Clinicopathological and Genetic Characteristics of Patients of Different Ages with Diffuse Sclerosing Variant Papillary Thyroid Carcinoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Targeted DNA Sequencing and Analysis
2.3. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gharib, H.; Papini, E. Thyroid nodules: Clinical importance, assessment, and treatment. Endocrinol. Metab. Clin. N. Am. 2007, 36, 707–735. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, R.V.; Buehler, D.; Khanafshar, E. Papillary thyroid carcinoma variants. Head Neck Pathol. 2011, 5, 51–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baloch, Z.W.; Asa, S.L.; Barletta, J.A.; Ghossein, R.A.; Juhlin, C.C.; Jung, C.K.; LiVolsi, V.A.; Papotti, M.G.; Sobrinho-Simoes, M.; Tallini, G.; et al. Overview of the 2022 WHO Classification of Thyroid Neoplasms. Endocr. Pathol. 2022, 33, 27–63. [Google Scholar] [CrossRef]
- Vickery, A.L., Jr.; Carcangiu, M.L.; Johannessen, J.V.; Sobrinho-Simoes, M. Papillary carcinoma. Semin. Diagn. Pathol. 1985, 2, 90–100. [Google Scholar]
- Hedinger, C.; Williams, E.D.; Sobin, L.H. The WHO histological classification of thyroid tumors: A commentary on the second edition. Cancer 1989, 63, 908–911. [Google Scholar] [CrossRef] [PubMed]
- Pillai, S.; Gopalan, V.; Smith, R.A.; Lam, A.K. Diffuse sclerosing variant of papillary thyroid carcinoma--an update of its clinicopathological features and molecular biology. Crit. Rev. Oncol. Hematol. 2015, 94, 64–73. [Google Scholar] [CrossRef] [Green Version]
- Vuong, H.G.; Kondo, T.; Pham, T.Q.; Oishi, N.; Mochizuki, K.; Nakazawa, T.; Hassell, L.; Katoh, R. Prognostic significance of diffuse sclerosing variant papillary thyroid carcinoma: A systematic review and meta-analysis. Eur. J. Endocrinol. 2017, 176, 433–441. [Google Scholar] [CrossRef] [Green Version]
- Kazaure, H.S.; Roman, S.A.; Sosa, J.A. Aggressive variants of papillary thyroid cancer: Incidence, characteristics and predictors of survival among 43,738 patients. Ann. Surg. Oncol. 2012, 19, 1874–1880. [Google Scholar] [CrossRef]
- Malandrino, P.; Russo, M.; Regalbuto, C.; Pellegriti, G.; Moleti, M.; Caff, A.; Squatrito, S.; Vigneri, R. Outcome of the Diffuse Sclerosing Variant of Papillary Thyroid Cancer: A Meta-Analysis. Thyroid 2016, 26, 1285–1292. [Google Scholar] [CrossRef]
- Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016, 26, 1–133. [Google Scholar] [CrossRef] [Green Version]
- Chereau, N.; Giudicelli, X.; Pattou, F.; Lifante, J.C.; Triponez, F.; Mirallie, E.; Goudet, P.; Brunaud, L.; Tresallet, C.; Tissier, F.; et al. Diffuse Sclerosing Variant of Papillary Thyroid Carcinoma Is Associated With Aggressive Histopathological Features and a Poor Outcome: Results of a Large Multicentric Study. J. Clin. Endocrinol. Metab. 2016, 101, 4603–4610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ratajczak, M.; Gawel, D.; Godlewska, M. Novel Inhibitor-Based Therapies for Thyroid Cancer-An Update. Int. J. Mol. Sci. 2021, 22, 11829. [Google Scholar] [CrossRef] [PubMed]
- Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic. Acids Res. 2019, 47, D607–D613. [Google Scholar] [CrossRef] [Green Version]
- Nam, Y.; Lee, D.-g.; Bang, S.; Kim, J.H.; Kim, J.-H.; Shin, H. The translational network for metabolic disease–from protein interaction to disease co-occurrence. BMC Bioinform. 2019, 20, 576. [Google Scholar] [CrossRef] [PubMed]
- Chapelle, O.; Scholkopf, B.; Zien, A. Semi-Supervised Learning (Chapelle, O. et al., Eds.; 2006) [Book Reviews]. IEEE Trans. Neural. Netw. 2009, 20, 542. [Google Scholar] [CrossRef]
- Cavaco, D.; Martins, A.F.; Cabrera, R.; Vilar, H.; Leite, V. Diffuse sclerosing variant of papillary thyroid carcinoma: Outcomes of 33 cases. Eur. Thyroid J. 2022, 11, e210020. [Google Scholar] [CrossRef]
- Spinelli, C.; Strambi, S.; Bakkar, S.; Nosiglia, A.; Elia, G.; Bertocchini, A.; Calani, C.; Leoni, M.; Morganti, R.; Materazzi, G. Surgical Management of Diffuse Sclerosing Variant of Papillary Thyroid Carcinoma. Experience in 25 Patients. World J. Surg. 2020, 44, 155–162. [Google Scholar] [CrossRef]
- Holoubek, S.A.; Yan, H.; Khokar, A.H.; Kuchta, K.M.; Winchester, D.J.; Prinz, R.A.; Moo-Young, T.A. Aggressive variants of papillary thyroid microcarcinoma are associated with high-risk features, but not decreased survival. Surgery 2020, 167, 19–27. [Google Scholar] [CrossRef]
- Lim, J.Y.; Hong, S.W.; Lee, Y.S.; Kim, B.W.; Park, C.S.; Chang, H.S.; Cho, J.Y. Clinicopathologic implications of the BRAF (V600E) mutation in papillary thyroid cancer: A subgroup analysis of 3130 cases in a single center. Thyroid 2013, 23, 1423–1430. [Google Scholar] [CrossRef]
- Joung, J.Y.; Kim, T.H.; Jeong, D.J.; Park, S.M.; Cho, Y.Y.; Jang, H.W.; Jung, Y.Y.; Oh, Y.L.; Yim, H.S.; Kim, Y.L.; et al. Diffuse sclerosing variant of papillary thyroid carcinoma: Major genetic alterations and prognostic implications. Histopathology 2016, 69, 45–53. [Google Scholar] [CrossRef]
- Sheu, S.Y.; Schwertheim, S.; Worm, K.; Grabellus, F.; Schmid, K.W. Diffuse sclerosing variant of papillary thyroid carcinoma: Lack of BRAF mutation but occurrence of RET/PTC rearrangements. Mod. Pathol. 2007, 20, 779–787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coca-Pelaz, A.; Shah, J.P.; Hernandez-Prera, J.C.; Ghossein, R.A.; Rodrigo, J.P.; Hartl, D.M.; Olsen, K.D.; Shaha, A.R.; Zafereo, M.; Suarez, C.; et al. Papillary Thyroid Cancer-Aggressive Variants and Impact on Management: A Narrative Review. Adv. Ther. 2020, 37, 3112–3128. [Google Scholar] [CrossRef] [PubMed]
- Krasner, J.R.; Alyouha, N.; Pusztaszeri, M.; Forest, V.I.; Hier, M.P.; Avior, G.; Payne, R.J. Molecular mutations as a possible factor for determining extent of thyroid surgery. J. Otolaryngol. Head Neck Surg. 2019, 48, 51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristics | N = 397 |
---|---|
Female sex | 276 (69.5) |
Mean age (years) | 36.7 ± 11.6 |
Operation | |
Total thyroidectomy | 356 (89.7) |
Lobectomy | 41 (10.3) |
Mean follow-up (days) | 2865 ± 1088 |
Recurrence | 46 (11.6) |
Disease-free survival (days) | 1404 ± 1070 |
Recurrence site | |
Operative bed | 6 (13.0) |
Regional | 32 (69.6) |
Distant metastasis | 7 (15.2) |
Pathology | |
Cancer size (cm) | 1.64 ± 1.13 |
Multiplicity (bilateral) | 157 (39.5) |
Capsular invasion | 318 (80.1) |
Thyroiditis | 197 (53.9) |
Central node metastasis | 362 (91.2) |
Lateral neck node metastasis | 237 (59.7) |
Maximal lymph node metastasis size (cm) | 1.29 ± 1.13 |
BRAF positivity | 151/257 (58.8) |
Age Group | ≤20 Years | 21–30 Years | 31–40 Years | 41–50 Years | 51–60 Years | ≥61 Years | p-Value |
---|---|---|---|---|---|---|---|
DSVPTC cases (%) | 26 (6.5) | 85 (21.4) | 163 (41.1) | 69 (17.4) | 40 (10.1) | 14 (3.5) | |
Thyroid cancer overall | 150 | 1717 | 6003 | 6090 | 4557 | 2248 | |
% of total thyroid cancer | 17.3 | 5.0 | 2.7 | 1.1 | 0.9 | 0.6 | |
Female | 21 (80.8) | 70 (82.4) | 118 (72.4) | 36 (52.2) | 23 (57.5) | 8 (57.1) | <0.001 |
Size (cm) | 2.69 ± 1.56 | 1.88 ± 1.30 | 1.55 ± 0.95 | 1.38 ± 0.85 | 1.29 ± 0.91 | 1.63 ± 1.45 | <0.001 |
Multiplicity (bilateral) | 17 (65.4) | 27 (31.8) | 56 (34.4) | 32 (46.4) | 16 (40.0) | 9 (64.3) | 0.034 |
Capsule invasion | 24 (92.3) | 71 (83.5) | 128 (78.5) | 59 (85.5) | 26 (65.0) | 10 (71.4) | 0.052 |
Thyroiditis | 14 (53.8) | 45 (52.9) | 88 (54.3) | 36 (52.2) | 23 (57.5) | 8 (57.1) | 0.996 |
Central node metastasis | 24 (92.3) | 79 (92.9) | 152 (93.3) | 64 (93.3) | 32 (80.0) | 11 (78.6) | 0.064 |
Lateral neck metastasis | 22 (84.6) | 53 (62.4) | 104 (63.8) | 35 (50.7) | 16 (40.0) | 7 (50.0) | 0.004 |
Maximal lymph node size (cm) | 1.82 ± 0.93 | 1.74 ± 1.57 | 1.18 ± 0.91 | 0.91 ± 0.92 | 1.00 ± 0.92 | 1.51 ± 1.00 | <0.001 |
BRAF positivity | 4/15 (26.7) | 26/55 (47.3) | 72/111 (64.9) | 28/43 (65.1) | 18/25 (72.0) | 3/8 (37.5) | 0.01 |
Recurrence (%) | 5 (19.2) | 12 (14.1) | 18 (11.0) | 5 (7.2) | 3 (7.5) | 3 (21.4) | 0.374 |
Age Group | ≤20 Years n = 26 | 21–60 Years n = 357 | ≥61 Years n = 14 | p-Value |
---|---|---|---|---|
Female | 21 (80.8) | 247 (69.2) | 8 (57.1) | 0.275 |
Size (cm) | 2.69 ± 1.56 | 1.56 ± 1.04 | 1.63 ± 1.45 | <0.001 |
Multiplicity (bilateral) | 17 (65.4) | 131 (36.7) | 9 (64.3) | 0.007 |
Capsule invasion | 24 (92.3) | 284 (79.6) | 10 (71.4) | 0.206 |
Thyroiditis | 14 (53.8) | 192 (53.9) | 8 (57.1) | 0.972 |
Central node metastasis | 24 (92.3) | 327 (91.6) | 11 (78.6) | 0.236 |
Lateral neck metastasis | 22 (84.6) | 208 (58.3) | 7 (50.0) | 0.023 |
Maximal lymph node size (cm) | 1.82 ± 0.93 | 1.24 ± 1.14 | 1.51 ± 1.00 | 0.083 |
BRAF positivity | 4/15 (26.7) | 144/234 (61.5) | 3/8 (37.5) | 0.013 |
Recurrence (%) | 5 (19.2) | 38 (10.6) | 3 (21.4) | 0.113 |
Gene | Group | Gene | Group | Gene | Group | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
≤ 20 Years (n = 13) | 21–60 Years (n = 19) | ≥ 61 Years (n = 9) | ≤ 20 Years (n = 13) | 21–60 Years (n = 19) | ≥ 61 Years (n = 9) | ≤ 20 Years (n = 13) | 21–60 Years (n = 19) | ≥ 61 Years (n = 9) | |||
AKT1 | 0 (0.0%) | 1 (5.3%) | 1 (11.1%) | EGFR | 1 (7.7%) | 1 (5.3%) | 0 (0.0%) | NTRK1 | 1 (7.7%) | 0 (0.0%) | 0 (0.0%) |
ALK | 1 (7.7%) | 2 (10.5%) | 0 (0.0%) | EML4-NTRK3 | 0 (0.0%) | 1 (5.3%) | 0 (0.0%) | NTRK3 | 1 (7.7%) | 0 (0.0%) | 0 (0.0%) |
ALK-GALNT14 | 2 (15.4%) | 0 (0.0%) | 1 (11.1%) | EP300 | 0 (0.0%) | 1 (5.3%) | 0 (0.0%) | NUP210-PPARG | 0 (0.0%) | 0 (0.0%) | 1 (11.1%) |
ALK-MSN | 0 (0.0%) | 1 (5.3%) | 0 (0.0%) | ERCC4 | 0 (0.0%) | 0 (0.0%) | 1 (11.1%) | PDGFRA | 1 (7.7%) | 0 (0.0%) | 0 (0.0%) |
ALK-NPM1 | 0 (0.0%) | 0 (0.0%) | 1 (11.1%) | ETV6-NTRK3 | 1 (7.7%) | 0 (0.0%) | 1 (11.1%) | PIK3CA | 4 (30.8%) | 2 (10.5%) | 3 (33.3%) |
APC | 0 (0.0%) | 1 (5.3%) | 0 (0.0%) | FGFR1 | 0 (0.0%) | 1 (5.3%) | 0 (0.0%) | PTCH1 | 2 (15.4%) | 2 (10.5%) | 1 (11.1%) |
ARID1A | 0 (0.0%) | 0 (0.0%) | 1 (11.1%) | FGFR3 | 0 (0.0%) | 2 (10.5%) | 0 (0.0%) | PTEN | 1 (7.7%) | 0 (0.0%) | 0 (0.0%) |
ASXL1 | 0 (0.0%) | 1 (5.3%) | 0 (0.0%) | FLCN | 0 (0.0%) | 2 (10.5%) | 0 (0.0%) | RB1 | 0 (0.0%) | 0 (0.0%) | 1 (11.1%) |
ATM | 2 (15.4%) | 0 (0.0%) | 2 (22.2%) | FN1-ALK | 1 (7.7%) | 0 (0.0%) | 0 (0.0%) | SETD2 | 0 (0.0%) | 2 (10.5%) | 1 (11.1%) |
BCOR | 0 (0.0%) | 0 (0.0%) | 1 (11.1%) | ITK | 0 (0.0%) | 0 (0.0%) | 1 (11.1%) | SMARCB1 | 0 (0.0%) | 1 (5.3%) | 0 (0.0%) |
BRAF | 2 (15.4%) | 12 (63.2%) | 4 (44.4%) | KDR | 0 (0.0%) | 2 (10.5%) | 0 (0.0%) | SPTBN1-ALK | 3 (23.1%) | 0 (0.0%) | 1 (11.1%) |
BRAF-SND1 | 1 (7.7%) | 1 (5.3%) | 0 (0.0%) | KIT | 1 (7.7%) | 1 (5.3%) | 1 (11.1%) | STK11 | 1 (7.7%) | 1 (5.3%) | 0 (0.0%) |
BRAF-SUGCT | 1 (7.7%) | 0 (0.0%) | 0 (0.0%) | KMT2A | 1 (7.7%) | 1 (5.3%) | 0 (0.0%) | STRN-ALK | 1 (7.7%) | 0 (0.0%) | 0 (0.0%) |
CCDC6-RET | 3 (23.1%) | 2 (10.5%) | 0 (0.0%) | KMT2D | 4 (30.8%) | 5 (26.3%) | 1 (11.1%) | TERT | 9 (69.2%) | 10 (52.6%) | 6 (66.7%) |
CDH1 | 1 (7.7%) | 1 (5.3%) | 0 (0.0%) | KRAS | 7 (53.9%) | 6 (31.6%) | 4 (44.4%) | TP53-DNAH2 | 0 (0.0%) | 1 (5.3%) | 0 (0.0%) |
CDKN1B | 1 (7.7%) | 0 (0.0%) | 0 (0.0%) | LMNA-ALK | 0 (0.0%) | 1 (5.3%) | 0 (0.0%) | TRIO-TERT | 0 (0.0%) | 0 (0.0%) | 1 (11.1%) |
CDKN2A | 1 (7.7%) | 0 (0.0%) | 0 (0.0%) | MACF1-BRAF | 0 (0.0%) | 0 (0.0%) | 2 (22.2%) | TSC2 | 2 (15.4%) | 2 (10.5%) | 3 (33.3%) |
CHEK2 | 3 (23.1%) | 3 (15.8%) | 1 (11.1%) | MEN1 | 0 (0.0%) | 1 (5.3%) | 0 (0.0%) | TUBA1A | 0 (0.0%) | 1 (5.3%) | 0 (0.0%) |
CLIP4-ALK | 1 (7.7%) | 0 (0.0%) | 0 (0.0%) | MET | 1 (7.7%) | 0 (0.0%) | 0 (0.0%) | TUBB3 | 0 (0.0%) | 0 (0.0%) | 1 (11.1%) |
CREBBP | 2 (15.4%) | 1 (5.3%) | 1 (11.1%) | MKRN1-BRAF | 0 (0.0%) | 1 (5.3%) | 0 (0.0%) | TUBB8 | 1 (7.7%) | 1 (5.3%) | 1 (11.1%) |
CSF1R | 0 (0.0%) | 1 (5.3%) | 0 (0.0%) | MSH2 | 1 (7.7%) | 1 (5.3%) | 1 (11.1%) | VCL-ALK | 0 (0.0%) | 0 (0.0%) | 1 (11.1%) |
DICER1 | 2 (15.4%) | 2 (10.5%) | 0 (0.0%) | NF1 | 2 (15.4%) | 5 (26.3%) | 2 (22.2%) | ||||
DNMT3A | 0 (0.0%) | 0 (0.0%) | 1 (11.1%) | NOTCH1 | 0 (0.0%) | 0 (0.0%) | 1 (11.1%) |
Rank | Group | ||||||||
---|---|---|---|---|---|---|---|---|---|
≤20 Years (n = 13) | 21–60 Years (n = 19) | ≥61 Years (n = 9) | |||||||
Gene | Gene | Gene | |||||||
1 | TERT | 1.000 | 9 (69.2%) | BRAF | 1.000 | 12 (63.2%) | TERT | 1.000 | 6 (66.7%) |
2 | KRAS | 0.679 | 7 (53.8%) | TERT | 0.657 | 10 (52.6%) | BRAF | 0.961 | 4 (44.4%) |
3 | KMT2D | 0.604 | 4 (30.8%) | KMT2D | 0.426 | 5 (26.3%) | TSC2 | 0.695 | 3 (33.3%) |
4 | CHEK2 | 0.584 | 3 (23.1%) | NF1 | 0.415 | 5 (26.3%) | KRAS | 0.626 | 4 (44.4%) |
5 | PIK3CA | 0.521 | 4 (30.8%) | KRAS | 0.411 | 6 (31.6%) | PIK3CA | 0.547 | 3 (33.3%) |
6 | BRAF | 0.506 | 2 (15.4%) | CHEK2 | 0.341 | 3 (15.8%) | NF1 | 0.508 | 2 (22.2%) |
7 | PTCH1 | 0.475 | 2 (15.4%) | FLCN | 0.325 | 2 (10.5%) | ATM | 0.508 | 2 (22.2%) |
8 | DICER1 | 0.469 | 2 (15.4%) | FGFR3 | 0.311 | 2 (10.5%) | ERCC4 | 0.487 | 1 (11.1%) |
9 | TSC2 | 0.468 | 2 (15.4%) | TSC2 | 0.300 | 2 (10.5%) | CHEK2 | 0.431 | 1 (11.1%) |
10 | NF1 | 0.441 | 2 (15.4%) | PTCH1 | 0.298 | 2 (10.5%) | ITK | 0.426 | 1 (11.1%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.-Y.; Shin, S.-J.; Lee, D.-G.; Yun, H.-J.; Kim, S.-M.; Chang, H.; Chang, H.-S.; Shin, H.; Lee, Y.-S. Clinicopathological and Genetic Characteristics of Patients of Different Ages with Diffuse Sclerosing Variant Papillary Thyroid Carcinoma. Cancers 2023, 15, 3101. https://doi.org/10.3390/cancers15123101
Kim S-Y, Shin S-J, Lee D-G, Yun H-J, Kim S-M, Chang H, Chang H-S, Shin H, Lee Y-S. Clinicopathological and Genetic Characteristics of Patients of Different Ages with Diffuse Sclerosing Variant Papillary Thyroid Carcinoma. Cancers. 2023; 15(12):3101. https://doi.org/10.3390/cancers15123101
Chicago/Turabian StyleKim, Soo-Young, Su-Jin Shin, Dong-Gi Lee, Hyeok-Jun Yun, Seok-Mo Kim, Hojin Chang, Hang-Seok Chang, Hyunjung Shin, and Yong-Sang Lee. 2023. "Clinicopathological and Genetic Characteristics of Patients of Different Ages with Diffuse Sclerosing Variant Papillary Thyroid Carcinoma" Cancers 15, no. 12: 3101. https://doi.org/10.3390/cancers15123101
APA StyleKim, S. -Y., Shin, S. -J., Lee, D. -G., Yun, H. -J., Kim, S. -M., Chang, H., Chang, H. -S., Shin, H., & Lee, Y. -S. (2023). Clinicopathological and Genetic Characteristics of Patients of Different Ages with Diffuse Sclerosing Variant Papillary Thyroid Carcinoma. Cancers, 15(12), 3101. https://doi.org/10.3390/cancers15123101