Detection of Cancer Recurrence Using Systemic Inflammatory Markers and Machine Learning after Concurrent Chemoradiotherapy for Head and Neck Cancers
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Training Dataset and Input Features
2.3. Split Training Dataset
2.4. Machine Learning Models
2.5. External Validation Dataset
3. Results
3.1. Patients’ Characteristics
3.2. Cross-Validation Performance on Training Datasets
3.3. External Validation (Figure 4)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- el-Hag, A.; Clark, R.A. Immunosuppression by activated human neutrophils. Dependence on the myeloperoxidase system. J. Immunol. 1987, 139, 2406–2413. [Google Scholar] [PubMed]
- Petrie, H.T.; Klassen, L.W.; Kay, H.D. Inhibition of human cytotoxic T lymphocyte activity in vitro by autologous peripheral blood granulocytes. J. Immunol. 1985, 134, 230–234. [Google Scholar] [PubMed]
- Sharaiha, R.Z.; Halazun, K.J.; Mirza, F.; Port, J.L.; Lee, P.C.; Neugut, A.I.; Altorki, N.K.; Abrams, J.A. Elevated preoperative neutrophil:lymphocyte ratio as a predictor of postoperative disease recurrence in esophageal cancer. Ann. Surg. Oncol. 2011, 18, 3362–3369. [Google Scholar] [PubMed] [Green Version]
- Chua, W.; Charles, K.A.; Baracos, V.E.; Clarke, S.J. Neutrophil/lymphocyte ratio predicts chemotherapy outcomes in patients with advanced colorectal cancer. Br. J. Cancer 2011, 104, 1288–1295. [Google Scholar]
- Teramukai, S.; Kitano, T.; Kishida, Y.; Kawahara, M.; Kubota, K.; Komuta, K.; Minato, K.; Mio, T.; Fujita, Y.; Yonei, T.; et al. Pretreatment neutrophil count as an independent prognostic factor in advanced non-small-cell lung cancer: An analysis of Japan Multinational Trial Organisation LC00-03. Eur. J. Cancer 2009, 45, 1950–1958. [Google Scholar] [PubMed] [Green Version]
- Bhatti, I.; Peacock, O.; Lloyd, G.; Larvin, M.; Hall, R.I. Preoperative hematologic markers as independent predictors of prognosis in resected pancreatic ductal adenocarcinoma: Neutrophil-lymphocyte versus platelet-lymphocyte ratio. Am. J. Surg. 2010, 200, 197–203. [Google Scholar] [CrossRef]
- Ding, P.R.; An, X.; Zhang, R.X.; Fang, Y.J.; Li, L.R.; Chen, G.; Wu, X.J.; Lu, Z.H.; Lin, J.Z.; Kong, L.H.; et al. Elevated preoperative neutrophil to lymphocyte ratio predicts risk of recurrence following curative resection for stage IIA colon cancer. Int. J. Colorectal Dis. 2010, 25, 1427–1433. [Google Scholar] [CrossRef]
- Ray-Coquard, I.; Cropet, C.; Van Glabbeke, M.; Sebban, C.; Le Cesne, A.; Judson, I.; Tredan, O.; Verweij, J.; Biron, P.; Labidi, I.; et al. Lymphopenia as a prognostic factor for overall survival in advanced carcinomas, sarcomas, and lymphomas. Cancer Res. 2009, 69, 5383–5391. [Google Scholar]
- Wang, D.S.; Luo, H.Y.; Qiu, M.Z.; Wang, Z.Q.; Zhang, D.S.; Wang, F.H.; Li, Y.H.; Xu, R.H. Comparison of the prognostic values of various inflammation based factors in patients with pancreatic cancer. Med. Oncol. 2012, 29, 3092–3100. [Google Scholar]
- Kao, S.C.; Pavlakis, N.; Harvie, R.; Vardy, J.L.; Boyer, M.J.; van Zandwijk, N.; Clarke, S.J. High blood neutrophil-to-lymphocyte ratio is an indicator of poor prognosis in malignant mesothelioma patients undergoing systemic therapy. Clin. Cancer Res. 2010, 16, 5805–5813. [Google Scholar]
- He, J.R.; Shen, G.P.; Ren, Z.F.; Qin, H.; Cui, C.; Zhang, Y.; Zeng, Y.X.; Jia, W.H. Pretreatment levels of peripheral neutrophils and lymphocytes as independent prognostic factors in patients with nasopharyngeal carcinoma. Head Neck 2012, 34, 1769–1776. [Google Scholar] [PubMed]
- Huang, S.H.; Waldron, J.N.; Milosevic, M.; Shen, X.; Ringash, J.; Su, J.; Tong, L.; Perez-Ordonez, B.; Weinreb, I.; Bayley, A.J.; et al. Prognostic value of pretreatment circulating neutrophils, monocytes, and lymphocytes in oropharyngeal cancer stratified by human papillomavirus status. Cancer 2015, 121, 545–555. [Google Scholar] [PubMed]
- Rassouli, A.; Saliba, J.; Castano, R.; Hier, M.; Zeitouni, A.G. Systemic inflammatory markers as independent prognosticators of head and neck squamous cell carcinoma. Head Neck 2015, 37, 103–110. [Google Scholar] [CrossRef]
- Rosculet, N.; Zhou, X.C.; Ha, P.; Tang, M.; Levine, M.A.; Neuner, G.; Califano, J. Neutrophil-to-lymphocyte ratio: Prognostic indicator for head and neck squamous cell carcinoma. Head Neck 2017, 39, 662–667. [Google Scholar]
- Rajkomar, A.; Oren, E.; Chen, K.; Dai, A.M.; Hajaj, N.; Hardt, M.; Liu, P.J.; Liu, X.; Marcus, J.; Sun, M.; et al. Scalable and accurate deep learning with electronic health records. NPJ Digit. Med. 2018, 1, 18. [Google Scholar] [CrossRef] [PubMed]
- Choi, E.; Bahadori, M.T.; Schuetz, A.; Stewart, W.F.; Sun, J. Doctor AI: Predicting Clinical Events via Recurrent Neural Networks. JMLR Workshop Conf. Proc. 2016, 56, 301–318. [Google Scholar] [PubMed]
- Kim, W.J.; Sung, J.M.; Sung, D.; Chae, M.H.; An, S.K.; Namkoong, K.; Lee, E.; Chang, H.J. Cox Proportional Hazard Regression Versus a Deep Learning Algorithm in the Prediction of Dementia: An Analysis Based on Periodic Health Examination. JMIR Med. Inform. 2019, 7, e13139. [Google Scholar]
- Cho, B.H.; Yu, H.; Kim, K.W.; Kim, T.H.; Kim, I.Y.; Kim, S.I. Application of irregular and unbalanced data to predict diabetic nephropathy using visualization and feature selection methods. Artif. Intell. Med. 2008, 42, 37–53. [Google Scholar]
- Choi, N.; Kim, Z.; Song, B.H.; Park, W.; Chung, M.J.; Cho, B.H.; Son, Y.I. Prediction of risk factors for pharyngo-cutaneous fistula after total laryngectomy using artificial intelligence. Oral Oncol. 2021, 119, 105357. [Google Scholar]
- Zhang, Z. Improved Adam Optimizer for Deep Neural Networks. In Proceedings of the 2018 IEEE/ACM 26th International Symposium on Quality of Service (IWQoS), Banff, AB, Canada, 4–6 June 2018; pp. 1–2. [Google Scholar]
- Balkwill, F.; Mantovani, A. Inflammation and cancer: Back to Virchow? Lancet 2001, 357, 539–545. [Google Scholar] [CrossRef]
- Mantovani, A.; Allavena, P.; Sica, A.; Balkwill, F. Cancer-related inflammation. Nature 2008, 454, 436–444. [Google Scholar] [PubMed]
- Mantovani, A.; Romero, P.; Palucka, A.K.; Marincola, F.M. Tumour immunity: Effector response to tumour and role of the microenvironment. Lancet 2008, 371, 771–783. [Google Scholar] [PubMed]
- Templeton, A.J.; McNamara, M.G.; Seruga, B.; Vera-Badillo, F.E.; Aneja, P.; Ocana, A.; Leibowitz-Amit, R.; Sonpavde, G.; Knox, J.J.; Tran, B.; et al. Prognostic role of neutrophil-to-lymphocyte ratio in solid tumors: A systematic review and meta-analysis. J. Natl. Cancer Inst. 2014, 106, dju124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, X.; Du, Y.; Huang, Z.; Xu, J.; Qiu, T.; Wang, J.; Wang, T.; Zhu, W.; Liu, P. Prognostic value of PLR in various cancers: A meta-analysis. PLoS ONE 2014, 9, e101119. [Google Scholar]
- Takenaka, Y.; Oya, R.; Kitamiura, T.; Ashida, N.; Shimizu, K.; Takemura, K.; Yamamoto, Y.; Uno, A. Platelet count and platelet-lymphocyte ratio as prognostic markers for head and neck squamous cell carcinoma: Meta-analysis. Head Neck 2018, 40, 2714–2723. [Google Scholar] [PubMed]
- Kim, S.K.; Demetri, G.D. Chemotherapy and neutropenia. Hematol. Oncol. Clin. North Am. 1996, 10, 377–395. [Google Scholar]
- Meyer, K.K. Radiation-induced lymphocyte-immune deficiency. A factor in the increased visceral metastases and decreased hormonal responsiveness of breast cancer. Arch. Surg. 1970, 101, 114–121. [Google Scholar]
- Chowdhary, M.; Switchenko, J.M.; Press, R.H.; Jhaveri, J.; Buchwald, Z.S.; Blumenfeld, P.A.; Marwaha, G.; Diaz, A.; Wang, D.; Abrams, R.A.; et al. Post-treatment neutrophil-to-lymphocyte ratio predicts for overall survival in brain metastases treated with stereotactic radiosurgery. J. Neurooncol. 2018, 139, 689–697. [Google Scholar]
- Suh, K.J.; Kim, S.H.; Kim, Y.J.; Kim, M.; Keam, B.; Kim, T.M.; Kim, D.W.; Heo, D.S.; Lee, J.S. Post-treatment neutrophil-to-lymphocyte ratio at week 6 is prognostic in patients with advanced non-small cell lung cancers treated with anti-PD-1 antibody. Cancer Immunol. Immunother. 2018, 67, 459–470. [Google Scholar]
- Zhuang, Y.; Yuan, B.Y.; Hu, Y.; Chen, G.W.; Zhang, L.; Zhao, X.M.; Chen, Y.X.; Zeng, Z.C. Pre/Post-Treatment Dynamic of Inflammatory Markers Has Prognostic Value in Patients with Small Hepatocellular Carcinoma Managed by Stereotactic Body Radiation Therapy. Cancer Manag. Res. 2019, 11, 10929–10937. [Google Scholar]
- Zhou, C.; Hu, J.; Wang, Y.; Ji, M.H.; Tong, J.; Yang, J.J.; Xia, H. A machine learning-based predictor for the identification of the recurrence of patients with gastric cancer after operation. Sci. Rep. 2021, 11, 1571. [Google Scholar] [PubMed]
- Rahman, S.A.; Walker, R.C.; Lloyd, M.A.; Grace, B.L.; van Boxel, G.I.; Kingma, B.F.; Ruurda, J.P.; van Hillegersberg, R.; Harris, S.; Parsons, S.; et al. Machine learning to predict early recurrence after oesophageal cancer surgery. Br. J. Surg. 2020, 107, 1042–1052. [Google Scholar] [PubMed] [Green Version]
- Xu, Y.; Ju, L.; Tong, J.; Zhou, C.M.; Yang, J.J. Machine Learning Algorithms for Predicting the Recurrence of Stage IV Colorectal Cancer After Tumor Resection. Sci. Rep. 2020, 10, 2519. [Google Scholar] [PubMed] [Green Version]
- Wainberg, M.; Merico, D.; Delong, A.; Frey, B.J. Deep learning in biomedicine. Nat. Biotechnol. 2018, 36, 829–838. [Google Scholar]
- Park, Y.; Kellis, M. Deep learning for regulatory genomics. Nat. Biotechnol. 2015, 33, 825–826. [Google Scholar]
- Kim, D.W.; Lee, S.; Kwon, S.; Nam, W.; Cha, I.H.; Kim, H.J. Deep learning-based survival prediction of oral cancer patients. Sci. Rep. 2019, 9, 6994. [Google Scholar]
- Chatzikonstantinou, C.; Konstantinidis, D.; Dimitropoulos, K.; Daras, P. Recurrent neural network pruning using dynamical systems and iterative fine-tuning. Neural Netw. 2021, 143, 475–488. [Google Scholar]
- Senan, E.M.; Al-Adhaileh, M.H.; Alsaade, F.W.; Aldhyani, T.H.H.; Alqarni, A.A.; Alsharif, N.; Uddin, M.I.; Alahmadi, A.H.; Jadhav, M.E.; Alzahrani, M.Y. Diagnosis of Chronic Kidney Disease Using Effective Classification Algorithms and Recursive Feature Elimination Techniques. J. Healthc. Eng. 2021, 2021, 1004767. [Google Scholar]
- Chen, Q.; Meng, Z.; Su, R. WERFE: A Gene Selection Algorithm Based on Recursive Feature Elimination and Ensemble Strategy. Front. Bioeng. Biotechnol. 2020, 8, 496. [Google Scholar]
- Karami, G.; Giuseppe Orlando, M.; Delli Pizzi, A.; Caulo, M.; Del Gratta, C. Predicting Overall Survival Time in Glioblastoma Patients Using Gradient Boosting Machines Algorithm and Recursive Feature Elimination Technique. Cancers 2021, 13, 4976. [Google Scholar]
- Chlap, P.; Min, H.; Vandenberg, N.; Dowling, J.; Holloway, L.; Haworth, A. A review of medical image data augmentation techniques for deep learning applications. J. Med. Imaging Radiat. Oncol. 2021, 65, 545–563. [Google Scholar] [PubMed]
- He, C.; Liu, J.; Zhu, Y.; Du, W. Data Augmentation for Deep Neural Networks Model in EEG Classification Task: A Review. Front. Hum. Neurosci. 2021, 15, 765525. [Google Scholar] [PubMed]
Features | Definition |
---|---|
NLR mean, PLR mean | Mean NLR (PLR) |
NLR max–min, PLR max–min | Maximum NLR (PLR) minus minimum NLR (PLR) |
NLR Tx, PLR Tx | NLR (PLR) after treatment * |
NLR R, PLR R | NLR (PLR) at the time of recurrence or at the end of the period ** |
NLR R-mean, PLR R-mean | NLR R (PLR R) minus NLR mean (PLR mean) |
NLR R-Tx, PLR R-Tx | NLR R (PLR R) minus NLR Tx (PLR Tx) |
Characteristics | Values | |
---|---|---|
Age (year) | Mean ± SD | 60.4 ± 13.0 |
Gender (male/female) | 625/153 | |
Smoking | 481 (61.8%) | |
Stage * | I | 11 (1.4%) |
II | 68 (8.8%) | |
III | 209 (26.9%) | |
IV | 489 (62.9%) | |
Tumor sites | Oral cavity | 45 (5.8%) |
Larynx | 54 (6.9%) | |
Oropharynx | 228 (29.3%) | |
Hypopharynx | 74 (9.5%) | |
Nasopharynx | 296 (38.0%) | |
PNS/nasal cavity | 42 (5.4%) | |
Others | 39 (5.0%) | |
Pathology | SCC | 503 (64.7%) |
UDC | 243 (31.2%) | |
Others | 32 (4.1%) | |
Follow-up period (months) | Median (interquartile range) | 41.8 (17.4~71.6) |
Recurrences | 206 (26.5%) | |
RFS (months) | Median (SE, 95% CI) | 189.8 (33.5, 124.2~255.3) |
5-year RFS rate | 66.5% |
a. from Original Dataset | |||||||
Model | Training | Original Dataset | |||||
Features (N) | ROC-AUC | PR-AUC | Accuracy | Precision | Sensitivity | Specificity | |
Logistic regression | 16 | 0.696 ± 0.059 | 0.454 ± 0.079 | 0.770 ± 0.039 | 0.606 ± 0.105 | 0.885 ± 0.043 | 0.461 ±0.108 |
Random forest | 16 | 0.812 ± 0.049 | 0.622 ± 0.081 | 0.855 ± 0.027 | 0.758 ± 0.058 | 0.917 ± 0.026 | 0.687 ± 0.081 |
Gradient boosting | 16 | 0.600 ± 0.052 | 0.346 ± 0.055 | 0.825 ± 0.043 | 0.744 ± 0.116 | 0.926 ± 0.038 | 0.554 ± 0.065 |
DNN | 16 | 0.828 ± 0.032 | 0.663 ± 0.069 | 0.686 ± 0.102 | 0.471 ± 0.112 | 0.675 ± 0.070 | 0.715 ± 0.070 |
DNN-RFE | 5 | 0.883 ± 0.027 | 0.778 ± 0.042 | 0.801 ± 0.030 | 0.600 ± 0.041 | 0.800 ± 0.053 | 0.801 ± 0.053 |
b. from Split Dataset | |||||||
Model | Training | Split Dataset | |||||
Features (N) | ROC-AUC | PR-AUC | Accuracy | Precision | Sensitivity | Specificity | |
Logistic regression | 16 | 0.700 ± 0.053 | 0.456 ± 0.072 | 0.759 ± 0.027 | 0.482 ± 0.200 | 0.951 ± 0.029 | 0.139 ± 0.070 |
Random forest | 16 | 0.751 ± 0.053 | 0.539 ± 0.084 | 0.845 ± 0.028 | 0.737 ± 0.084 | 0.940 ± 0.023 | 0.536 ± 0.082 |
Gradient boosting | 16 | 0.735 ± 0.057 | 0.516 ± 0.085 | 0.822 ± 0.046 | 0.731 ± 0.114 | 0.922 ± 0.038 | 0.554 ± 0.079 |
DNN | 16 | 0.837 ± 0.038 | 0.666 ± 0.045 | 0.786 ± 0.026 | 0.537 ± 0.044 | 0.808 ± 0.029 | 0.715 ± 0.029 |
DNN-RFE | 5 | 0.889 ± 0.032 | 0.771 ± 0.044 | 0.812 ± 0.014 | 0.578 ± 0.022 | 0.827 ± 0.094 | 0.763 ± 0.094 |
No. of Features | Eliminated Feature | Original Training Dataset | Split Training Dataset | ||
---|---|---|---|---|---|
ROC-AUC | PR-AUC | ROC-AUC | PR-AUC | ||
16 | Sex | 0.828 | 0.663 | 0.837 | 0.666 |
15 | Age | 0.836 | 0.676 | 0.817 | 0.659 |
14 | Smoking | 0.864 | 0.725 | 0.854 | 0.732 |
13 | Stage | 0.867 | 0.750 | 0.862 | 0.693 |
12 | NLR max–min | 0.867 | 0.731 | 0.875 | 0.756 |
11 | NLR R | 0.861 | 0.731 | 0.887 | 0.752 |
10 | NLR Tx | 0.849 | 0.712 | 0.869 | 0.738 |
9 | NLR mean | 0.858 | 0.732 | 0.866 | 0.730 |
8 | NLR R-mean | 0.865 | 0.753 | 0.872 | 0.739 |
7 | NLR R-Tx | 0.872 | 0.766 | 0.886 | 0.749 |
6 | PLR R-mean | 0.881 | 0.763 | 0.889 | 0.764 |
5 | PLR R | 0.883 | 0.778 | 0.889 | 0.771 |
4 | PLR R-Tx | 0.883 | 0.764 | 0.885 | 0.765 |
3 | PLR mean | 0.884 | 0.788 | 0.880 | 0.758 |
2 | PLR Tx | 0.785 | 0.582 | 0.752 | 0.444 |
1 | PLR max–min | 0.724 | 0.550 | 0.697 | 0.418 |
Training Dataset | Split Training | Original Training | Split Training | Original Training | |||||
---|---|---|---|---|---|---|---|---|---|
Validation Dataset | Split Validation | Split Validation | Original Validation | Original Validation | |||||
Model | Features | ROC-AUC | PR-AUC | ROC-AUC | PR-AUC | ROC-AUC | PR-AUC | ROC-AUC | PR-AUC |
LR | 16 | 0.571 | 0.404 | 0.582 | 0.406 | 0.556 | 0.481 | 0.572 | 0.494 |
RF | 16 | 0.531 | 0.352 | 0.538 | 0.356 | 0.531 | 0.449 | 0.748 | 0.702 |
GB | 16 | 0.717 | 0.550 | 0.595 | 0.412 | 0.672 | 0.596 | 0.585 | 0.496 |
DNN | 16 | 0.832 | 0.737 | 0.558 | 0.395 | 0.766 | 0.766 | 0.643 | 0.560 |
DNN-RFE | 5 | 0.845 | 0.785 | 0.708 | 0.545 | 0.784 | 0.723 | 0.710 | 0.670 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
So, Y.K.; Kim, Z.; Cheong, T.Y.; Chung, M.J.; Baek, C.-H.; Son, Y.-I.; Seok, J.; Jung, Y.-S.; Ahn, M.-J.; Ahn, Y.C.; et al. Detection of Cancer Recurrence Using Systemic Inflammatory Markers and Machine Learning after Concurrent Chemoradiotherapy for Head and Neck Cancers. Cancers 2023, 15, 3540. https://doi.org/10.3390/cancers15143540
So YK, Kim Z, Cheong TY, Chung MJ, Baek C-H, Son Y-I, Seok J, Jung Y-S, Ahn M-J, Ahn YC, et al. Detection of Cancer Recurrence Using Systemic Inflammatory Markers and Machine Learning after Concurrent Chemoradiotherapy for Head and Neck Cancers. Cancers. 2023; 15(14):3540. https://doi.org/10.3390/cancers15143540
Chicago/Turabian StyleSo, Yoon Kyoung, Zero Kim, Taek Yoon Cheong, Myung Jin Chung, Chung-Hwan Baek, Young-Ik Son, Jungirl Seok, Yuh-Seog Jung, Myung-Ju Ahn, Yong Chan Ahn, and et al. 2023. "Detection of Cancer Recurrence Using Systemic Inflammatory Markers and Machine Learning after Concurrent Chemoradiotherapy for Head and Neck Cancers" Cancers 15, no. 14: 3540. https://doi.org/10.3390/cancers15143540
APA StyleSo, Y. K., Kim, Z., Cheong, T. Y., Chung, M. J., Baek, C. -H., Son, Y. -I., Seok, J., Jung, Y. -S., Ahn, M. -J., Ahn, Y. C., Oh, D., Cho, B. H., & Chung, M. K. (2023). Detection of Cancer Recurrence Using Systemic Inflammatory Markers and Machine Learning after Concurrent Chemoradiotherapy for Head and Neck Cancers. Cancers, 15(14), 3540. https://doi.org/10.3390/cancers15143540