Companion Animals as a Key to Success for Translating Radiation Therapy Research into the Clinic
Abstract
:Simple Summary
Abstract
1. Contribution of Small Animal Companions as a Preclinical Research Model in Radiation Oncology
1.1. Companion Animals’ Contribution to Radiobiology Research
1.2. Companion Animals’ Contribution to Radiotherapy Technical Development
2. The Evolution of the Veterinary Radiation Oncology Specialty: From Education to Organized Radiotherapy Centers
3. Future Research Contributions from Companion Animals and Veterinary Radiation Oncology
3.1. Radiotherapy and Immunotherapy Combinations
3.2. Targeted Radionuclide Therapy
3.3. Flash Radiotherapy
3.4. Spatially Fractionated Radiotherapy
3.5. Limitations
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lecouteur, R.; Gillette, E.; Dow, S.; Powers, B. Radiation response of autochthonous canine brain tumors. Int. J. Radiat. Oncol. Biol. Phys. 1987, 13, 166. [Google Scholar] [CrossRef]
- Powers, B.; Thames, H.; Gillette, S.; Smith, C.; Beck, E.; Gillette, E. Volume effects in the irradiated canine spinal cord; do they exist when the probability of injury is low? Radiother. Oncol. 1998, 46, 297–306. [Google Scholar] [CrossRef] [PubMed]
- McChesney, S.; Gillette, E.L.; Powers, B. Response of the canine lung to fractionated irradiation: Pathologic changes and isoeffect curves. Int. J. Radiat. Oncol. Biol. Phys. 1989, 16, 125–132. [Google Scholar] [CrossRef] [PubMed]
- McChesney, S.; Gillette, E.; Orton, E. Canine Cardiomyopathy after whole heart and partial lung irradiation. Int. J. Radiat. Oncol. Biol. Phys. 1988, 14, 1169–1174. [Google Scholar] [CrossRef]
- Roberts, S.; Lavach, J.; Severin, G.; Withrow, S.; Gillette, E. Ophthalmic complications following megavoltage irradiation of the nasal and paranasal cavities in dogs. J. Am. Vet. Med. Assoc. 1987, 190, 43–47. [Google Scholar]
- Powers, B.; Beck, E.; Gillette, E.; Gould, D.; Lecouteur, R. Pathology of radiation injury to the spinal cord. Int. J. Radiat. Oncol. Biol. Phys. 1992, 23, 539. [Google Scholar] [CrossRef]
- Kirkpatrick, J.; Van der Kogel, A.; Schultheiss, T. Radiation Dose -Volume effects in the spinal cord. Int. J. Radiat. Oncol. Biol. Phys. 2010, 176, S42–S49. [Google Scholar] [CrossRef]
- Enami, B.; Lyman, I.; Brown, J.; Coia, A.; Goitein, L. Tolerance of Normal Tissue to therapeutic irradiation radiation. Int. J. Radiat. Oncol. Biol. Phys. 1991, 15, 109–122. [Google Scholar] [CrossRef]
- Store, R.; Raff, R.F.; Graham, T.; Aappebaum, F.R.; Deeg, H.J.; Schuening, F.G.; Shulman, H.; Pepe, M. Marrow Toxicity of fractionated vs.single dose total body irradiation is identical in a canine model Assoc. Int. J. Radiat. Oncol. Biol. Phys. 1993, 26, 275–283. [Google Scholar] [CrossRef]
- Ahmadou-Suka, F.; Gilette, E.; Withrow, S.; Husted, P.; Nelson, W.; Whiteman, C. Pathologic response of the pancreas and duodenum to experimental intraoperative irradiation. Int. J. Radiat. Oncol. Biol. Phys. 1988, 14, 1197–1204. [Google Scholar] [CrossRef]
- Hoopes, P.; Gilette, E.; Withrow, S. Intraoperative irradiation of the canine abdominal aorta and vena cava. Int. J. Radiat. Oncol. Biol. Phys. 1987, 13, 715–722. [Google Scholar] [CrossRef] [PubMed]
- Gillette, E.; Powers, B.; Beck, E.; McChesney, S.; Withrow, S. Aortic wall injury following intra operative radiation. Int. J. Radiat. Oncol. Biol. Phys. 1988, 15, 1401–1406. [Google Scholar] [CrossRef] [PubMed]
- Gilette, S.; Gilette, E.; Powers, B.; Park, R. Withrow Ureteral injury following experimental intraoperative radiation. Int. J. Radiat. Oncol. Biol. Phys. 1989, 17, 791–798. [Google Scholar] [CrossRef] [PubMed]
- Barnes, M.; Pass, H.; Deluca, A.; Tochner, Z.; Potter, D.; Terrill, R.; Sindelar, W.; Kinsella, T. Response of the mediastinal and thoracic viscera of the dog to intraoperative radiation therapy (IORT). Int. J. Radiat. Oncol. Biol. Phys. 1987, 13, 371–378. [Google Scholar] [CrossRef]
- Sindelar, W.; Kinsella, R. Normal Tolerance to intra operative radiation therapy. Surg. Oncol. Clin. N. Am. 2003, 12, 925–942. [Google Scholar] [CrossRef]
- Sindelar, W.; Tepper, J.; Travis, E.; Terrill, R. Tolerance of retroperitoneal structures to intraoperative radiation. Ann. Surg. 1982, 196, 601–608. [Google Scholar] [CrossRef]
- Tepper, J.; Sindelar, W.; Travis, E.; Terrill, R.; Padikal, T. Tolerance of canine anastomoses to intraoperative therapy. Int. J. Radiat. Oncol. Biol. Phys. 1983, 9, 987–992. [Google Scholar] [CrossRef]
- Sindelar, W.; Tepper, J.; Travis, E. Tolerance of the Bile duct to intraoperative radiation therapy. Surgery 1982, 92, 533–540. [Google Scholar]
- Sindelar, W.; Hoekstra, H.; Kinsella, T.; Barnes, M.; Deluca, A.; Tochner, Z.; Pass, H.; Kranda, K.; Terrill, R. Response of the canine esophagus to intraoperative electron beam radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 1988, 15, 663–669. [Google Scholar] [CrossRef]
- Deluca, A.; Johnstone, P.; Ollayos, C.; Bacher, J.; Terrill, R.; Kinsella, T.; Sindelar, W. Tolerance of the bladder to intraoperative radiation in a canine model: A five year follow -up. Int. J. Radiat. Oncol. Biol. Phys. 1994, 30, 339–345. [Google Scholar] [CrossRef]
- Sindelar, W.; Kinsella, R.; Tepper, E.; Travis, E.; Rosenberg, S.; Glastein, E. Experimental and clinical studies with interoperative radiotherapy. Surg. Gynecol. Obstet. 1983, 15, 2015–2019. [Google Scholar]
- Gemer l Kane, A.; Gilles, C.; Kimler, B.; Smalley, R.; Hassanein, R. Radiation-induced vascular changes; a canine model for intraoperative radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 1989, 17, 245–246. [Google Scholar]
- Cury, F.L.; Patel, N.; Brimo, F.; Dufour, N.; Hudon, C.; Bera, R.; Cabrera, T.; Patrocinio, H. Renal Tolerance to stereotactic body radiation therapy; An assessment of volume and anatomical site irradiated. Int. J. Radiat. Oncol. Biol. Phys. 2014, 90, S468. [Google Scholar] [CrossRef]
- Lindegaard, J.; Grau, C. Has the outlook improved for amisfostine as a clinical radioprotector. Radiother. Oncol. 2000, 57, 1957–1963. [Google Scholar] [CrossRef]
- McChesney, S.; Gillette, E.; Dewhirst, W.; Withrow, S. Influence of WR2721 on radiation response of canine soft tissue. Int. J. Radiat. Oncol. Biol. Phys. 1986, 12, 1957–1963. [Google Scholar] [CrossRef]
- Clémenson, C.; Liu, W.; Bricout, D.; Soyez-Herkert, L.; Chargari, C.; Mondini, M.; Haddad, R.; Wang-Zhang, X.; Benel, L.; Bloy, C.; et al. Preventing Radiation-Induced Injury by Topical Application of an Amifostine Metabolite-Loaded Thermogel. Int. J. Radiat. Oncol. 2019, 104, 1141–1152. [Google Scholar] [CrossRef] [PubMed]
- Boss, M.-K.; Ke, Y.; Bian, L.; Harrison, L.G.; Lee, B.-I.; Prebble, A.; Martin, T.; Trageser, E.; Hall, S.; Wang, D.D.; et al. Therapeutic intervention using a smad7-based Tat protein to treat radiation -induced oral mucositis. Int. J. Radiat. Oncol. Biol. Phys. 2022, 112–113, 759–770. [Google Scholar] [CrossRef]
- Gillette, S.M.; Dewhirst, M.W.; Gillette, E.L.; Thrall, D.E.; Page, R.L.; Powers, B.E.; Withrow, S.J.; Rosner, G.; Wong, C.; Sim, D.A. Response of canine soft tissue sarcoma to radiation or radiation plus hyperthermia:a randomized phase II study. Int. J. Hyperth. 1992, 8, 309–320. [Google Scholar] [CrossRef]
- Thrall, D.E.; LaRue, S.M.; Pruitt, A.F.; Case, B.; Dewhirst, M.W. Changes in tumour oxygenation during fractionated hyperthermia and radiation therapy in spontaneous sarcoma. Int. J. Hyperth. 2006, 22, 365–373. [Google Scholar] [CrossRef]
- Brown, J. SR 4233 (Tirapazamine) a new anticancer drug exploiting hypoxia in solid tumours. Br. J. Cancer 1993, 67, 1163–1179. [Google Scholar] [CrossRef] [Green Version]
- Stubbs, J.B.; Frankel, R.H.; Schultz, K.; Crocker, I.; Dillehay, D.; Olson, J.J. Pre-clinical evaluation of a novel device for delivering brachytherapy to resected brain cavity. J. Neurosurg. 2002, 96, 335–343. [Google Scholar] [CrossRef]
- Won, J.H.; Lee, J.D.; Wang, H.J.; Kim, G.E.; Kim, B.W.; Yim, H.; Han, S.K.; Park, C.H.; Joh, C.W.; Kim, K.H.; et al. Self- expandable covered metallic esophageal stent impregnated with Beta -emitting radionuclide: An experimental study in canine esophagus. Int. J. Radiat. Oncol. Biol. Phys. 2002, 53, 1005–1013. [Google Scholar] [CrossRef]
- Salem, R.; Russel, D. Hunter Yttrium 90 microspheres for the treatment of hepatocellular carcinoma a review. Int. J. Radiat. Oncol. Biol. Phys. 2006, 66, S83–S88. [Google Scholar] [CrossRef] [PubMed]
- Santanam, L.; Malinowski, K.; Hubenshmidt, J.; Dimmer, S.; Mayse, M.L.; Bradley, J.; Chaudhari, A.; Lechleiter, K.; Goddu, S.K.M.; Esthappan, J.; et al. Fiducial -based translational localization accuracy of electromagnetic tracking system and on board kilovolatge imaging system. Int. J. Radiat. Oncol. Biol. Phys. 2008, 70, 892–899. [Google Scholar] [CrossRef]
- Yin, F.-F.; Kim, J.G.; Haughton, C.; Brown, S.L.; Ajlouni, M.; Stronati, M.; Pamukov, N.; Kim, J.H. Extracranial Radiosurgery: Immobilizing Liver motion in dogs using High -frequency jet ventilation and total intravenous anesthesia. Int. J. Radiat. Oncol. Biol. Phys. 2006, 49, 211–216. [Google Scholar] [CrossRef]
- Hansen, A.E.; Kristensen, A.T.; Jørgensen, J.T.; McEvoy, F.J.; Busk, M.; van der Kogel, A.J.; Bussink, J.; Engelholm, S.A.; Kjær, A. 64Cu-ATSM and 18FDG PET uptake and 64Cu-ATSM autoradiography in spontaneous canine tumors: Comparison with pimonidazole hypoxia immunohistochemistry. Radiat. Oncol. 2012, 7, 89. [Google Scholar] [CrossRef] [Green Version]
- Bradshaw, T.; Fu, R.; Bowen, S.; Forrest, L.; Jeraj, R. Predicting location of recurrence using FDG, FLT, and CU-ATSM PET in canine sinonasal tumors treated with radiotherapy. Phys. Med. Biol. 2015, 60, 5211–5234. [Google Scholar] [CrossRef] [PubMed]
- Bowen, S.; Chappel, R.; Bentzen, S.; Deveau, M.; Forrest, J.; Jeraj, R. Spatially resolved regression analysis of pre-tretamnet FDG, FLT and CU-Atsm PET from Post treatment FDG pet and exploratory study. Radiother. Oncol. 2012, 105, 41–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agus, D.; Jaffee, E.; Van Dang, C. Cancer Moonshot 2.0. Lancet Oncol. 2021, 22, 164–165. [Google Scholar] [CrossRef]
- Leblanc, A.; Mazcko, C. Improving Human cancer therapy trough the evaluation of pet dogs. Nat. Rev. Cancer 2020, 20, 727–742. [Google Scholar] [CrossRef]
- LeBlanc, A.; Mazcko, C.; Khanna, C. Defining the value of a comparative approach to cancer drug development. Clin. Cancer Res. 2016, 22, 2133–2138. [Google Scholar] [CrossRef] [Green Version]
- Gordon, I.; Paoloni, M.; Mazcko, C.; Khanna, C. The comparative oncology trials consortium: Using spontaneously occurring cancers in dogs to inform the cancer drug development pathway. PLoS Med. 2009, 6, e1000161. [Google Scholar] [CrossRef]
- Fan, T.; Khanna, C. Comparative aspects of osteosarcoma pathogenesis in humans and dogs. Vets. Sci. 2015, 2, 210–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deutsch, E.; Chargari, C.; Galluzzi Kroemer, G. Optimizing efficacy and reducing toxicity of anticancer radioimmunotherapy. Lancet Oncol. 2011, 920, E452–E463. [Google Scholar] [CrossRef]
- Formenti, S.; Demaria, S. Systemic effects of local radiotherapy. Lancet Oncol. 2009, 10, 10718–10726. [Google Scholar] [CrossRef] [Green Version]
- Vanpouille-Box, C.; Formenti, S.; Demaria, S. Towards precision radiotherapy for use with immune checkpoint blockers. Clin. Cancer Res. 2018, 24, 259–265. [Google Scholar] [CrossRef] [Green Version]
- Monjazeb, A.M.; Kent, M.S.; Grossenbacher, S.K.; Mall, C.; Zamora, A.E.; Mirsoian, A.; Chen, M.; Kol, A.; Shiao, S.L.; Reddy, A.; et al. Blocking Indolamine-2,3 Dioxygenase Rebound Immune suppression boosts Anti-tumor effects of radio-immunotherapy in murine models and spontaneous malignancies. Clin. Cancer Res. 2016, 22, 4328–4340. [Google Scholar] [CrossRef] [Green Version]
- Canter, R.J.; Grossenbacher, S.K.; Foltz, J.A.; Sturgill, I.R.; Park, J.S.; Luna, J.I.; Kent, M.S.; Culp, W.T.; Chen, M.; Modiano, J.F.; et al. Radiotherapy enhances natural killer cell cytotoxicity and localization in pre-clinical canine sarcomas and first -in -dog clinical trial. J. Immunother. Cancer 2017, 5, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Omar, N.B.; Bentley, R.T.; Crossman, D.K.; Foote, J.B.; Koehler, J.W.; Markert, J.M.; Platt, S.R.; Rissi, D.R.; Shores, A.; Sorjonen, D.; et al. Safety and interim survival data after intracranial administarion of M032, a genetically engineered oncolytic HSV-1 expressing IL12, in pet dogs with sporadic glioma. Neurosur Focus 2021, 50, E5. [Google Scholar] [CrossRef] [PubMed]
- Ammons, D.T.; Guth, A.; Rozental, A.J.; Kurihara, J.; Marolf, A.J.; Chow, L.; Griffin, J.F.; Makii, R.; MacQuiddy, B.; Boss, M.-K.; et al. Reprogramming the Canine Glioma microenvironment with tumor vaccination plus oral Losartan and Propanolol induces objective responses. Cancer Res. Commun. 2022, 2, 1657–1667. [Google Scholar] [CrossRef]
- Boss, M.; Harisson, L.; Gold, A.; Karam, S.; Regan, D. Canine oral squamous cell carcinoma as spontaneous, translational model for radiation and immunology research. Front. Oncol. 2023, 12, 1033704. [Google Scholar] [CrossRef] [PubMed]
- Patel, R.; Hernandez, R.; Carlson, P.; Grudenski, J.; Bates, A.M.; Jagodinsky, J.C.; Erbe, E.; Marsh, I.R.; Arthur, I.; Aluicio-Sarduy, E.; et al. Low-dose targeted radionuclide therapy renders immunologically cold tumors responsive to immune checkpoint blockade. Sci. Transl. Med. 2021, 13, eabb3631. [Google Scholar] [CrossRef]
- Fu, Y.; Yu, J.; Liatsou, I.; Du, Y.; Josefsson, A.; Nedrow, J.R.; Rindt, H.; Bryan, J.N.; Kraitchman, D.L.; Sgouros, G. Anti -GD2 antibody for radiopharmaceutical imaging of osteosarcoma. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 4382–4393. [Google Scholar] [CrossRef]
- Favaudon, V.; Caplier, L.; Monceau, V.; Pouzoulet, F.; Sayarath, M.; Fouillade, C.; Poupon, M.F.; Brito, I.; Hupé, P.; Bourhis, J.; et al. Ultrahigh dose -rate FLASHi rradiation increase the differential response between normal and tumor tisuue in mice. Sci. Transl. Med. 2014, 6, 245ra93. [Google Scholar] [CrossRef]
- Montay-Gruel, P.; Acharya, M.M.; Gonçalves Jorge, P.; Petit, B.; Petridis, I.G.; Fuchs, P.; Leavitt, R.; Petersson, K.; Gondré, M.; Ollivier, J.; et al. Hypofractionated FLASH-RT as an effective treatment against Glioblastoma that reduces Neurocognitive side effects in mice. Clin. Cancer Res. 2021, 27, 775–784. [Google Scholar] [CrossRef]
- Limoli, C.; Vozenin, M.-C. Reinventing Radiobiology in the light of FLASH radiotherapy. Annu. Rev. Cancer Biol. 2023, 7, 1–21. [Google Scholar] [CrossRef]
- Vozenin, M.-C.; De Fornel, P.; Petersson, K.; Favaudon, V.; Jaccard, M.; Germond, J.-F.; Petit, B.; Burki, M.; Ferrand, G.; Patin, D.; et al. The advantage of FLASH radiotherapy conformed in mini-pigs and cat cancer patients. Clin. Cancer Res. 2019, 25, 35–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rohrer Bley, C.; Wolf, F.; Gonçalves Jorge, P.; Grilj, V.; Petridis, I.; Petit, B.; Böhlen, T.T.; Moeckli, R.; Limoli, C.; Bourhis, J.; et al. Dose and Volume-Limiting late Toxicity of Flash Radiotehrapy in cats with squamous cell carcinoma of the Nasal Planum and in Mini pigs. Clin. Cancer Res. 2022, 28, 3814–3823. [Google Scholar] [CrossRef]
- Konradsson, E.; Arendt, M.L.; Bastholm Jensen, K.; Børresen, B.; Hansen, A.E.; Bäck, S.; Kristensen, A.T.; Munck af Rosenschöld, P.; Ceberg, C.; Petersson, K. Establishement and initial experience of clinical FLASH radiotherapy in Canine Cancer Patients. Front. Oncol. 2021, 13, 658005. [Google Scholar] [CrossRef]
- Velalopolou, A.; Karagounis, I.; Cramer, G.; Kim, M.; Skoufos, G.; Goia, D. Flash Proton radiotherapy spares normal epithelial and mesenchymal tissues while preserving sarcoma response. Cancer Res. 2021, 81, 4808–4821. [Google Scholar] [CrossRef]
- Pellizzon, A. Lattice radiation therapy, its concept and impact in the immunomodulation cancer treatment era. Rev. Assoc. Med. Bras. 2020, 66, 728–731. [Google Scholar] [CrossRef] [PubMed]
- Adam, J.F.; Balosso, J.; Bayat, S.; Berkvens, P.; Berruyer, G.; Bräuer-Krisch, E.; Brochard, T.; Chamel, G.; Desagneaux, A.; Drevon-Gaud, R.; et al. Toward neuro-oncologic clinical trials of High-Dose -Rate synchrotron microbeam radiation therapy; First Treatment of a Spontaneous canine brain tumor. Int. J. Radiat. Oncol. Biol. Phys. 2022, 113, 967–973. [Google Scholar] [CrossRef] [PubMed]
Organ/Tissue | Morbidity Scoring | |||
---|---|---|---|---|
0 | 1 | 2 | 3 | |
Skin | no change over baseline | erythema, dry desquamation, alopecia/epilation | patchy moist desquamation without edema | confluent moist desquamation with edema and/or ulceration, necrosis, hemorrhage |
Mucous membranes/oral cavity | no change over baseline | injection without mucositis | patchy mucositis with patient seemingly pain-free | confluent fibrinous mucositis necessitating analgesia, ulceration, hemorrhage, necrosis |
Eye | no change over baseline | mild conjunctivitis and/or scleral injection | KCS requiring artificial tears, moderate conjunctivitis, or iritis necessitating therapy | severe keratitis with corneal ulceration and/or loss of vision, glaucoma |
Ear | no change over baseline | mild external otitis with erythema, pruritis 2° to dry desquamation, not requiring therapy | moderate external otitis requiring topical medication | severe external otitis with discharge and moist desquamation |
Lower GI | no change over baseline | change in quality of bowel habits not requiring medication, rectal discomfort | diarrhea requiring medication, rectal discomfort requiring analgesia | diarrhea requiring parenteral support, bloody discharge necessitating medical attention, fistula, perforation |
Genitourinary | no change over baseline | change in frequency of urination not requiring medication | change in frequency of urination necessitating medication | gross hematuria or bladder obstruction |
CNS | no change over baseline | minor neurologic findings not necessitating more than prednisone therapy | neurologic findings necessitating more than prednisone therapy | serious neurologic impairment such as paralysis, coma, obtunded |
Lung | no change over baseline | alveolar infiltrate; cough—no treatment required | dense alveolar infiltrate; cough—treatment required | Dyspnea |
Organ/Tissue | Morbidity Scoring | |||
---|---|---|---|---|
0 | 1 | 2 | 3 | |
Skin/hair | None | alopecia hyperpigmentation leukotrichia | asymptomatic induration (fibrosis) | severe induration causing physical impairment, necrosis |
CNS | None | mild neurologic signs not necessitating more than prednisone therapy | neurologic signs necessitating more than prednisone therapy | seizures, paralysis, coma |
Eye | None | asymptomatic cataracts, KCS | symptomatic cataracts, keratitis, corneal ulceration, minor retinopathy, mild to moderate glaucoma | panophthalmitis, blindness, severe glaucoma, retinal detachment |
Bone | None | pain on palpation | radiographic changes | necrosis |
Lung | None | patchy radiographic infiltrates | dense radiographic infiltrates | symptomatic fibrosis, pneumonitis |
Heart | None | ECG changes | pericardial effusion | pericardial tamponade, congestive heart failure |
Joint | None | Stiffness | decreased range of motion | complete fixation |
Bladder | None | microscopic hematuria | pollakiuria, dysuria, hematuria | contracted bladder |
Advantages of Companion Animals in Preclinical Research | Emerging Radiation Techniques Studied in Companion Animals |
---|---|
Spontaneous disease with months or years for evolution | Trials on radiation therapy combined with immunotherapy; research for the abscopal effect |
Genotype and phenotype heterogeneity | Theragnostics |
Some cancers are similar to their human counterpart e.g., glioma, melanoma, or osteosarcoma including metastatic potential (biology) | Ultrahigh-dose rate radiation e.g., flash |
Tumor microenvironment is natural | Lattice radiation therapy |
Natural life conditions with a robust immune system | Microbeam radiation therapy |
Larger than rodents. This allows use of the same equipment and dosimetry as humans: CT scan, MRI, PET scan, Modern LINAC, Cyberknife, etc. | Particle therapy: protons, carbon, heavy ions |
Follow-up and response to cancer therapy fast (months to a few years on average) in comparison to humans (decade)-Dogs life span ~15 years | Neutrons; boron-neutron-capture therapy |
Money saving, could avoid billion dollars wasted on clinical trials | Novel isotopes and forms of brachytherapy |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vanhaezebrouck, I.F.; Scarpelli, M.L. Companion Animals as a Key to Success for Translating Radiation Therapy Research into the Clinic. Cancers 2023, 15, 3377. https://doi.org/10.3390/cancers15133377
Vanhaezebrouck IF, Scarpelli ML. Companion Animals as a Key to Success for Translating Radiation Therapy Research into the Clinic. Cancers. 2023; 15(13):3377. https://doi.org/10.3390/cancers15133377
Chicago/Turabian StyleVanhaezebrouck, Isabelle F., and Matthew L. Scarpelli. 2023. "Companion Animals as a Key to Success for Translating Radiation Therapy Research into the Clinic" Cancers 15, no. 13: 3377. https://doi.org/10.3390/cancers15133377
APA StyleVanhaezebrouck, I. F., & Scarpelli, M. L. (2023). Companion Animals as a Key to Success for Translating Radiation Therapy Research into the Clinic. Cancers, 15(13), 3377. https://doi.org/10.3390/cancers15133377