. Int. 2018, 2018, 2360107. [Google Scholar] [CrossRef]
- Venturini, M.; Cariati, M.; Marra, P.; Masala, S.; Pereira, P.L.; Carrafiello, G. CIRSE standards of practice on thermal ablation of primary and secondary lung tumours. Cardiovasc. Interv. Radiol. 2020, 43, 667–783. [Google Scholar] [CrossRef] [PubMed]
- Palussière, J.; Catena, V.; Buy, X. Percutaneous thermal ablation of lung tumors—Radiofrequency, microwave and cryotherapy: Where are we going? Diagn. Interv. Imaging 2017, 98, 619–625. [Google Scholar] [CrossRef] [PubMed]
- Davidson, R.S.; Nwogu, C.E.; Brentjens, M.J.; Anderson, T.M. The surgical management of pulmonary metastasis: Current concepts. Surg. Oncol. 2001, 10, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhang, K.; Lin, S.-M.; Mi, D.-H.; Cao, N.; Wen, Z.-Z.; Li, Z.-X. Radiofrequency ablation combined with percutaneous ethanol injection for hepatocellular carcinoma: A systematic review and meta-analysis. Int. J. Hyperth. 2016, 33, 237–246. [Google Scholar] [CrossRef] [PubMed]
- Ercolani, G.; Grazi, G.L.; Ravaioli, M.; Grigioni, W.F.; Cescon, M.; Gardini, A.; Del Gaudio, M.; Cavallari, A. The role of lymphadenectomy for liver tumors: Further considerations on the appropriateness of treatment strategy. Ann. Surg. 2004, 239, 202–209. [Google Scholar] [CrossRef]
- Hasegawa, K.; Makuuchi, M.; Kokudo, N.; Izumi, N.; Ichida, T.; Kudo, M.; Ku, Y.; Sakamoto, M.; Nakashima, O.; Matsui, O.; et al. Impact of histologically confirmed lymph node metastases on patient survival after surgical resection for hepatocellular carcinoma: Report of a Japanese nationwide survey. Ann. Surg. 2014, 259, 166–170. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, J.; Nakashima, O.; Kojiro, M. Clinicopathologic study on lymph node metastasis of hepatocellular carcinoma: A retrospective study of 660 consecutive autopsy cases. Jpn. J. Clin. Oncol. 1994, 24, 37–41. [Google Scholar]
- Xia, F.; Wu, L.; Lau, W.-Y.; Li, G.; Huan, H.; Qian, C.; Ma, K.; Bie, P. Positive lymph node metastasis has a marked impact on the long-term survival of patients with hepatocellular carcinoma with extrahepatic metastasis. PLoS ONE 2014, 9, e95889. [Google Scholar] [CrossRef]
- Nakashima, T.; Okuda, K.; Kojiro, M.; Jimi, A.; Yamaguchi, R.; Sakamoto, K.; Ikari, T. Pathology of hepatocellular carcinoma in Japan: 232 consecutive cases autopsied in ten years. Cancer 1983, 51, 863–877. [Google Scholar] [CrossRef]
- Taki, Y.; Yamaoka, Y.; Takayasu, T.; Ino, K.; Shimahara, Y.; Mori, K.; Morimoto, T.; Ozawa, K. Bone metastases of hepatocellular carcinoma after liver resection. J. Surg. Oncol. 1992, 50, 12–18. [Google Scholar] [CrossRef]
- Fukutomi, M.; Yokota, M.; Chuman, H.; Harada, H.; Zaitsu, Y.; Funakoshi, A.; Wakasugi, H.; Iguchi, H. Increased incidence of bone metastases in hepatocellular carcinoma. Eur. J. Gastroenterol. Hepatol. 2001, 13, 1083–1088. [Google Scholar] [CrossRef] [PubMed]
- Kaizu, T.; Karasawa, K.; Tanaka, Y.; Matuda, T.; Kurosaki, H.; Tanaka, S.; Kumazaki, T. Radiotherapy for osseous metastases from hepatocellular carcinoma: A retrospective study of 57 patients. Am. J. Gastroenterol. 1998, 93, 2167–2171. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.U.; Kim, D.Y.; Park, J.Y.; Ahn, S.H.; Nah, H.J.; Chon, C.Y.; Han, K.-H. Hepatocellular carcinoma presenting with bone metastasis: Clinical characteristics and prognostic factors. J. Cancer Res. Clin. Oncol. 2008, 134, 1377–1384. [Google Scholar] [CrossRef]
- Steenland, E.; Leer, J.W.; van Houwelingen, H.; Post, W.J.; van den Hout, W.B.; Kievit, J.; de Haes, H.; Martijn, H.; Oei, B.; Vonk, E.; et al. The effect of a single fraction compared to multiple fractions on painful bone metastases: A global analysis of the Dutch Bone Metastasis Study. Radiother. Oncol. 1999, 52, 101–109. [Google Scholar] [CrossRef]
- Yarnold, J.R. 8 Gy single fraction radiotherapy for the treatment of metastatic skeletal pain: Randomised comparison with a multifraction schedule over 12 months of patient follow-up on behalf of the Bone Pain Trial Working Party. Radiother. Oncol. 1999, 52, 111–121. [Google Scholar] [CrossRef]
- Ryan, A.; Byrne, C.; Pusceddu, C.; Buy, X.; Tsoumakidou, G.; Filippiadis, D. CIRSE standards of practice on thermal ablation of bone tumours. Cardiovasc. Interv. Radiol. 2022, 45, 591–605. [Google Scholar] [CrossRef]
- McMenomy, B.P.; Kurup, A.N.; Johnson, G.B.; Carter, R.E.; McWilliams, R.R.; Markovic, S.N.; Atwell, T.D.; Schmit, G.D.; Morris, J.M.; Woodrum, D.A.; et al. Percutaneous cryoablation of musculoskeletal oligometastatic disease for complete remission. J. Vasc. Interv. Radiol. 2013, 24, 207–213. [Google Scholar] [CrossRef]
- Barat, M.; Tselikas, L.; de Bae‘re, T.; Gravel, G.; Yevich, S.; Delpla, A.; Magand, N.; Louvel, G.; Hadoux, J.; Berdelou, A.; et al. Thermal-ablation of vertebral metastases prevents adverse events in patients with differentiated thyroid carcinoma. Eur. J. Radiol. 2019, 119, 108650. [Google Scholar] [CrossRef] [PubMed]
- Kelekis, A.; Cornelis, F.; Tutton, S.; Filippiadis, D. Metastatic osseous pain control: Bone ablation and cementoplasty. Semin. Interv. Radiol. 2017, 34, 328–336. [Google Scholar]
- Vaswani, D.; Wallace, A.N.; Eiswirth, P.S.; Madaelil, T.P.; Chang, R.O.; Tomasian, A.; Jennings, J.W. Radiographic local tumor control and pain palliation of sarcoma metastases within the musculoskeletal system with percutaneous thermal ablation. Cardiovasc. Interv. Radiol. 2018, 41, 1223–1232. [Google Scholar] [CrossRef]
- Pusceddu, C.; Sotgia, B.; Fele, R.M.; Ballicu, N.; Melis, L. Combined microwave ablation and cementoplasty in patients with painful bone metastases at high risk of fracture. Cardiovasc. Interv. Radiol. 2016, 39, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Wallace, A.N.; Robinson, C.G.; Meyer, J.; Tran, N.D.; Gangi, A.; Callstrom, M.R.; Chao, S.T.; Van Tine, B.A.; Morris, J.M.; Bruel, B.M.; et al. The metastatic spine disease multidisciplinary working group algorithms. Oncologist 2015, 20, 1205–1215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gennaro, N.; Sconfienza, L.M.; Ambrogi, F.; Boveri, S.; Lanza, E. Thermal ablation to relieve pain from metastatic bone disease: A systematic review. Skelet. Radiol. 2019, 48, 1161–1169. [Google Scholar] [CrossRef] [PubMed]
- Heimbach, J.K.; Kulik, L.M.; Finn, R.S.; Sirlin, C.B.; Abecassis, M.M.; Roberts, L.R.; Zhu, A.X.; Murad, M.H.; Marrero, J.A. AASLD guidelines for the treatment of hepatocellular carcinoma. Hepatology 2018, 67, 358–380. [Google Scholar] [CrossRef] [PubMed]
Author, Year | Metastatic Site | Ablation Modality | Patients, n (Child–Pugh Grade A/B or C) | Tumors, n | Tumor Size [mm] | Follow-Up Period [mo] | Local Efficacy [%] | Survival | Major Complications |
---|---|---|---|---|---|---|---|---|---|
Wang et al., 2022 [21] | Lung | RFA or MWA | 63 (52/11) | - | 17.5 | 21.6 (mean) | - | 1-/3-year OS: 75%/26%, Median OS: 18.0 mo | pneumothorax requiring CTP (3.2%), pleural effusion requiring drainage (1.6%) |
Yuan et al., 2020 [22] | Lung | RFA or MWA or CA | 39 | - | 15 (median) | 13.5 (median) | 84.2 | 1-/3-/5-year OS: 79.8%/58%/30.9% | pneumothorax requiring CTP (7.7%), pleural effusion requiring drainage (5.1%) |
Lassandro et al., 2020 [23] | Lung | RFA | 26 | 42 | 14 (mean) | - | - | 1-/2-/3-/4-/5-year OS: 88.5%/69.8%/69.8% 34.9%/26.2% | pneumothorax requiring CTP (2.5%) |
Li et al., 2012 [24] | Lung | RFA | 29 | 68 | 19.3 (mean) | 23 (median) | 82.8 | 1-/2-/3-year OS: 73.4%/41.1%/30%, Median OS: 21 mo, 1-/2-year PFS: 59.7%/28.2% | pneumothorax requiring CTP (8.9%) |
Hiraki et al., 2011 [25] | Lung | RFA | 32 (27/5) | 83 | 14 (mean) | 20.5 (median) | 92 | 1-/2-/3-year OS: 87%/57%/57%, Median OS: 37.7 mo | pneumothorax requiring CTP (23.1%), massive hematoma caused by a pulmonary pseudoaneurysm (1.5%) |
Yuan et al., 2019 [26] | Lymph node | RFA or MWA or PEI | 31 (31/0) | - | 30 (median) | - | 83.3 | 1-/2-/3-/4-/5-year OS: 74.6%/50.3%/50.3%/50.3%/50.3%, 1-/2-/3-year PFS: 24.7%/13.2%/0% | massive pleural effusion and severe pneumonia (3.2%) |
Pan et al., 2017 [27] | Lymph node | RFA | 46 (44/2) | 62 | 32.4 (mean) | 14.0 (median) | 84.4 | 1-year OS: 58.3%, Median OS: 13.0 mo | none |
Kashima et al., 2010 [28] | Bone | RFA | 40 (28/12) | 54 | 48 (mean) | 11.9 (mean) | - | 1-/2-/3-year OS: 34.2%/19.9%/10.0%, Median OS: 7.1 mo | transient nerve injury (2.5%) |
Huang et al., 2019 [29] | Adrenal gland | RFA | 22 (19/3) | 22 | 40 | 10 (median) | 73.7 | 1-/2-year OS: 52.6%/32.9%, Median OS: 14 mo | intraprocedural hypertension (9%), myocardial transient ischemia (4.5%) |
Lyu et al., 2019 [30] | Adrenal gland | RFA or MWA | 27 (25/2) | 29 | 35 (mean) | 19.3 (median) | 77.8 | OS 1-/2-year: 66.7%/33.3%, Median OS: 16.8 mo | intraprocedural hypertension (24.2%) |
Yuan et al., 2018 [31] | Adrenal gland | RFA + TACE | 38 (30/8) | 38 | 33 (mean) | - | 92.1 | 1-/2-/3-year OS: 92.1%/73.7%/55.3%, Mean OS: 26.8 mo | intraprocedural hypertension (15.8%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Umakoshi, N.; Matsui, Y.; Tomita, K.; Uka, M.; Kawabata, T.; Iguchi, T.; Hiraki, T. Image-Guided Ablation Therapies for Extrahepatic Metastases from Hepatocellular Carcinoma: A Review. Cancers 2023, 15, 3665. https://doi.org/10.3390/cancers15143665
Umakoshi N, Matsui Y, Tomita K, Uka M, Kawabata T, Iguchi T, Hiraki T. Image-Guided Ablation Therapies for Extrahepatic Metastases from Hepatocellular Carcinoma: A Review. Cancers. 2023; 15(14):3665. https://doi.org/10.3390/cancers15143665
Chicago/Turabian StyleUmakoshi, Noriyuki, Yusuke Matsui, Koji Tomita, Mayu Uka, Takahiro Kawabata, Toshihiro Iguchi, and Takao Hiraki. 2023. "Image-Guided Ablation Therapies for Extrahepatic Metastases from Hepatocellular Carcinoma: A Review" Cancers 15, no. 14: 3665. https://doi.org/10.3390/cancers15143665
APA StyleUmakoshi, N., Matsui, Y., Tomita, K., Uka, M., Kawabata, T., Iguchi, T., & Hiraki, T. (2023). Image-Guided Ablation Therapies for Extrahepatic Metastases from Hepatocellular Carcinoma: A Review. Cancers, 15(14), 3665. https://doi.org/10.3390/cancers15143665