Tumor Markers and Their Prognostic Value in Sinonasal ITAC/Non-ITAC
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
- (1)
- Representativeness of the exposed cohort
- (a)
- truly representative of the average _______________ (describe) in the community Ø
- (b)
- somewhat representative of the average ______________ in the community Ø
- (c)
- selected group of users e.g., nurses, volunteers
- (d)
- no description of the derivation of the cohort
- (2)
- Selection of the non exposed cohort
- (a)
- drawn from the same community as the exposed cohort Ø
- (b)
- drawn from a different source
- (c)
- no description of the derivation of the non exposed cohort
- (3)
- Ascertainment of exposure
- (a)
- secure record (e.g., surgical records) Ø
- (b)
- structured interview Ø
- (c)
- written self report
- (d)
- no description
- (4)
- Demonstration that outcome of interest was not present at start of study
- (a)
- yes Ø
- (b)
- no
Comparability - (1)
- Comparability of cohorts on the basis of the design or analysis
- (a)
- study controls for _____________ (select the most important factor) Ø
- (b)
- study controls for any additional factor Ø (This criteria could be modified to indicate specific control for a second important factor.)
Outcome - (1)
- Assessment of outcome
- (a)
- independent blind assessment Ø
- (b)
- record linkage Ø
- (c)
- self report
- (d)
- no description
- (2)
- Was follow-up long enough for outcomes to occur
- (a)
- yes (select an adequate follow up period for outcome of interest) Ø
- (b)
- no
- (3)
- Adequacy of follow up of cohorts
- (a)
- complete follow up—all subjects accounted for Ø
- (b)
- subjects lost to follow up unlikely to introduce bias—small number lost—> ____ % (select an adequate %) follow up, or description provided of those lost) Ø
- (c)
- follow up rate < ____% (select an adequate %) and no description of those lost
- (d)
- no statement
Study: PMID; Autor; Year (n) | Selection | Comparability | Outcome | Total |
---|---|---|---|---|
23791006; Projetti, 2013 (N = 39) [16] | 4 (histologic subtype)/3 (KRAS, BRAF) | 0 | 3 | 6/7 |
9570628; Gallo, 1998 (N = 28) [11] | 4 | 1 | 3 | 8 |
19213595; Franchi, 2009 (N = 18) [17] | 4 | 1 | 2 | 7 |
23055340; García-Inclán, 2012 (N = 98/65) [18] | 3 | 1 | 3 | 7 |
24913906; Projetti, 2015 (N = 72) [20] | 3 | 2 | 1 | 6 |
22125792; Díaz-Molina, 2011 (N = 83) [26] | 4 | 2 | 3 | 9 |
27107016; Perez-Escuredo, 2016 (N = 37) [14] | 4 | 0 | 3 | 7 |
27301901; Costales, 2016 (N = 50) [15] | 4 | 1 | 3 | 8 |
31876581; Riobello, 2020 (N = 52) [19] | 3 | 1 | 2 | 6 |
23369851; Bossi, 2013 (N = 74) [21] | 4 | 1 | 3 | 8 |
15611505; Licitra, 2004 (N = 30) [22] | 4 | 1 | 3 | 8 |
16564912; Valenta, 2006 (N = 105 of mixed tumor types) [28] | 3 | 0 | 2 | 5 |
20970165; Rodrigo, 2011 (N = 57) [12] | 3 | 1 | 3 | 7 |
8736175; Franchi, 1996 (N = 30) [10] | 3 | 1 | 3 | 7 |
31076280; Taverna, 2019 (N = 66) [13] | 4 | 1 | 3 | 8 |
19073009; Hermsen, 2009 (N = 22) [23] | 3 | 1 | 2 | 6 |
28963820; López-Hernández, 2018 (N = 96) [24] | 4 | 1 | 2 | 7 |
21668475; Franchi, 2011 (N = 62) [29] | 3 | 1 | 2 | 6 |
31980958; Maffeis, 2020 (N = 32) [30] | 4 | 1 | 3 | 8 |
29356178; Riobello, 2018 (N = 126) [27] | 4 | 2 | 3 | 9 |
34647653; Re, 2022 (N = 43) [25] | 4 | 2 | 3 | 9 |
References
- Llorente, J.L.; Pérez-Escuredo, J.; Alvarez-Marcos, C.; Suárez, C.; Hermsen, M. Genetic and clinical aspects of wood dust related intestinal-type sinonasal adenocarcinoma: A review. Eur. Arch. Otorhinolaryngol. 2009, 266, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Kılıç, S.; Samarrai, R.; Kılıç, S.S.; Mikhael, M.; Baredes, S.; Eloy, J.A. Incidence and survival of sinonasal adenocarcinoma by site and histologic subtype. Acta Otolaryngol. 2018, 138, 415–421. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, I.; Suárez, C.; Rodrigo, J.P.; Nuñez, F.; Caminero, M.J. Prognostic factors in paranasal sinus cancer. Am. J. Otolaryngol. 1995, 16, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Camp, S.; Van Gerven, L.; Poorten, V.V.; Nuyts, S.; Hermans, R.; Hauben, E.; Jorissen, M. Long-term follow-up of 123 patients with adenocarcinoma of the sinonasal tract treated with endoscopic resection and postoperative radiation therapy. Head Neck 2016, 38, 294–300. [Google Scholar] [CrossRef] [PubMed]
- Rampinelli, V.; Ferrari, M.; Nicolai, P. Intestinal-type adenocarcinoma of the sinonasal tract: An update. Curr. Opin. Otolaryngol. Head Neck Surg. 2018, 26, 115–121. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. BMJ 2009, 339, b2535. [Google Scholar] [CrossRef] [Green Version]
- Hanahan, D.; Weinberg, R.A. The hallmarks of cancer. Cell 2000, 100, 57–70. [Google Scholar] [CrossRef] [Green Version]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [Green Version]
- Peterson, J.; Welch, V.; Losos, M.; Tugwell, P. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses; Ottawa Hospital Research Institute: Ottawa, ON, Canada, 2011; pp. 1–12. [Google Scholar]
- Franchi, A.; Gallo, O. Prognostic implications of Sialosyl-Tn antigen expression in sinonasal intestinal-type adenocarcinoma. Eur. J. Cancer B Oral Oncol. 1996, 32, 123–127. [Google Scholar] [CrossRef] [PubMed]
- Gallo, O.; Franchi, A.; Fini-Storchi, I.; Cilento, G.; Boddi, V.; Boccuzzi, S.; Urso, C. Prognostic significance of c-erbB-2 oncoprotein expression in intestinal-type adenocarcinoma of the sinonasal tract. Head Neck 1998, 20, 224–231. [Google Scholar] [CrossRef]
- Rodrigo, J.P.; García-Pedrero, J.M.; Llorente, J.L.; Fresno, M.F.; Allonca, E.; Suarez, C.; Hermsen, M. Down-regulation of annexin A1 and A2 protein expression in intestinal-type sinonasal adenocarcinomas. Hum. Pathol. 2011, 42, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Taverna, C.; Maggiore, G.; Cannavicci, A.; Bonomo, P.; Santucci, M.; Franchi, A. Immunohistochemical profiling of mucins in sinonasal adenocarcinomas. Pathol. Res. Pract. 2019, 215, 152439. [Google Scholar] [CrossRef] [PubMed]
- Perez-Escuredo, J.; Lopez-Hernandez, A.; Costales, M.; Lopez, F.; Ares, S.P.; Vivanco, B.; Llorente, J.L.; Hermsen, M.A. Recurrent DNA copy number alterations in intestinal-type sinonasal adenocarcinoma. Rhinology 2016, 54, 278–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costales, M.; López-Hernández, A.; García-Inclán, C.; Vivanco, B.; López, F.; Llorente, J.L.; Hermsen, M.A. Gene Methylation Profiling in Sinonasal Adenocarcinoma and Squamous Cell Carcinoma. Otolaryngol. Head Neck Surg. 2016, 155, 808–815. [Google Scholar] [CrossRef]
- Projetti, F.; Durand, K.; Chaunavel, A.; Léobon, S.; Lacorre, S.; Caire, F.; Bessède, J.P.; Moreau, J.J.; Coulibaly, B.; Labrousse, F. Epidermal growth factor receptor expression and KRAS and BRAF mutations: Study of 39 sinonasal intestinal-type adenocarcinomas. Hum. Pathol. 2013, 44, 2116–2125. [Google Scholar] [CrossRef]
- Franchi, A.; Fondi, C.; Paglierani, M.; Pepi, M.; Gallo, O.; Santucci, M. Epidermal growth factor receptor expression and gene copy number in sinonasal intestinal type adenocarcinoma. Oral Oncol. 2009, 45, 835–838. [Google Scholar] [CrossRef]
- García-Inclán, C.; López, F.; Pérez-Escuredo, J.; Cuesta-Albalad, M.P.; Vivanco, B.; Centeno, I.; Balbín, M.; Suárez, C.; Llorente, J.L.; Hermsen, M.A. EGFR status and KRAS/BRAF mutations in intestinal-type sinonasal adenocarcinomas. Cell Oncol. 2012, 35, 443–450. [Google Scholar] [CrossRef]
- Riobello, C.; López-Hernández, A.; Cabal, V.N.; García-Marín, R.; Suárez-Fernández, L.; Sánchez-Fernández, P.; Vivanco, B.; Blanco, V.; López, F.; Franchi, A.; et al. IDH2 Mutation Analysis in Undifferentiated and Poorly Differentiated Sinonasal Carcinomas for Diagnosis and Clinical Management. Am. J. Surg. Pathol. 2020, 44, 396–405. [Google Scholar] [CrossRef] [PubMed]
- Projetti, F.; Mesturoux, L.; Coulibaly, B.; Durand, K.; Chaunavel, A.; Léobon, S.; Gadeaud, E.; Caire, F.; Bessède, J.P.; Labrousse, F. Study of MET protein levels and MET gene copy number in 72 sinonasal intestinal-type adenocarcinomas. Head Neck. 2015, 37, 1563–1568. [Google Scholar] [CrossRef] [PubMed]
- Bossi, P.; Perrone, F.; Miceli, R.; Cantù, G.; Mariani, L.; Orlandi, E.; Fallai, C.; Locati, L.D.; Cortelazzi, B.; Quattrone, P.; et al. Tp53 status as guide for the management of ethmoid sinus intestinal-type adenocarcinoma. Oral Oncol. 2013, 49, 413–419. [Google Scholar] [CrossRef] [PubMed]
- Licitra, L.; Suardi, S.; Bossi, P.; Locati, L.D.; Mariani, L.; Quattrone, P.; Lo Vullo, S.; Oggionni, M.; Olmi, P.; Cantù, G.; et al. Prediction of TP53 status for primary cisplatin, fluorouracil, and leucovorin chemotherapy in ethmoid sinus intestinal-type adenocarcinoma. J. Clin. Oncol. 2004, 22, 4901–4906. [Google Scholar] [CrossRef] [PubMed]
- Hermsen, M.A.; Llorente, J.L.; Pérez-Escuredo, J.; López, F.; Ylstra, B.; Alvarez-Marcos, C.; Suárez, C. Genome-wide analysis of genetic changes in intestinal-type sinonasal adenocarcinoma. Head Neck 2009, 31, 290–297. [Google Scholar] [CrossRef] [PubMed]
- López-Hernández, A.; Pérez-Escuredo, J.; Vivanco, B.; García-Inclán, C.; Potes-Ares, S.; Cabal, V.N.; Riobello, C.; Costales, M.; López, F.; Llorente, J.L.; et al. Genomic profiling of intestinal-type sinonasal adenocarcinoma reveals subgroups of patients with distinct clinical outcomes. Head Neck 2018, 40, 259–273. [Google Scholar] [CrossRef] [PubMed]
- Re, M.; Tomasetti, M.; Monaco, F.; Amati, M.; Rubini, C.; Sollini, G.; Bajraktari, A.; Gioacchini, F.M.; Santarelli, L.; Pasquini, E. MiRNome analysis identifying miR-205 and miR-449a as biomarkers of disease progression in intestinal-type sinonasal adenocarcinoma. Head Neck 2022, 44, 18–33. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Molina, J.P.; Llorente, J.L.; Vivanco, B.; Martínez-Camblor, P.; Fresno, M.F.; Pérez-Escuredo, J.; Álvarez-Marcos, C.; Hermsen, M.A. Wnt-pathway activation in intestinal-type sinonasal adenocarcinoma. Rhinology 2011, 49, 593–599. [Google Scholar] [CrossRef] [PubMed]
- Riobello, C.; Vivanco, B.; Reda, S.; López-Hernández, A.; García-Inclán, C.; Potes-Ares, S.; Cabal, V.N.; López, F.; Llorente, J.L.; Hermsen, M.A. Programmed death ligand-1 expression as immunotherapeutic target in sinonasal cancer. Head Neck 2018, 40, 818–827. [Google Scholar] [CrossRef] [PubMed]
- Valente, G.; Mamo, C.; Bena, A.; Prudente, E.; Cavaliere, C.; Kerim, S.; Nicotra, G.; Comino, A.; Palestro, G.; Isidoro, C.; et al. Prognostic significance of microvessel density and vascular endothelial growth factor expression in sinonasal carcinomas. Hum. Pathol. 2006, 37, 391–400. [Google Scholar] [CrossRef]
- Franchi, A.; Palomba, A.; Fondi, C.; Miligi, L.; Paglierani, M.; Pepi, M.; Santucci, M. Immunohistochemical investigation of tumorigenic pathways in sinonasal intestinal-type adenocarcinoma. A tissue microarray analysis of 62 cases. Histopathology 2011, 59, 98–105. [Google Scholar] [CrossRef]
- Maffeis, V.; Cappellesso, R.; Galuppini, F.; Guzzardo, V.; Zanon, A.; Cazzador, D.; Emanuelli, E.; Ventura, L.; Martini, A.; Fassina, A. Tumor budding is an adverse prognostic marker in intestinal-type sinonasal adenocarcinoma and seems to be unrelated to epithelial-mesenchymal transition. Virchows Arch. 2020, 477, 241–248. [Google Scholar] [CrossRef]
- Burke, H.B. Predicting Clinical Outcomes Using Molecular Biomarkers. Biomark. Cancer 2016, 8, 89–99. [Google Scholar] [CrossRef] [PubMed]
- Magnes, T.; Wagner, S.; Kiem, D.; Weiss, L.; Rinnerthaler, G.; Greil, R.; Melchardt, T. Prognostic and Predictive Factors in Advanced Head and Neck Squamous Cell Carcinoma. Int. J. Mol. Sci. 2021, 22, 4981. [Google Scholar] [CrossRef]
- Almangush, A.; Heikkinen, I.; Mäkitie, A.A.; Coletta, R.D.; Läärä, E.; Leivo, I.; Salo, T. Prognostic biomarkers for oral tongue squamous cell carcinoma: A systematic review and meta-analysis. Br. J. Cancer 2017, 117, 856–866. [Google Scholar] [CrossRef] [Green Version]
- Hu, C.; Wang, H.; Lin, L.; Sun, X.; Wang, D. Association between carbonic anhydrase 9 expression and poor prognosis in sinonasal squamous cell carcinoma. Ann. Diagn. Pathol. 2020, 49, 151643. [Google Scholar] [CrossRef] [PubMed]
- Kovarikova, H.; Bubancova, I.; Laco, J.; Sieglova, K.; Vosmikova, H.; Vosmik, M.; Dundr, P.; Nemejcova, K.; Michalek, J.; Palicka, V.; et al. Deregulation of selected microRNAs in sinonasal carcinoma: Value of miR-21 as prognostic biomarker in sinonasal squamous cell carcinoma. Head Neck 2017, 39, 2528–2536. [Google Scholar] [CrossRef] [PubMed]
- Oliva, M.; Spreafico, A.; Taberna, M.; Alemany, L.; Coburn, B.; Mesia, R.; Siu, L.L. Immune biomarkers of response to immune-checkpoint inhibitors in head and neck squamous cell carcinoma. Ann. Oncol. 2019, 30, 57–67. [Google Scholar] [CrossRef]
- Creemers, A.; Ebbing, E.A.; Pelgrim, T.C.; Lagarde, S.M.; van Etten-Jamaludin, F.S.; van Berge Henegouwen, M.I.; Hulshof, M.; Krishnadath, K.K.; Meijer, S.L.; Bijlsma, M.F.; et al. A systematic review and meta-analysis of prognostic biomarkers in resectable esophageal adenocarcinomas. Sci. Rep. 2018, 8, 13281. [Google Scholar] [CrossRef] [Green Version]
- Cha, J.H.; Chan, L.C.; Li, C.W.; Hsu, J.L.; Hung, M.C. Mechanisms Controlling PD-L1 Expression in Cancer. Mol. Cell 2019, 76, 359–370. [Google Scholar] [CrossRef] [PubMed]
- Chung, C.H.; Zhang, Q.; Kong, C.S.; Harris, J.; Fertig, E.J.; Harari, P.M.; Wang, D.; Redmond, K.P.; Shenouda, G.; Trotti, A.; et al. p16 protein expression and human papillomavirus status as prognostic biomarkers of nonoropharyngeal head and neck squamous cell carcinoma. J. Clin. Oncol. 2014, 32, 3930–3938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lassen, P.; Eriksen, J.G.; Hamilton-Dutoit, S.; Tramm, T.; Alsner, J.; Overgaard, J. Effect of HPV-associated p16INK4A expression on response to radiotherapy and survival in squamous cell carcinoma of the head and neck. J. Clin. Oncol. 2009, 27, 1992–1998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buffa, F.M.; Bentzen, S.M.; Daley, F.M.; Dische, S.; Saunders, M.I.; Richman, P.I.; Wilson, G.D. Molecular marker profiles predict locoregional control of head and neck squamous cell carcinoma in a randomized trial of continuous hyperfractionated accelerated radiotherapy. Clin. Cancer Res. 2004, 10, 3745–3754. [Google Scholar] [CrossRef] [Green Version]
- Weidhaas, J.B.; Harris, J.; Schaue, D.; Chen, A.M.; Chin, R.; Axelrod, R.; El-Naggar, A.K.; Singh, A.K.; Galloway, T.J.; Raben, D.; et al. The KRAS-Variant and Cetuximab Response in Head and Neck Squamous Cell Cancer: A Secondary Analysis of a Randomized Clinical Trial. JAMA Oncol. 2017, 3, 483–491. [Google Scholar] [CrossRef] [PubMed]
- Rajaram, P.; Chandra, P.; Ticku, S.; Pallavi, B.K.; Rudresh, K.B.; Mansabdar, P. Epidermal growth factor receptor: Role in human cancer. Indian J. Dent. Res. 2017, 28, 687–694. [Google Scholar] [CrossRef] [PubMed]
- Vermorken, J.B.; Mesia, R.; Rivera, F.; Remenar, E.; Kawecki, A.; Rottey, S.; Erfan, J.; Zabolotnyy, D.; Kienzer, H.R.; Cupissol, D.; et al. Platinum-based chemotherapy plus cetuximab in head and neck cancer. N. Engl. J. Med. 2008, 359, 1116–1127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bauman, J.E.; Duvvuri, U.; Gooding, W.E.; Rath, T.J.; Gross, N.D.; Song, J.; Jimeno, A.; Yarbrough, W.G.; Johnson, F.M.; Wang, L.; et al. Randomized, placebo-controlled window trial of EGFR, Src, or combined blockade in head and neck cancer. JCI Insight 2017, 2, e90449. [Google Scholar] [CrossRef] [Green Version]
- Blatt, S.; Krüger, M.; Rump, C.; Zimmer, S.; Sagheb, K.; Künzel, J. Differences in PD-L1 Expression between oral and oropharyngeal squamous cell carcinoma. PLoS ONE 2022, 17, e0269136. [Google Scholar] [CrossRef] [PubMed]
Study: PMID; Autor; Year; Included Patients | Tumor Type | Tumormarker | Measured Outcome | Effect on Outcome | Significant Findings | Quality Assessment |
---|---|---|---|---|---|---|
23791006; Projetti, 2013 (N = 39) [16] | ITAC | EGFR variant mRNA expression EGFR mutation KRAS mutation BRAF mutation | Overall survival | Negative | EGFR mRNA: p = 0.03 No association with EGFR, KRAS or BRAF mutation | High Quality |
19213595; Franchi, 2009 (N = 18) [17] | ITAC | EGFR overexpression | Disease-free and overall survival | Negative | DFS: p = 0.57 OS: p = 0.62 | High Quality |
23055340; García-Inclán, 2012 (N = 98) [18] | ITAC | EGFR protein overexpression | Recurrence, metastasis and survival | - | No correlation found | High Quality |
27107016; Perez-Escuredo, 2016 (N = 37) [14] | ITAC | Multiple recurrent genetic alterations deletion of TIMP2 deletion of CRK | Overall survival | Negative | Loss at 4q32-ter: p = 0.000 Gain at 6p22: p = 0.008 Gain at 3q29: p = 0.025 Gain at 1q22: p = 0.028 Loss at TIMP2: p = 0.022 Loss at CRK: p = 0.045 | High Quality |
31876581; Riobello, 2020 (N = 52) [19] | (n-)ITAC + SNUC + ONB + SCC + SNEC | IDH2 mutation | Disease-specific survival | - | Not enough IDH2 positive (n-)ITAC cases | High Risk |
24913906; Projetti, 2015 (N = 72) [20] | ITAC | MET protein levels gene copy number | Progression-free survival and overall survival | - | No correlation found | High Risk |
27301901; Costales, 2016 (N = 50) [15] | ITAC + SCC | TIMP3 methylation | Overall survival, disease-free survival, metastasis and recurrence | Negative | OS: p = 0.027 DFS: p = 0.001 Metastasis: p = 0.005 Recurrence: p = 0.005 | High Quality |
23369851; Bossi, 2013 (N = 74) [21] | ITAC | TP53 mutation | Overall and disease-free survival after neoadjuvant chemotherapy | Negative | OS: p = 0.023 DFS: p = 0.010 | High Quality |
15611505; Licitra, 2004 (N = 30) [22] | ITAC | TP53 mutation | Complete remission after primary chemotherapy | Negative | p < 0.0001 | High Quality |
19073009; Hermsen, 2009 (N = 22) [23] | ITAC | High DNA copy number alterations (CNA) | Metastasis, intracranial invasion, overall survival, recurrence | Negative | Intracranial invasion: p = 0.038 Recurrence: p = 0.387 Metastasis: p = 0.662 OS: p = 0.002 | High Risk |
28963820; López-Hernández, 2018 (N = 96) [24] | ITAC | Copy number alterations | Overall survival | Negative | Gain at 1q22-23: p = 0.001 Gain at 3q28-29: p = 0.016 Gain at 6p22: p = 0.000 Gain at 13q31-33: p = 0.031 Loss at 4p15-16: p = 0.000 Loss at 4q32-35: p = 0.000 Loss at 10q24: p = 0.011 | High Quality |
34647653; Re, 2022 (N = 43) [25] | ITAC | miR-205 expression miR-34c expression miR-449a expression miR-192 expression | Disease-free survival, Overall survival | Negative | DFS: miR-205 p = 0.034 miR-34c p = 0.034 miR-449a p = 0.013 miR-192 not significant OS: miR-205 p = 0.0005 miR-34c p = 0.023 miR-449a and miR-192 not significant | High Quality |
20970165; Rodrigo, 2011 (N = 57) [12] | ITAC | ANXA2 expression | Disease-specific survival | Negative | p = 0.004 | High Quality |
22125792; Díaz-Molina, 2011 (N = 83) [26] | ITAC | Beta-catenin expression | Overall survival | Negative | p = 0.054 | High Quality |
9570628; Gallo, 1998 (N = 28) [11] | ITAC | C-erbB-2 oncoprotein expression | 5-year disease-free and overall survival curves | Negative | 5-year DFS: p = 0.02 OS: p = 0.07 | High Quality |
8736175; Franchi, 1996 (N = 30) [10] | ITAC | Mucin antigen sialosyl-Tn expression | 5-year survival rate and disease-free interval | Negative | 5-year survival: p = 0.0001 disease-free interval: p = 0.0001 | High Quality |
31076280; Taverna, 2019 (N = 66) [13] | (n-)ITAC + adenoid cystic carcinoma | MUC1 expression MUC2 expression | Overall survival | Negative | MUC1: p = 0.05 MUC2: p = 0.4 | High Quality |
29356178; Riobello, 2018 (N = 126) [27] | ITAC + SCC | PD-L1 | Overall survival, disease-specific survival, disease-free survival | - | OS: p = 0.692 DSS: p = 0.918 DFS: p = 0.146 | High Quality |
16564912; Valenta, 2006 (N = 105 of mixed tumor types) [28] | ITAC + SCC + adenoid cystic carcinoma | Microvessel density VEGF expression | 5-year disease-free survival | Negative | Microvessel density: mortality hazard ratio = 1.33 VEGF: p = 0.06 | High Risk |
21668475; Franchi, 2011 (N = 62) [29] | ITAC | Histological subtype | Disease-free interval and disease-free survival | Negative for mucinous type | Disease-free interval: p = 0.005 DFS: p < 0.001 | High Risk |
31980958; Maffeis, 2020 (N = 32) [30] | ITAC | Tumor budding | Overall survival, disease-free survival, lymphovascular invasion, recurrence and death of disease | Negative | OS: p = 0.013 DFS: p = 0.0002 Lymphovascular invasion: p = 0.008 Recurrence: p = 0.0005 Death of disease: p = 0.02 | High Quality |
total number of patients: 1220 |
Subdivision | Markers |
---|---|
Epigenetics | None |
DNA | BRAF, CRK, EGFR, IDH2, KRAS, MET, TIMP2, TIMP3, TP53, DNA copy number alterations |
RNA | microRNA-34c, microRNA-192, microRNA-205, microRNA-449a |
Proteins | ANXA2, beta-catenin, c-erbB-2, EGFR, MET, mucin sialosyl-Tn, MUC1/MUC2, PD-L1, VEGF |
Other | Histological subtype, microvessel density, tumor budding |
Tumor Marker | Described Outcome | Prognosis | References (PMID) |
---|---|---|---|
BRAF | Survival | No difference | 23791006 [16] |
CRK | Overall survival | Poor in case of loss | 27107016 [14] |
EGFR | Disease-free and overall survival, recurrence and metastasis | No difference | 19213595 [17] 23791006 [16] 23055340 [18] |
IDH2 | Disease-specific survival and disease-free survival | - | 31876581 [19] |
KRAS | Survival | No difference | 23791006 [16] |
MET | Progression-free survival and overall survival | No difference | 24913906 [20] |
TIMP2 | Overall survival | Poor in case of loss | 27107016 [14] |
TIMP3 | Overall survival, disease-free survival | Poor | 27301901 [15] |
TP53 | Survival, effect on chemotherapy | Poor if mutated | 15611505 [22] 23369851 [21] |
DNA copy number alterations (CNA) | Metastasis, intracranial invasion, mean overall survival, recurrence | Poor if high CNA | 19073009 [23] |
DNA copy number alterations (CNA) | Overall survival | 4q32-ter: poor in case of loss 6p22: poor in case of gain 3q29: poor in case of gain 1q22: poor in case of gain | 27107016 [14] 28963820 [24] |
MicroRNA expression | Disease-free and overall survival | Poor | 34647653 [25] |
ANXA2 expression | Disease-specific survival | Poor | 20970165 [12] |
Beta-catenin | Overall survival | Poor | 22125792 [26] |
c-erbB-2 oncoprotein | Disease-free and overall survival | Poor | 9570628 [11] |
Mucin antigen sialosyl-Tn | 5-year survival | Poor | 8736175 [10] |
MUC1/MUC2 | Overall survival | Poor | 31076280 [13] |
PD-L1 | Disease-specific, overall and disease-free (1 year) survival | Poor | 29356178 [27] |
VEGF | Mortality, clinical stage, histological grading | Poor | 16564912 [28] |
Histological subtype | Disease-free interval and disease-free survival | Poor in case of mucinous subtype (expression of MUC 1 and MUC2) | 21668475 [29] 31076280 [13] |
Microvessel density | Mortality, clinical stage, histological grading | Poor | 16564912 [28] |
Tumor budding | Disease-free and overall survival | Poor | 31980958 [30] |
Hallmark | Biomarker | Its Role within the Cascade That Leads to Cancer | Conclusions Drawn from Our Selected Studies PMID Numbers |
---|---|---|---|
Sustaining proliferative signaling | KRAS | Downstream of receptor tyrosine-kinases (RTK). Ras activates the Ras-Raf-MEK-ERK pathway and the PI3K pathway. | KRAS, BRAF or EGFR mutations not associated with progression-free survival (PFS) and overall survival (OS) 23791006 [16] EGFR overexpression not associated with disease-free and overall survival. Furthermore, no association between T stage, lymph node metastasis or distant metastasis. 19213595 [17] |
BRAF | BRAF is part of the Ras-Raf-MEK-ERK pathway and activates MAP2K1/MAP2K2. | ||
EGFR (HER1) | EGFR is a transmembrane RTK which mainly signals through the Ras-Raf-MEK-ERK pathway | ||
erbB-2 (HER2) | erbB-2 is a transmembrane RTK which mainly signals through the Ras-Raf-MEK-ERK pathway | Significant correlation between c-erbB-2 expression and 5-year disease-free survival (p = 0.02), overall survival (p = 0.07) and distant metastases (p = 0.08) by univariate analysis. However, by multivariate analysis, only disease-free survival (p = 0.046) is significant. 9570628 [11] | |
Evading growth suppressors | N/A | N/A | N/A |
Activating invasion and metastasis | CRK (loss of CRK at 17p13) | Important scaffolding protein in downstream RTK signaling through Src family tyrosine kinases. Stimulates the activation loop of intracellular signaling. | CRK copy number loss is associated with significantly worse overall survival. 27107016 [14] |
MET | RTK signals through Ras and PI3K pathways and promotes proliferation, migration and invasion. | MET protein levels and MET gene copy numbers not associated with survival 24913906 [20] | |
TIMP2 | TIMP2 blocks the activity of matrix metalloproteinases (in particular MMP-9), which promotes malignant outgrowth. Protects the extracellular matrix of tumors from degradation by a disintegrin and metalloproteinase | TIMP2 mutation with loss of function associated with lower overall survival (p = 0.022) 27107016 [14] | |
TIMP3 | TIMP3 blocks the activity of matrix metalloproteinases, which promote malignant outgrowth. Protects the extracellular matrix of tumors from degradation by a disintegrin and metalloproteinase | Methylation of TIMP3 significantly associated with worse disease-free (p = 0.027) and overall survival (p = 0.001) 27301901 [15] | |
beta-catenin | Downstream in Wnt-pathway | In 31% of patients with ITACs, nuclear β-catenin is present, thus Wnt-pathway is active and conveys a worse prognosis. 22125792 [26] | |
mucin sialosyl-Tn | Mucin antigen, formed by incomplete glycosylation of a mucin glycoprotein | The 5-year survival rate and disease-free interval of patients with S-Tn-positive adenocarcinomas were significantly lower than those with negative adenocarcinomas (17.8% versus 72%, p = 0.0001; 16.6% versus 40%, p = 0.0001, respectively). 8736175 [10] | |
MUC1 | Membrane-bound protein that plays an essential role in forming protective mucous barriers on epithelial surfaces and in intracellular signaling | In the group of ITACs, MUC1 expression was associated with shorter overall survival (p = 0.05) 31076280 [13] | |
MUC2 | Membrane-bound protein that plays an essential role in forming protective mucous barriers on epithelial surfaces and in intracellular signaling | Overall survival was not related to MUC2 expression (p = 0.4) 31076280 [13] | |
Enabling replicative immortality | N/A | N/A | N/A |
Inducing angiogenesis | VEGF | VEGF-A binds to VEGFR-1 and VEGFR-2, and regulates endothelial cell proliferation, migration, vascular permeability, secretion. | No results on ITACs alone, but in a group of tumors consisting of ITACs and SCC, no significant correlation between VEGF positivity and prognosis. 16564912 [28] |
Resisting cell death | N/A | N/A | N/A |
Avoiding immune destruction | PD-L1 | PD-L1 binds to PD-1, which leads to inhibition of T-cell activation and cytokine production and subsequent immune escape of tumor cells. | Significant difference in 1-year disease-free survival in tumors with higher membranous PD-L1 expression. 29356178 [27] |
Tumor promoting inflammation | N/A | N/A | N/A |
Genome instability and mutation | TP53 | Tumor suppressor gene plays a role in and leads to a cell cycle arrest upon DNA damage. | Mutation of TP53 associated with less response to chemotherapy, and thereby, worse survival. 15611505 [22] Mutation of TP53 significantly associated with worse overall survival. 23369851 [21] |
Deregulating cellular energetics | IDH2 | Plays an important role in the TCA cycle. | Only 1/48 ITACs with mutant IDH. 31876581 [19] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Veuger, J.; Kuipers, N.C.; Willems, S.M.; Halmos, G.B. Tumor Markers and Their Prognostic Value in Sinonasal ITAC/Non-ITAC. Cancers 2023, 15, 3201. https://doi.org/10.3390/cancers15123201
Veuger J, Kuipers NC, Willems SM, Halmos GB. Tumor Markers and Their Prognostic Value in Sinonasal ITAC/Non-ITAC. Cancers. 2023; 15(12):3201. https://doi.org/10.3390/cancers15123201
Chicago/Turabian StyleVeuger, Julius, Nona C. Kuipers, Stefan M. Willems, and Gyorgy B. Halmos. 2023. "Tumor Markers and Their Prognostic Value in Sinonasal ITAC/Non-ITAC" Cancers 15, no. 12: 3201. https://doi.org/10.3390/cancers15123201
APA StyleVeuger, J., Kuipers, N. C., Willems, S. M., & Halmos, G. B. (2023). Tumor Markers and Their Prognostic Value in Sinonasal ITAC/Non-ITAC. Cancers, 15(12), 3201. https://doi.org/10.3390/cancers15123201