A Systematic Review of the Current Status of Magnetic Resonance–Ultrasound Images Fusion Software Platforms for Transperineal Prostate Biopsies
Abstract
:Simple Summary
Abstract
1. Introduction
2. Evidence Acquisition
2.1. Systematic Review
2.2. Quality Assessment of Selected Studies
2.3. Data Extraction in the Selected Studies
2.4. Searching Devices for MRI–TRUS Fusion Prostate Biopsies in Google and Their Characteristics
3. Evidence Synthesis
3.1. Demographics
3.2. Characteristics of the Biopsies and MRI
3.3. Significant Clinically Prostate Cancer Definition
3.4. Cancer Detection Rates (CDR)
3.5. Cancer Detection according to Population and Software
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef]
- Bertuccio, P.; Santucci, C.; Carioli, G.; Malvezzi, M.; La Vecchia, C.; Negri, E. Mortality Trends from Urologic Cancers in Europe over the Period 1980-2017, and a Projection to 2025. Eur. Urol. Oncol. 2021, 4, 677–696. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Morote, J.; Borque-Fernando, Á.; Triquell, M.; Campistol, M.; Celma, A.; Regis, L.; Abascal, J.M.; Servian, P.; Planas, J.; Mendez, O.; et al. A Clinically Significant Prostate Cancer Predictive Model Using Digital Rectal Examination Prostate Volume Category to Stratify Initial Prostate Cancer Suspicion and Reduce Magnetic Resonance Imaging Demand. Cancers 2022, 14, 5100. [Google Scholar] [CrossRef] [PubMed]
- Draisma, G.; Boer, R.; Otto, S.J.; van de Cruijsen, I.W.; Damhuis, R.A.; Schröder, F.H.; de Koning, H.J. Lead times and overdetection due to prostate specific antigen screening: Estimates from the European Randomized study of Screening for Prostate Cancer. J. Natl. Cancer Inst. 2003, 95, 868–878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Epstein, J.I.; Egevad, L.; Amin, M.B.; Delahunt, B.; Srigley, J.R.; Humphrey, P.A. Grading Committee The 2014 International Society of Urological Pathology (ISUP) Consensus Conference on Gleason Grading of Prostatic Carcinoma: Definition of Grading Patterns and Proposal for a New Grading System. Am. J. Surg. Pathol. 2016, 40, 244–252. [Google Scholar] [CrossRef]
- Stabile, A.; Giganti, F.; Rosenkrantz, A.B.; Villeirs, G.; Emberton, M.; Moore, C.M.; Kasivisvanathan, V. Multiparametric MRI for prostate cancer diagnosis: Current status and future directions. Nat. Rev. Urol. 2020, 17, 41–61. [Google Scholar] [CrossRef] [PubMed]
- Hoeks, C.M.; Barentsz, J.O.; Hambrock, T.; Yakar, D.; Somford, D.M.; Heijmink, S.W.; Scheenen, T.W.; Vos, P.C.; Huisman, H.; van Oort, I.M.; et al. Prostate cancer: Multiparametric MR imaging for detection, localization, and staging. Radiology 2011, 261, 46–66. [Google Scholar] [CrossRef]
- Weinreb, J.C.; Barentsz, J.O.; Choyke, P.L.; Cornud, F.; Haider, M.A.; Macura, K.J. PI-RADS Prostate Imaging—Reporting and Data System: 2015, Version 2. Eur. Urol. 2016, 69, 16–40. [Google Scholar] [CrossRef]
- Jue, J.S.; Rastinehad, A.R. MRI Fusion Transperineal Prostate Biopsy Instructions and Troubleshooting. J. Endourol. 2021, 35, S2–S6. [Google Scholar] [CrossRef]
- Di Franco, C.; Jallous, H.; Porru, D.; Gilberto, G.L.; Cebrelli, T.; Tinelli, C.; Rovereto, B. A retrospective comparison between transrectal and transperineal prostate biopsy in the detection of PCa. Arch. Ital. Urol. Androl. 2017, 89, 55–59. [Google Scholar] [CrossRef] [PubMed]
- Westhoff, N.; Siegel, F.P.; Hausmann, D.; Polednik, M.; von Hardenberg, J.; Michel, M.S.; Ritter, M. Precision of MRI/ultrasound-fusion biopsy in prostate cancer diagnosis: An ex vivo comparison of alternative biopsy techniques on prostate phantoms. World J. Urol. 2017, 35, 1015–1022. [Google Scholar] [CrossRef] [PubMed]
- Ippoliti, S.; Fletcher, P.; Orecchia, L.; Miano, R.; Kastner, C.; Barrett, T. Optimal biopsy approach for detection of clinically significant prostate cancer. Br. J. Radiol. 2022, 95, 20210413. [Google Scholar] [CrossRef] [PubMed]
- Mottet, N.; Cornford, P.; van den Bergh, R.C.N.; Briers, E.; De Santis, M.; Gillessen, M.; Fanti, S.; Fossati, N.; Gandaglia, G.; Gillessen, S.; et al. EAU EANM ESTRO ESUR ISUP SIOG Guidelines on Prostate Cancer 2022 Update. Part 1: Screening Diagnosis, and Local Treatment with Curative Intent. Eur. Urol. 2021, 79, 243–262. [Google Scholar] [CrossRef] [PubMed]
- Drost, F.H.; Osses, D.F.; Nieboer, D.; Steyerberg, E.W.; Roobol, M.J.; Schoots, I.G. Prostate MRI, with or without MRI-targeted biopsy, and systematic biopsy for detecting prostate cancer. Cochrane Database Syst. Rev. 2019, 4, CD012663. [Google Scholar] [CrossRef]
- Lu, Z.; Kim, W.; Wilbur, W.J. Evaluation of query expansion using MeSH in PubMed. Inf. Retrieval. 2009, 12, 69–80. [Google Scholar] [CrossRef] [Green Version]
- Shamseer, L.; Moher, D.; Clarke, M.; Ghersi, G.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A.; PRISMA-P Group. Preferred reporting items for systematic review and meta-analysis protocols (prisma-p) 2015: Elaboration and explanation. BMJ 2015, 350, g747. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Lin, J.; Demner-Fushman, D. Evaluation of PICO as a knowledge representation for clinical questions. In AMIA Annual Symposium Proceedings; American Medical Informatics Association: Bethesda, MD, USA, 2006; Volume 2006, pp. 359–363. [Google Scholar]
- Whiting, P.F.; Rutjes, A.W.; Westwood, M.E.; Mallett, S.; Deeks, J.J.; Reitsma, J.B.; Leeflang, M.M.; Sterne, J.A.; Bossuyt, P.M.; QUADAS-2 Group. QUADAS-2: A revised tool for the quality assessment of diagnostic accuracy studies. Ann. Intern. Med. 2011, 155, 529–536. [Google Scholar] [CrossRef]
- Moore, C.M.; Kasivisvanathan, V.; Eggener, S.; Emberton, M.; Fütterer, J.J.; Gill, I.S.; Grubb Iii, R.L.; Hadaschik, B.; Klotz, L.; Margolis, D.J.; et al. Standards of reporting for MRI-targeted biopsy studies (START) of the prostate: Recommendations from an International Working Group. Eur. Urol. 2013, 64, 544–552. [Google Scholar] [CrossRef]
- Jacewicz, M.; Rud, E.; Galtung, K.F.; Noor, D.; Baco, E. Cancer Detection Rates in Targeted Transperineal MRI-TRUS Elastic Fusion-guided Prostate Biopsies Performed Under Local Anesthesia. Anticancer Res. 2021, 41, 4395–4400. [Google Scholar] [CrossRef]
- Mischinger, J.; Kaufmann, S.; Russo, G.I.; Harland, N.; Rausch, S.; Amend, B.; Scharpf, M.; Loewe, L.; Todenhoefer, T.; Notohamiprodjo, M.; et al. Targeted vs systematic robot-assisted transperineal magnetic resonance imaging-transrectal ultrasonography fusion prostate biopsy. BJU Int. 2018, 121, 791–798. [Google Scholar] [CrossRef] [Green Version]
- Lee, A.Y.; Chen, K.; Law, Y.M.; Ho, H.S.; Cheng, C.W.; Yuen, J.S.; Tay, K.J. Robot-assisted Magnetic Resonance Imaging-ultrasound Fusion Transperineal Targeted Biopsy. Urology 2021, 155, 46. [Google Scholar] [CrossRef]
- Marra, G.; Zhuang, J.; Beltrami, M.; Calleris, G.; Zhao, X.; Marquis, A.; Kan, Y.; Oderda, M.; Huang, H.; Faletti, R.; et al. Transperineal freehand multiparametric MRI fusion targeted biopsies under local anaesthesia for prostate cancer diagnosis: A multicentre prospective study of 1014 cases. BJU Int. 2021, 127, 22–130. [Google Scholar] [CrossRef]
- Jacewicz, M.; Günzel, K.; Rud, E.; Lauritzen, P.M.; Galtung, K.F.; Hinz, S.; Magheli, A.; Baco, E. Multicenter transperineal MRI-TRUS fusion guided outpatient clinic prostate biopsies under local anesthesia. Urol. Oncol. 2021, 39, e1–e432. [Google Scholar] [CrossRef] [PubMed]
- Miah, S.; Hosking-Jervis, F.; Connor, M.J.; Eldred-Evans, D.; Shah, T.T.; Arya, M.; Barber, N.; Bhardwa, J.; Bott, S.; Burke, D.; et al. A Multicentre Analysis of the Detection of Clinically Significant Prostate Cancer Following Transperineal Image-fusion Targeted and Nontargeted Systematic Prostate Biopsy in Men at Risk. Eur. Urol. Oncol. 2020, 3, 262–269. [Google Scholar] [CrossRef] [PubMed]
- Günzel, K.; Magheli, A.; Busch, J.; Baco, E.; Cash, H.; Heinrich, S.; Edler, D.; Schostak, M.; Borgmann, H.; Schlegel, J.; et al. Evaluation of systematic prostate biopsies when performing transperineal MRI/TRUS fusion biopsy with needle tracking-what is the additional value? Int. Urol. Nephrol. 2022, 54, 2477–2483. [Google Scholar] [CrossRef] [PubMed]
- Mehmood, S.; Alothman, K.I.; Alwehaibi, A.; Alhashim, S.M. Diagnostic efficacy and safety of transperineal prostate targeted and systematic biopsy: The preliminary experience of first 100 cases. Arch. Ital. Urol. Androl. 2021, 28, 127–131. [Google Scholar] [CrossRef]
- Hakozaki, Y.; Matsushima, H.; Kumagai, J.; Murata, T.; Masuda, T.; Hirai, Y.; Oda, M.; Kawauchi, N.; Yokoyama, M.; Homma, Y. A prospective study of magnetic resonance imaging and ultrasonography (MRI/US)-fusion targeted biopsy and concurrent systematic transperineal biopsy with the average of 18-cores to detect clinically significant prostate cancer. BMC Urol. 2017, 17, 117. [Google Scholar] [CrossRef] [Green Version]
- Görtz, M.; Nyarangi-Dix, J.N.; Pursche, L.; Schütz, V.; Reimold, P.; Schwab, C.; Stenzinger, A.; Sültmann, H.; Duensing, S.; Schlemmer, H.P.; et al. Impact of Surgeon’s Experience in Rigid versus Elastic MRI/TRUS-Fusion Biopsy to Detect Significant Prostate Cancer Using Targeted and Systematic Cores. Cancers 2022, 14, 886. [Google Scholar] [CrossRef]
- Hakozaki, Y.; Matsushima, H.; Murata, T.; Masuda, T.; Hirai, Y.; Oda, M.; Kawauchi, N.; Yokoyama, M.; Kume, H. Detection rate of clinically significant prostate cancer in magnetic resonance imaging and ultrasonography-fusion transperineal targeted biopsy for lesions with a prostate imaging reporting and data system version 2 score of 3–5. Int. J. Urol. 2019, 26, 217–222. [Google Scholar] [CrossRef]
- Miah, S.; Servian, P.; Patel, A.; Lovegrove, C.; Skelton, L.; Shah, T.T.; Eldred-Evans, D.; Arya, M.; Tam, H.; Ahmed, H.U.; et al. A prospective analysis of robotic targeted MRI-US fusion prostate biopsy using the centroid targeting approach. J. Robot. Surg. 2020, 14, 69–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tschirdewahn, S.; Wiesenfarth, M.; Bonekamp, D.; Püllen, L.; Reis, H.; Panic, A.; Kesch, C.; Darr, C.; Heß, J.; Giganti, F.; et al. Detection of Significant Prostate Cancer Using Target Saturation in Transperineal Magnetic Resonance Imaging/Transrectal Ultrasonography-fusion Biopsy. Eur. Urol. Focus. 2021, 7, 1300–1307. [Google Scholar] [CrossRef] [PubMed]
- Hansen, N.L.; Kesch, C.; Barrett, T.; Koo, B.; Radtke, J.P.; Bonekamp, D.; Schlemmer, H.P.; Warren, A.Y.; Wieczorek, K.; Hohenfellner, M.; et al. Multicentre evaluation of targeted and systematic biopsies using magnetic resonance and ultrasound image-fusion guided transperineal prostate biopsy in patients with a previous negative biopsy. BJU Int. 2017, 120, 631–638. [Google Scholar] [CrossRef] [PubMed]
- Lian, H.; Zhuang, J.; Wang, W.; Zhang, B.; Shi, J.; Li, D.; Fu, Y.; Jiang, X.; Zhou, W.; Guo, H. Assessment of free-hand transperineal targeted prostate biopsy using multiparametric magnetic resonance imaging-transrectal ultrasound fusion in Chinese men with prior negative biopsy and elevated prostate-specific antigen. BMC Urol. 2017, 17, 52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radtke, J.P.; Boxler, S.; Kuru, T.H.; Wolf, M.B.; Alt, C.D.; Popeneciu, I.V.; Steinemann, S.; Huettenbrink, C.; Bergstraesser-Gasch, C.; Klein, T.; et al. Improved detection of anterior fibromuscular stroma and transition zone prostate cancer using biparametric and multiparametric MRI with MRI-targeted biopsy and MRI-US fusion guidance. Prostate Cancer Prostatic Dis. 2015, 18, 288–296. [Google Scholar] [CrossRef]
- Kim, M.M.; Wu, S.; Lin, S.X.; Crotty, R.K.; Harisinghani, M.; Feldman, A.S.; Wu, C.L.; Dahl, D.M. Transperineal Multiparametric Magnetic Resonance Imaging-Ultrasound Fusion Targeted Prostate Biopsy Combined with Standard Template Improves Prostate Cancer Detection. J. Urol. 2022, 207, 86–94. [Google Scholar] [CrossRef]
- De Vulder, N.; Slots, C.; Geldof, K.; Ramboer, K.; Dekimpe, P.; Uvin, P.; Walgraeve, M.S.; Van Holsbeeck, A.; Gieraerts, K. Safety, and efficacy of software-assisted MRI-TRUS fusion-guided transperineal prostate biopsy in an outpatient setting using local anaesthesia. Abdom. Radiol. (N. Y.) 2023, 48, 694–703. [Google Scholar] [CrossRef]
- Winoker, J.S.; Wajswol, E.; Falagario, U.; Maritini, A.; Moshier, E.; Voutsinas, N.; Knauer, C.J.; Sfakianos, J.P.; Lewis, S.C.; Taouli, B.A.; et al. Transperineal Versus Transrectal Targeted Biopsy with Use of Electromagnetically tracked MR/US Fusion Guidance Platform for the Detection of Clinically Significant Prostate Cancer. Urology 2020, 146, 278–286. [Google Scholar] [CrossRef]
- Wajswol, E.; Winoker, J.S.; Anastos, H.; Falagario, U.; Okhawere, K.; Martini, A.; Treacy, P.J.; Voutsinas, N.; Knauer, C.J.; Sfakianos, J.P.; et al. A cohort of transperineal electromagnetically tracked magnetic resonance imaging/ultrasonography fusion-guided biopsy: Assessing the impact of inter-reader variability on cancer detection. BJU Int. 2020, 125, 531–540. [Google Scholar] [CrossRef]
- Hansen, N.L.; Barrett, T.; Kesch, C.; Pepdjonovic, L.; Bonekamp, D.; O’Sullivan, R.; Distler, F.; Warren, A.; Samel, C.; Hadaschik, B.; et al. Multicentre evaluation of magnetic resonance imaging supported transperineal prostate biopsy in biopsy-naïve men with suspicion of prostate cancer. BJU Int. 2018, 122, 40–49. [Google Scholar] [CrossRef]
- Shoji, S.; Hiraiwa, S.; Ogawa, T.; Kawakami, M.; Nakano, M.; Hashida, K.; Sato, Y.; Hasebe, T.; Uchida, T.; Tajiri, T. Accuracy of real-time magnetic resonance imaging-transrectal ultrasound fusion image-guided transperineal target biopsy with needle tracking with a mechanical position-encoded stepper in detecting significant prostate cancer in biopsy-naïve men. Int. J. Urol. 2017, 24, 288–294. [Google Scholar] [CrossRef]
- Kaufmann, B.; Saba, K.; Schmidli, T.S.; Stutz, S.; Bissig, L.; Britschgi, A.J.; Schaeren, E.; Gu, A.; Langenegger, N.; Sulser, T.; et al. Prostate cancer detection rate in men undergoing transperineal template-guided saturation and targeted prostate biopsy. Prostate 2022, 82, 388–396. [Google Scholar] [CrossRef] [PubMed]
- Fulco, A.; Chiaradia, F.; Ascalone, L.; Andracchio, V.; Greco, A.; Cappa, M.; Scarcia, M.; Ludovico, G.M.; Pagliarulo, V.; Palmieri, C.; et al. Multiparametric Magnetic Resonance Imaging-Ultrasound Fusion Transperineal Prostate Biopsy: Diagnostic Accuracy from a Single Center Retrospective Study. Cancers 2021, 3, 4833. [Google Scholar] [CrossRef]
- Thaiss, W.M.; Moser, S.; Hepp, T.; Kruck, S.; Rausch, S.; Scharpf, M.; Nikolaou, K.; Stenzl, A.; Bedke, J.; Kaufmann, S. Head-to-head comparison of biparametric versus multiparametric MRI of the prostate before robot-assisted transperineal fusion prostate biopsy. World J. Urol. 2022, 40, 2431–2438. [Google Scholar] [CrossRef]
- Kozel, Z.; Martin, C.; Mikhail, D.; Smith, A.; Griffiths, L.; Nethala, D.; Vira, M.; Schwartz, M. Initial experience and cancer detection rates of office-based transperineal magnetic resonance imaging-ultrasound fusion prostate biopsy under local anesthesia. Can. Urol. Assoc. J. 2022, 16, E350–E356. [Google Scholar] [CrossRef] [PubMed]
- Dahl, D.M.; Kim, M.M.; Wu, S.; Lin, S.X.; Crotty, R.K.; Cornejo, K.M.; Harisinghani, M.G.; Feldman, A.S.; Wu, C.L. Detection of clinically significant prostate cancer by transperineal multiparametric magnetic resonance imaging-ultrasound fusion targeted prostate biopsy in smaller prostates. Urol. Oncol. 2022, 40, e9–e451. [Google Scholar] [CrossRef] [PubMed]
- Pepe, P.; Pennisi, M.; Fraggetta, F. How Many Cores Should be Obtained During Saturation Biopsy in the Era of Multiparametric Magnetic Resonance? Experience in 875 Patients Submitted to Repeat Prostate Biopsy. Urology 2020, 137, 133–137. [Google Scholar] [CrossRef] [Green Version]
- Fletcher, P.; De Santis, M.; Ippoliti, S.; Orecchia, L.; Charlesworth, P.; Barrett, T.; Kastner, C. Vector Prostate Biopsy: A Novel Magnetic Resonance Imaging/Ultrasound Image Fusion Transperineal Biopsy Technique Using Electromagnetic Needle Tracking Under Local Anaesthesia. Eur. Urol. 2023, 83, 249–256. [Google Scholar] [CrossRef]
- Kaneko, M.; Medina, L.G.; Lenon, M.S.L.; Sayegh, A.S.; Lebastchi, A.H.; Cacciamani, G.E.; Aron, M.; Duddalwar, V.; Palmer, S.L.; Gill, I.S.; et al. Transperineal magnetic resonance imaging/transrectal ultrasonography fusion prostate biopsy under local anaesthesia: The ‘double-freehand’ technique. BJU Int. 2023, 131, 770–774. [Google Scholar] [CrossRef]
- Ahmed, H.U.; Kirkham, A.; Arya, M.; Illing, R.; Freeman, A.; Allen, C.; Emberton, M. Is it time to consider a role for MRI before prostate biopsy? Nat. Rev. Clin. Oncol. 2009, 6, 197–206. [Google Scholar] [CrossRef]
- Ahmed, H.U.; El-Shater Bosaily, A.; Brown, L.C.; Gabe, R.; Kaplan, R.; Parmar, M.K.; Collaco-Moraes, Y.; Ward, K.; Hindley, R.G.; Freeman, A.; et al. Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): A paired validating confirmatory study. Lancet 2017, 389, 815–822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kasivisvanathan, V.; Rannikko, A.S.; Borghi, M.; Panebianco, V.; Mynderse, L.A.; Vaarala, M.H.; Briganti, A.; Budäus, L.; Hellawell, G.; Hindley, R.G.; et al. MRI-targeted or standard biopsy for prostate-cancer diagnosis. N. Engl. J. Med. 2018, 378, 1767–1777. [Google Scholar] [CrossRef]
- Connor, M.J.; Gorin, M.A.; Eldred-Evans, D.; Bass, E.J.; Desai, A.; Dudderidge, T.; Winkler, M.; Ahmed, H.U. Landmarks in the evolution of prostate biopsy. Nat Rev Urol. 2023, 20, 241–258. [Google Scholar] [CrossRef]
- Rouvière, O.; Puech, P.; Renard-Penna, R.; Claudon, M.; Roy, C.; Mège-Lechevallier, F.; Decaussin-Petrucci, M.; Dubreuil-Chambardel, M.; Magaud, L.; Remontet, L.; et al. Use of prostate systematic and targeted biopsy on the basis of multiparametric MRI in biopsy-naive patients (MRI-FIRST): A prospective, multicentre, paired diagnostic study. Lancet Oncol. 2019, 20, 100–109. [Google Scholar] [CrossRef] [PubMed]
- Van der Leest, M.; Cornel, E.; Israël, B.; Hendriks, R.; Padhani, A.R.; Hoogenboom, M.; Zamecnik, P.; Bakker, D.; Yanti Setiasti, A.; Veltman, J.; et al. Head-to-head Comparison of Transrectal Ultrasound-guided Prostate Biopsy Versus Multiparametric Prostate Resonance Imaging with Subsequent Magnetic Resonance-guided Biopsy in Biopsy-naïve Men with Elevated Prostate-specific Antigen: A Large Prospective Mu. Eur. Urol. 2019, 75, 570–578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elkhoury, F.F.; Felker, E.R.; Kwan, L.; Sisk, A.E.; Delfin, M.; Natarajan, S.; Marks, L.S. Comparison of targeted vs systematic prostate biopsy in men who are biopsy naive: The prospective assessment of image registration in the diagnosis of prostate cancer (PAIREDCAP) study. JAMA Surg. 2019, 154, 811–818. [Google Scholar] [CrossRef] [PubMed]
- Petov, V.; Azilgareeva, C.; Shpikina, A.; Morozov, A.; Krupinov, G.; Kozlov, V.; Singla, N.; Gómez Rivas, J.; Jesús, M.S.; Puliatti, S.; et al. Robot-Assisted Magnetic Resonance Imaging-Targeted versus Systematic Prostate Biopsy; Systematic Review and Meta-Analysis. Cancers 2023, 15, 1181. [Google Scholar] [CrossRef]
- Porpiglia, F.; Checcucci, E.; De Cillis, S.; Piramide, F.; Amparore, D.; Piana, A.; Volpi, G.; Granato, S.; Zamengo, D.; Stura, I.; et al. A prospective randomized controlled trial comparing target prostate biopsy alone approach vs. target plus standard in naïve patients with positive mpMRI. Minerva Urol. Nephrol. 2023, 75, 31–41. [Google Scholar] [CrossRef]
- Calio, B.; Sidana, A.; Sugano, D.; Gaur, S.; Jain, A.; Maruf, M.; Xu, S.; Yan, P.; Kruecker, J.; Pinto, P.; et al. Changes in prostate cancer detection rate of MRI-TRUS fusion vs systematic biopsy over time: Evidence of a learning curve. Prostate Cancer Prostatic Dis. 2017, 436–441. [Google Scholar] [CrossRef]
- Tewes, S.; Peters, I.; Tiemeyer, A.; Peperhove, M.; Hartung, D.; Pertschy, S.; Kuczyk, M.A.; Wacker, F.; Hueper, K. Evaluation of MRI/Ultrasound Fusion-Guided Prostate Biopsy Using Transrectal and Transperineal Approaches. Biomed. Res. Int. 2017, 2017, 217647. [Google Scholar] [CrossRef] [Green Version]
- Pepe, P.; Garufi, A.; Priolo, G.; Pennisi, M. Transperineal versus Transrectal MRI/TRUS Fusion Targeted Biopsy: Detection Rate of Clinically Significant Prostate Cancer. Clin. Genitourin. Cancer 2017, 15, e33–e36. [Google Scholar] [CrossRef] [PubMed]
- Zattoni, F.; Marra, G.; Kasivisvanathan, V.; Grummet, J.; Nandurkar, R.; Ploussard, G.; Olivier, J.; Chiu, P.K.; Valerio, M.; Gontero, P.; et al. The Detection of Prostate Cancer with Magnetic Resonance Imaging-Targeted Prostate Biopsies is Superior with the Transperineal vs the Transrectal Approach. A European Association of Urology-Young Academic Urologists Prostate Cancer Working Group Multi-Institutional Study. J. Urol. 2022, 208, 830–837. [Google Scholar] [PubMed]
- Venderink, W.; De Rooij, M.; Sedelaar, J.P.M.; Huisman, H.J.; Fütterer, J.J. Elastic Versus Rigid Image Registration in Magnetic Resonance Imaging–transrectal Ultrasound Fusion Prostate Biopsy: A Systematic Review and Meta-analysis. Eur. Urol. Focus. 2018, 4, 219–227. [Google Scholar] [CrossRef] [PubMed]
Study | Risk of Bias | Applicability Concerns | |||||
---|---|---|---|---|---|---|---|
Patient Selection | Index Test | Reference Standard | Flow and Timing | Patient Selection | Index Test | Reference Standard | |
Jacewlcz et al. [21] | ☺ | ☺ | ☹ | ☹ | ☺ | ☺ | ☺ |
Mischinger et al. [22] | ☺ | ☺ | ☺ | ☺ | ☺ | ☺ | ? |
Lee et al. [23] | ? | ☺ | ? | ☺ | ? | ☺ | ☺ |
Marra et al. [24] | ☺ | ☺ | ☺ | ☺ | ☺ | ? | ☺ |
Jacewicz et al. [25] | ☺ | ☺ | ☹ | ☹ | ☺ | ☺ | ☺ |
Miah et al. [26] | ? | ☹ | ☺ | ☺ | ? | ☺ | ☺ |
Günzel et al. [27] | ☺ | ☺ | ☺ | ☺ | ☺ | ☹ | ☺ |
Mehmood et al. [28] | ☺ | ☹ | ☹ | ☺ | ☹ | ☺ | ☺ |
Hakozaki et al. [29] | ☺ | ☺ | ☺ | ☺ | ☺ | ☺ | ☹ |
Görtz et al. [30] | ☺ | ☺ | ☺ | ☹ | ☺ | ☺ | ☺ |
Hakozaki et al. [31] | ? | ☺ | ☹ | ☺ | ? | ☺ | ☺ |
Miah et al. [32] | ☺ | ? | ☺ | ☺ | ☺ | ? | ☺ |
Tschirdewahn et al. [33] | ☺ | ☺ | ☺ | ☹ | ☺ | ☺ | ☺ |
Hansen et al. [34] | ☺ | ☺ | ☺ | ☹ | ☺ | ☺ | ? |
Lian et al. [35] | ☺ | ☺ | ☹ | ☺ | ☺ | ☺ | ☺ |
Radtkeet al. [36] | ? | ☺ | ☺ | ☺ | ? | ☺ | ☺ |
Kim et al. [37] | ? | ☺ | ☺ | ☺ | ? | ☺ | L |
De Vulder et al. [38] | ☺ | ☺ | ☺ | ☺ | ☺ | ☺ | ☺ |
Winoker et al. [39] | ☺ | ? | ☺ | ? | ☺ | ? | ☺ |
Wajswol et al. [40] | ☺ | ☺ | ☺ | ? | ? | ☺ | ? |
Hansen et al. [41] | ? | ☺ | ☹ | ☺ | ☺ | ☺ | ☺ |
Shoji et al. [42] | ☺ | ☺ | ☺ | ☹ | ☺ | ☺ | ☺ |
Kaufmann et al. [43] | ☺ | ☺ | ☺ | ☹ | ☺ | ☺ | ☹ |
Fulco et al. [44] | ☺ | ☺ | ☹ | ☺ | ? | ☺ | ☺ |
Thaiss et al. [45] | ? | ☺ | ☺ | ☺ | ? | ☺ | ☺ |
Kozel et al. [46] | ☺ | ☺ | ? | ☺ | ☺ | ☺ | ☺ |
Dahl et al. [47] | ? | ☺ | ? | ☺ | ? | ☺ | ☺ |
Pepe et al. [48] | ☺ | ☺ | ☺ | ☺ | ☺ | ☹ | ☹ |
Fletcher et al. [49] | ☺ | ☺ | ☺ | ☺ | ? | ☺ | ☺ |
Kaneko et al. [50] | ☺ | ☺ | ☺ | ? | ? | ☺ | ☺ |
Fusion Biopsy System (Manufacturer) | Ultrasound Image Acquisition | Ultrasound Tracking Mechanism | Fusion Method | Biopsy Route |
---|---|---|---|---|
Artemis (Eigen, Inc., Grass Valley, CA, USA) | Manual rotation along a fixed axis (ultrasound probe on a tracking arm). | Mechanical arm with encoded joints. | Rigid/Elastic | TP/TR |
BioJet (D&K Technologies, Inc., Barum, Germany) | Real-time biplanar TRUS and 3D model of the prostate mounted on a positioning system. | Stepper with 2 built-in encoders. | Rigid/Elastic | TP/TR |
Biopsee (MedCom, Inc., Darmstadt, Germany ) | Custom-made biplane TRUS probe mounted on a stepper. | Stepper with 2 built-in encoders. | Rigid/Elastic | TP/TR |
HI RVS/Real-time Virtual Sonography (Hitachi, Inc., Tokio, Japan) | Real-time biplanar TRUS. | Electromagnetic tracking. | Rigid | TP/TR |
UroNav (In Vivo/Philips, Inc., Cambridge, MA, USA) | Manual ultrasound 2D sweep. Freehand manipulation of ultrasound probe or mounted on a stepper. | Electromagnetic tracking ultrasound. | Rigid/Elastic | TP/TR |
Urostation (Koelis, Inc., Meylan, France) | Automatic ultrasound probe rotation, three different volumes elastically registered. | Image-based registration. | Elastic | TP/TR |
iSR’obot Mona Lisa (Biobot Surgical, Inc., Singapore) | Motorized translation. | Robotic arm. | Elastic | TP |
MIM Symphonyx Bx (BK, Inc., Seoul, South Korea) | Motorized translation. | Encoder. | Rigid | TP/TR |
Virtual Navigator (Esaote, Inc., Genova, Italy) | Manual ultrasound sweep. Freehand rotation of ultrasound probe. | Electromagnetic tracking ultrasound and needle. | Rigid | TP/TR |
Aplio i800 (Canon Medical Systems, Inc., Crawley, UK) | Freehand sweep. | Fusion Imaging of live US/MRI guidance for targeted biopsy. | Rigid | TP/TR |
Logiq (GE, Inc., Boston, MA, USA) | Freehand sweep. | Fusion Imaging of live US/MRI guidance for targeted biopsy. | Rigid | TP/TR |
Serie | Author | Country | Study Design | N Centers | N Patients | Pop. | Mean Age (yr) | Mean PSA (ng/mL) | Mean PV (cc) | Mean PSAd | DRE+ (%) |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | Jacewlcz et al., 2021 [21] | Norway | Prospective | 2 | 401 | 4 | 69 | 6.9 | 40 | 0.17 | NR |
2 | Mischinger et al., 2018 [22] | Germany | Prospective | 1 | 202 | 2 | 66 | 8 | 36 | 0.21 | NR |
3 | Lee et al., 2020 [23] | Singapore | Retrospective | 1 | 433 | 2 | 66.1 | 10.4 | 43.2 | 0.27 | NR |
4 | Marra et al., 2021 [24] | Italy | Prospective | 4 | 1014 | 2 | 66.8 | 8.1 | 51.3 | 0.2 | 23.4 |
5 | Jacewicz et al., 2020 [25] | Norway | Retrospective | 2 | 377 | 4 | 67 | 7.2 | 43 | 0.17 | NR |
6 | Miah et al., 2019 [26] | UK | Retrospective | 11 | 640 | 2 | 63.8 | 7.8 | 47.4 | 0.16 | NR |
7 | Günzel et al., 2022 [27] | Norway | Prospective | 1 | 969 | 3 | 68 | 6.72 | 45 | 0.15 | NR |
8 | Mehmood et al., 2021 [28] | KSA | Prospective | 1 | 100 | 2 | 64 | 6.1 | 50 | 0.12 | NR |
9 | Hakozaki et al., 2017 [29] | Japan | Prospective | 1 | 177 | 3 | 68 | 7.42 | 42.9 | 0.17 | 28.8 |
10 | Görtz et al., 2022 [30] | Germany | Prospective | 1 | 939 | 2 | 65 | 7.7/7.6 *1 | 44/50 *1 | 0.17/0.15 *1 | 35/28 *1 |
11 | Hakozaki et al., 2019 [31] | Japan | Retrospective | 1 | 310 | 3 | 68.2 | 8.6 | 42.8 | 0.12 | 20.9 |
12 | Miah et al., 2019 [32] | UK | Prospective | 1 | 86 | 2 | 64.2 | 10 | 51.03 | 0.19 | NR |
13 | Tschirdewahn et al., 2020 [33] | Germany | Prospective | 1 | 213 | 2 | 66 | 7.8 | 50 | 0.14 | 15 |
14 | Hansen et al., 2017 [34] | Germany | Prospective | 2 | 487 | 5 | 66 | 9 | 56 | 0.15 | NR |
15 | Lian et al., 2017 [35] | China | Prospective | 2 | 101 | 5 | 68.9 | 10.8 | 42.1 | 0.25 | NR |
16 | Radtke et al., 2015 [36] | Germany | Retrospective | 1 | 191 | 2 | 66 | 7.9 | 44 | 0.19 | 20.9 |
17 | Kim et al., 2022 [37] | USA | Retrospective | 1 | 301 | 3 | 67 | 6 | 45 | 0.14 | 5 |
18 | De Vulder et al., 2022 [38] | Belgium | Prospective | 1 | 203 | 3 | 69 | 6.8 | 49 | 0.16 | NR |
19 | Winoker et al., 2020 [39] | USA | Prospective | 1 | 168 | 3 | 68 | 7.9 | 49 | 0.16 | NR |
20 | Wajswol et al., 2020 [40] | USA | Prospective | 1 | 176 | 3 | 67.5 | 8.25 | 41 | 0.2 | 27.8 |
21 | Hansen et al., 2017 [41] | UK | Prospective | 3 | 807 | 2 | 65 | 6.5 | 42 | 0.15 | 23 |
22 | Shoji et al., 2017 [42] | Japan | Prospective | 1 | 250 | 1 | 68 | 6.7 | 34 | 0.19 | NR |
23 | Kaufmann et al., 2021 [43] | Switzerland | Prospective | 1 | 392 | 2 | 64 | 7 | 43 | 0.16 | 16 |
24 | Fulco et al., 2020 [44] | Italy | Retrospective | 1 | 272 | 2 | 68 | 7.2 | NR | NR | NR |
25 | Thaiss et al., 2021 [45] | Germany | Retrospective | 1 | 563 | 1 | 66 | 9.8 | 45 | 0.21 | NR |
26 | Kozel et al., 2022 [46] | USA | Prospective | 1 | 200 | 3 | 67 | 7.89 | 52 | 0.15 | NR |
27 | Dahl et al., 2022 [47] | USA | Retrospective | 1 | 301 | 3 | 66 | 5.7 | 45 | 0.15 | NR |
28 | Pepe et al., 2019 [48] | Italy | Prospective | 1 | 875 | 5 | 63 | 9.8 | 44.6 | 0.21 | NR |
29 | Fletcher et al., 2023 [49] | UK | Prospective | 2 | 69 | 3 | 67 | 7.9 | 43 | 0.16 | NR |
30 | Kaneko et al., 2023 [50] | USA | Prospective | 1 | 96 | 3 | 68 | 7.84 | 56 | 0.13 | 21 |
Serie | MRI Tesla | MRI type | PIRADS Version | Coil Type | Anesthesia | Approach | Patient Position | Platform Used | Fusion Mode | Probe Manipulation | Prostate Segmentation |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1.5 | Biparametric | v2.0 | Surface | Local | TP | Lithotomy | Koelis | Elastic | Freehand | Both |
2 | 1.5 or 3.0 | Multiparametric | v2.0 | Endorectal | General | TP | Lithotomy | iSR’obot Mona Lisa Urofusion | Elastic | Robotic arm | Radiologist |
3 | 3.0 | Multiparametric | V2.0 | Endorectal | General | TP | Lithotomy | iSR’obot Mona Lisa Urofusion | Elastic | Robotic arm | Radiologist |
4 | 1.5 or 3.0 | Both | v2.0 | Endorectal | Local | TP | Lithotomy | Esaote | Rigid | Freehand | Urologist |
5 | 1.5 or 3.0 | Both | v2.0 | Surface | Local | TP | Lithotomy | Koelis | Elastic | Steady pro arm | Both |
6 | 1.5 or 3.0 | Multiparametric | Likert | NR | General | TP | Lithotomy | MIM-Symphony-DX | Rigid | Encoders with brachytherapy template | NR |
7 | 1.5 or 3.0 | Multiparametric | v2.0 | Endorectal | Local | TP | Lithotomy | Koelis | Elastic | Steady Pro arm | Urologist |
8 | 3.0 | Multiparametric | v2.0 | NR | General | TP | Lithotomy | Biojet | Rigid | Robotic arm | NR |
9 | 3.0 | Multiparametric | v2.0 | Surface | Spinal | TP | Lithotomy | (RVS) system Hitachi | Rigid | Electromagnetic tracking/Freehand | NR |
10 | 3.0 | Multiparametric | v2.0 | Surface | General | TP | Lithotomy | Biopsee/Uronav | Rigid/ Elastic | Freehand | NR |
11 | 3.0 | Multiparametric | v2.0 | Surface | General/Spinal | TP | Lithotomy | (RVS) system Hitachi | Rigid | Electromagnetic tracking | NR |
12 | 3.0 | Multiparametric | v2.0 | Surface | General | TP | Lithotomy | iSR’obot Mona Lisa Urofusion | Elastic | Robotic arm | Urologist |
13 | 3.0 | Multiparametric | v2.0 | Endorectal | General | TP | Lithotomy | MIM-Symphony-DX | Rigid | Encoders with brachytherapy template | Radiologist |
14 | 1.5 or 3.0 | Multiparametric | v1.0 | Endorectal | General | TP | Lithotomy | Biopsee | Rigid | Freehand | NR |
15 | 3.0 | Multiparametric | v2.0 | Endorectal | General | TP | Lithotomy | (RVS) System Hitachi | Rigid | Electromagnetic tracking/Freehand | NR |
16 | 3.0 | Multiparametric | v2.0 | Endorectal | General | TP | Lithotomy | Biopsee | Rigid | Freehand | NR |
17 | 3.0 | Multiparametric | v2.0 | Surface | Local | TP | Lithotomy | Uronav | Elastic | Electromagnetic tracking/Freehand | NR |
18 | 3.0 | Multiparametric | v2.0 | Surface | Local | TP | Lithotomy | Aplio i800 | Rigid | Freehand | Urologist |
19 | 1.5 or 3.0 | Multiparametric | v2.0 | Surface | Local | TP | Lithotomy | Uronav | Elastic | Electromagnetic tracking/Freehand | NR |
20 | 3.0 | Multiparametric | v2.0 | Surface | General | TP | Lithotomy | Uronav | Elastic | Electromagnetic tracking/Freehand | Urologist |
21 | 3.0 | Multiparametric | v2.0 | NR | General | TP | Lithotomy | Biopsee | Rigid | Encoders with brachytherapy template | NR |
22 | 3.0 | Multiparametric | v2.0 | NR | Spinal | TP | Lithotomy | Biojet | Elastic | Robotic arm | Urologist |
23 | 3.0 | Multiparametric | v2.0 | Surface | General | TP | Lithotomy | Biopsee | Rigid | Encoders with brachytherapy template | Urologist |
24 | 1.5 | Multiparametric | v2.0 | Endorectal | Local/General | TP | Lithotomy | Koelis | Elastic | Steady pro arm | Urologist |
25 | 3.0 | Both | v2.1 | Surface | NR | TP | Lithotomy | iSR’obot Mona Lisa Urofusion | Elastic | Robotic arm | NR |
26 | 3.0 | Multiparametric | v2.0 | NR | Local | TP | Lithotomy | Uronav | Elastic | Electromagnetic tracking/Freehand | Urologist |
27 | 3.0 | Multiparametric | v2.0 | Surface | Local | TP | Lithotomy | Uronav | Elastic | Electromagnetic tracking/Freehand | Urologist |
28 | 3.0 | Multiparametric | v2.0 | NR | Sedation | TP | Lithotomy | GE logic | Rigid | Electromagnetic tracking/Freehand | NR |
29 | 1.5 or 3.0 | Multiparametric | Likert | Surface | Local | TP | Lithotomy | Vector Biopsy: Biopsee + VirtuTRAX EM | Rigid | Electromagnetic tracking | Urologist |
30 | 3.0 | Multiparametric | v2.0 | NR | Local | TP | Lithotomy | Koelis 3D Models | Elastic | The Double-Freehand Technique | NR |
Number | N° PIRADS 1–2 | N° PIRADS 3 | N° PIRADS 4 | N° PIRADS 5 | N° Cores p/Lesion | N° Cores Systematic | N° Total Cores | Mean Lesion Volume (mL) | Mean MCCL (mm) |
---|---|---|---|---|---|---|---|---|---|
1 | 53 | 74 | 137 | 137 | 4–5 | 10–12 | NR | NR | 8 |
2 | 39 | 39 | 107 | 17 | 5.8 (mean) | NR | NR | NR | NR |
3 | NR | 71 | 254 | 108 | 5 | 24.5 (mean) | 34 | NR | NR |
4 | NR | 599 | 657 | 144 | 2–4 | 10–12 | 15.3 (mean) | 0.5 | NR |
5 | 22 | 97 | 142 | 115 | 1–4 | 6–10 | NR | 0.9 | 9 |
6 | NR | 98 (L) *1 | 173 (L) *1 | 140 (L) *1 | 4–6 | 16.3 | NR | NR | 7 |
7 | 24 | 45 | 206 | 438 | 4–6 | 10–12 | NR | NR | NR |
8 | 20 | 17 | 27 | 36 | 2–4 | 12 | NR | NR | NR |
9 | NR | NR | NR | NR | 4–6 | 12 | 18 | NR | NR |
10 | NR | 367/310 *2 | 333/332 *2 | 139/124 *2 | 4/5 *2 | 24/25 *2 | 29/34 *2 | NR | NR |
11 | NR | NR | NR | NR | 4 | 15 | 20 | NR | NR |
12 | NR | 22 | 55 | 30 | 8.1 (mean) | 20.2 (mean) | NR | NR | 8 |
13 | NR | 99 | 78 | 25 | 9 | 24 | 33 | NR | NR |
14 | 144 | 128 | 100 | 115 | 3 | 24 | 27 | NR | NR |
15 | 13 | 31 | 36 | 21 | 4.2 | 12 | 16–18 | NR | NR |
16 | 13 | 50 | 81 | 50 | 3 | 24 | 27 | NR | NR |
17 | NR | 62 | 151 | 88 | 3–4 | 20 | 24 | NR | NR |
18 | NR | 56 | 121 | 46 | 5 | 10 | 15 | NR | NR |
19 | NR | 26 | 76 | 66 | 3–4 | 12 | 16–18 | NR | NR |
20 | 14 | 53 | 128 | 73 | 4–5 | 12 | 16–18 | NR | NR |
21 | 236 | 153 | 418 *3 | 4 | 20 | 24 | NR | NR | |
22 | NR | NR | NR | NR | 2–4 | 12 | 16–18 | NR | NR |
23 | 124 | 87 | 123 | 58 | 5 | 35 | 42 | NR | NR |
24 | NR | 115 | 129 | 28 | 3–5 | 10 | 15 | NR | NR |
25 | 29 | 95 | 324 | 115 | 4 | 14 | 18 | 3.2 | NR |
26 | 6 | 73 | 135 | 51 | 2–3 | 12 | 15 | NR | NR |
27 | NR | 62 | 151 | 88 | 3 | 20 | 23 | NR | NR |
28 | NR | NR | NR | NR | 4 | 20 | 30 | NR | NR |
29 | 12 (L) *1 | 13 (L) *1 | 22 (L) *1 | 22 (L) *1 | 2–4 | 12 | NR | NR | NR |
30 | 27 | 17 | 25 | 27 | 2–4 | 12–14 | NR | NR | NR |
Number | csPCa Definition | PCa (%) | csPCa (%) | csPCa (%) SB | csPCa (%) PIRADS 1–2 | csPCa (%) PIRADS 3 | csPCa (%) PIRADS 4 | csPCa (%) PIRADS 5 |
---|---|---|---|---|---|---|---|---|
1 | ISUP ≥ 2 | 65 | 48 | 2 | 17 | 20 | 39 | 77 |
2 | ISUP ≥ 2 | 61 | 52 | NR | 7.6 | 25.6 | 72 | 88 |
3 | ISUP ≥ 2 | 57 | 46 | 17 | NR | 16 | 38 | 85 |
4 | ISUP ≥ 2/≥3 positive cores/≥50% of extension | 43.9 | 39.4 | 15.9 | NR | 15.4 | 46.2 | 73.9 |
5 | ISUP ≥ 2 | 64 | 51 | NR | 18 | 20 | 60 | 84 |
6 | Ahmed D1. Gleason ≥ 4 + 3 or any grade ≥ 6 mm. Ahmed D2. Gleason ≥ 3 + 4 or any grade ≥ 4 mm. | 65 | 49.8 | 0.8 | NR | 21.6 (L) *1 | 47.1 (L) *1 | 84.2 (L) *1 |
7 | ISUP ≥ 2 | 66 | 49 | 1.5 | 9 | 15 | 50 | 73 |
8 | ISUP ≥ 2 | 45 | 33.3 | NR | NR | NR | NR | NR |
9 | Epstein criteria | 65.5 | 63.3 | 14 | NR | NR | NR | NR |
10 | ISUP ≥ 2 | 62.5/59.5 *2 | 46/46 *2 | 9 | NR | NR | NR | NR |
11 | ISUP ≥ 2 | 47 | 43.9 | NR | NR | 3.1 | 50.2 | 80.8 |
12 | ISUP ≥ 2 | 51.2 | 40.7 | 10.5 | NR | 0 | 40 | 53.3 |
13 | ISUP ≥ 2 | 59 | 40 | NR | NR | NR | NR | NR |
14 | ISUP ≥ 2 | 51 | 39 | 11 | NR | 19.5 | 32 | 70.4 |
15 | ISUP ≥ 2 or Gleason 6 with MCCL ≥ 4 mm. | 40.6 | 24.8 | NR | NR | NR | NR | NR |
16 | ISUP ≥ 2 | 72.7 | 53.9 | NR | NR | NR | NR | NR |
17 | ISUP ≥ 2 | 79.1 | 62.2 | 10.9 | NR | 33 | 62 | 72 |
18 | ISUP ≥ 2 or Gleason 6 with MCCL ≥ 4 mm. | 73.5 | 60.1 | NR | NR | 23.2 | 66.1 | 89.1 |
19 | ISUP ≥ 2 | 79 | 59 | NR | NR | 42.3 | 76.3 | 95.5 |
20 | ISUP ≥ 2 | 76.7 | 58.5 | 9.6 | 28.6 | 42.3 | 76.3 | 95.5 |
21 | ISUP ≥ 2 | 68 | 49 | NR | NR | 30.7 | 71 *3 | |
22 | ISUP ≥ 2 | 58 | 55 | NR | 0 | 6.8 | 49 | 80 |
23 | ISUP ≥ 2 | 51 | 40 | NR | NR | 57 | 83 | 98 |
24 | ISUP ≥ 2 | 43 | 27.2 | NR | NR | 6.09 | 34.1 | 82.1 |
25 | ISUP ≥ 2 | 59.9 | 51.1 | 2.9 | NR | 6.6 | 64.7 | 74.8 |
26 | ISUP ≥ 2 | 71 | 58.5 | 6 | NR | NR | NR | NR |
27 | ISUP ≥ 2 | 79 | 49.1 | 22.1 | NR | NR | NR | NR |
28 | ISUP ≥ 2 | 34.5 | 22.5 | NR | NR | NR | NR | NR |
29 | ISUP ≥ 2 | 92.9 | 77.1 | NR | NR | 62 | 68 | 95 |
30 | ISUP ≥ 2 | 62 | 48 | NR | 3.7 | 47 | 71 *3 |
N° of Patients | Population | Mean Age (yr) | Mean PSA (ng/mL) | Mean PV (cc) | Mean PSAd | PCa (%) | csPCa (%) |
---|---|---|---|---|---|---|---|
813 | Biopsy Naïve | 67 | 8.25 | 39.5 | 0.2 | 58.9 | 53 |
993 | Biopsy-Naïve + Prior negative biopsy | 66 | 8.9 | 43.4 | 0.2 | 53 | 41.4 |
2211 | Biopsy-Naïve + Prior negative biopsy + AS | 67.3 | 7.1 | 47.5 | 0.15 | 73.2 | 54.9 |
778 | Biopsy-Naïve + Prior negative biopsy + AS+ FT control + SBRT recurrence. | 68 | 7 | 41.5 | 0.17 | 64.5 | 49.5 |
N° of Patients | Population | Mean Age (yr) | Mean PSA (ng/mL) | Mean PV (cc) | Mean PSAd | PCa (%) | csPCa (%) |
---|---|---|---|---|---|---|---|
1463 | Prior negative biopsy | 65.9 | 9.86 | 47.5 | 0.2 | 42 | 28.7 |
3357 | Biopsy-Naïve + Prior negative biopsy | 65 | 7.3 | 46.8 | 0.16 | 57.8 | 43.6 |
759 | Biopsy-Naïve + Prior negative biopsy + AS | 68 | 7.6 | 44.4 | 0.15 | 69.7 | 61.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paesano, N.; Catalá, V.; Tcholakian, L.; Trilla, E.; Morote, J. A Systematic Review of the Current Status of Magnetic Resonance–Ultrasound Images Fusion Software Platforms for Transperineal Prostate Biopsies. Cancers 2023, 15, 3329. https://doi.org/10.3390/cancers15133329
Paesano N, Catalá V, Tcholakian L, Trilla E, Morote J. A Systematic Review of the Current Status of Magnetic Resonance–Ultrasound Images Fusion Software Platforms for Transperineal Prostate Biopsies. Cancers. 2023; 15(13):3329. https://doi.org/10.3390/cancers15133329
Chicago/Turabian StylePaesano, Nahuel, Violeta Catalá, Larisa Tcholakian, Enric Trilla, and Juan Morote. 2023. "A Systematic Review of the Current Status of Magnetic Resonance–Ultrasound Images Fusion Software Platforms for Transperineal Prostate Biopsies" Cancers 15, no. 13: 3329. https://doi.org/10.3390/cancers15133329
APA StylePaesano, N., Catalá, V., Tcholakian, L., Trilla, E., & Morote, J. (2023). A Systematic Review of the Current Status of Magnetic Resonance–Ultrasound Images Fusion Software Platforms for Transperineal Prostate Biopsies. Cancers, 15(13), 3329. https://doi.org/10.3390/cancers15133329