Assessing the Performance of 18F-FDG PET/CT in Bladder Cancer: A Narrative Review of Current Evidence
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Literature Search Strategy
2.2. Study Selection and Inclusion Criteria
- Studies that examined the sensitivity and specificity of PET/CT for nodal staging or restaging after neoadjuvant therapy in patients with bladder cancer.
- Studies published in English with no temporal restrictions.
- Studies conducted in humans.
2.3. Quality Assessment of Included Studies
2.4. Data Extraction and Analysis
- Study design.
- Patient characteristics (age, gender, stage of disease, and histology).
- PET/CT parameters (radiotracer used, diuretic use, and acquisition protocol).
- Main findings of each study (sensitivity and specificity of PET/CT for nodal staging, Positive Predictive Value (PPV), Negative Predictive Value (NPV), and accuracy).
2.5. Synthesis of Results
3. Results
4. Discussion
5. Conclusions and Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Chang, S.S.; Bochner, B.H.; Chou, R.; Dreicer, R.; Kamat, A.M.; Lerner, S.P.; Lotan, Y.; Meeks, J.J.; Michalski, J.M.; Morgan, T.M.; et al. Treatment of Non-Metastatic Muscle-Invasive Bladder Cancer: AUA/ASCO/ASTRO/SUO Guideline. J. Urol. 2017, 198, 552–559. [Google Scholar] [CrossRef] [PubMed]
- Josephson, D.; Pasin, E.; Stein, J.P. Superficial bladder cancer: Part 2. Management. Expert Rev. Anticancer Ther. 2007, 7, 567–581. [Google Scholar] [CrossRef] [PubMed]
- Rieken, M.; Shariat, S.F.; Kluth, L.; Crivelli, J.J.; Abufaraj, M.; Foerster, B.; Mari, A.; Ilijazi, D.; Karakiewicz, P.I.; Babjuk, M.; et al. Comparison of the EORTC tables and the EAU categories for risk stratification of patients with nonmuscle-invasive bladder cancer. Urol. Oncol. Semin. Orig. Investig. 2018, 36, 8. [Google Scholar] [CrossRef]
- Mari, A.; Kimura, S.; Foerster, B.; Abufaraj, M.; D’Andrea, D.; Gust, K.M.; Shariat, S.F. A systematic review and meta-analysis of lymphovascular invasion in patients treated with radical cystectomy for bladder cancer. Urol. Oncol. Semin. Orig. Investig. 2018, 36, 293–305. [Google Scholar] [CrossRef]
- Omorphos, N.P.; Ghose, A.; Hayes, J.D.; Kandala, A.; Dasgupta, P.; Sharma, A.; Vasdev, N. The increasing indications of FDG-PET/CT in the staging and management of Invasive Bladder Cancer. Urol. Oncol. Semin. Orig. Investig. 2022, 40, 434–441. [Google Scholar] [CrossRef] [PubMed]
- Mari, A.; D’andrea, D.; Abufaraj, M.; Foerster, B.; Kimura, S.; Shariat, S.F. Genetic determinants for chemo- and radiotherapy resistance in bladder cancer. Transl. Androl. Urol. 2017, 6, 1081–1089. [Google Scholar] [CrossRef] [Green Version]
- González-Del-Alba, A.; Conde-Moreno, A.J.; Vicente, A.M.G.; González-Peramato, P.; Linares-Espinós, E.; Climent, M.Á. Management of Patients with Metastatic Bladder Cancer in the Real-World Setting from the Multidisciplinary Team: Current Opinion of the SOGUG Multidisciplinary Working Group. Cancers 2022, 14, 1130. [Google Scholar] [CrossRef]
- Cacciamani, G.E.; Ghodoussipour, S.; Mari, A.; Gill, K.S.; Desai, M.; Artibani, W.; Shariat, S.F.; Djaladat, H. Association between Smoking Exposure, Neoadjuvant Chemotherapy Response and Survival Outcomes following Radical Cystectomy: Systematic Review and Meta-Analysis. J. Urol. 2020, 204, 649–660. [Google Scholar] [CrossRef]
- Siles, M.G.; López-Beltran, A.; Pelechano, P.; Vicente, A.M.G.; Sarrió, R.G.; Peña, E.G.-H.; Antolín, A.R.; Zapatero, A.; Arranz, J.; Climent, M. Advances in Transversal Topics Applicable to the Care of Bladder Cancer Patients in the Real-World Setting. Cancers 2022, 14, 3968. [Google Scholar] [CrossRef]
- Girard, A.; Rouanne, M.; Taconet, S.; Radulescu, C.; Neuzillet, Y.; Girma, A.; Beaufrere, A.; Lebret, T.; Le Stanc, E.; Grellier, J.-F. Integrated analysis of 18F-FDG PET/CT improves preoperative lymph node staging for patients with invasive bladder cancer. Eur. Radiol. 2019, 29, 4286–4293. [Google Scholar] [CrossRef]
- Drieskens, O.; Oyen, R.; Van Poppel, H.; Vankan, Y.; Flamen, P.; Mortelmans, L. FDG-PET for preoperative staging of bladder cancer. Eur. J. Nucl. Med. Mol. Imaging 2005, 32, 1412–1417. [Google Scholar] [CrossRef] [PubMed]
- Dos Anjos, D.A.; Etchebehere, E.; Ramos, C.D.; Santos, A.; Albertotti, C.; Camargo, E.E. 18F-FDG PET/CT Delayed Images After Diuretic for Restaging Invasive Bladder Cancer. J. Nucl. Med. 2007, 48, 764–770. [Google Scholar] [CrossRef] [PubMed]
- Jadvar, H.; Quan, V.; Henderson, R.W.; Conti, P.S. [F-18]-Fluorodeoxyglucose PET and PET-CT in diagnostic imaging evaluation of locally recurrent and metastatic bladder transitional cell carcinoma. Int. J. Clin. Oncol. 2008, 13, 42–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swinnen, G.; Maes, A.; Pottel, H.; Vanneste, A.; Billiet, I.; Lesage, K.; Werbrouck, P. FDG-PET/CT for the Preoperative Lymph Node Staging of Invasive Bladder Cancer. Eur. Urol. 2010, 57, 641–647. [Google Scholar] [CrossRef]
- Kibel, A.S.; Dehdashti, F.; Katz, M.D.; Klim, A.P.; Grubb, R.L.; Humphrey, P.A.; Siegel, C.; Cao, D.; Gao, F.; Siegel, B.A. Prospective Study of [18F]Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography for Staging of Muscle-Invasive Bladder Carcinoma. J. Clin. Oncol. 2009, 27, 4314–4320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lodde, M.; Lacombe, L.; Friede, J.; Morin, F.; Saourine, A.; Fradet, Y. Evaluation of fluorodeoxyglucose positron-emission tomography with computed tomography for staging of urothelial carcinoma. BJU Int. 2010, 106, 658–663. [Google Scholar] [CrossRef] [PubMed]
- Harkirat, S.; Anand, S.; Jacob, M. Forced diuresis and dual-phase 18F-fluorodeoxyglucose-PET/CT scan for restaging of urinary bladder cancers. Indian J. Radiol. Imaging 2010, 20, 13–19. [Google Scholar] [CrossRef]
- Apolo, A.B.; Riches, J.; Schöder, H.; Akin, O.; Trout, A.; Milowsky, M.I.; Bajorin, D.F. Clinical Value of Fluorine-18 2-Fluoro-2-Deoxy-D-Glucose Positron Emission Tomography/Computed Tomography in Bladder Cancer. J. Clin. Oncol. 2010, 28, 3973–3978. [Google Scholar] [CrossRef]
- Jensen, T.K.; Holt, P.; Gerke, O.; Riehmann, M.; Svolgaard, B.; Marcussen, N.; Bouchelouche, K. Preoperative lymph-node staging of invasive urothelial bladder cancer with 18F-fluorodeoxyglucose positron emission tomography/computed axial tomography and magnetic resonance imaging: Correlation with histopathology. Scand. J. Urol. Nephrol. 2011, 45, 122–128. [Google Scholar] [CrossRef]
- Mertens, L.S.; Fioole-Bruining, A.; Van Rhijn, B.W.; Kerst, J.M.; Bergman, A.M.; Vogel, W.V.; Vegt, E.; Horenblas, S. FDG-Positron Emission Tomography/Computerized Tomography for Monitoring the Response of Pelvic Lymph Node Metastasis to Neoadjuvant Chemotherapy for Bladder Cancer. J. Urol. 2013, 189, 1687–1691. [Google Scholar] [CrossRef]
- Hitier-Berthault, M.; Ansquer, C.; Branchereau, J.; Renaudin, K.; Bodere, F.; Bouchot, O.; Rigaud, J. 18F-fluorodeoxyglucose positron emission tomography-computed tomography for preoperative lymph node staging in patients undergoing radical cystectomy for bladder cancer: A prospective study. Int. J. Urol. 2013, 20, 788–796. [Google Scholar] [CrossRef]
- Goodfellow, H.; Viney, Z.; Hughes, P.; Rankin, S.; Rottenberg, G.; Hughes, S.; Evison, F.; Dasgupta, P.; O’Brien, T.; Khan, M.S. Role of fluorodeoxyglucose positron emission tomography (FDG PET)-computed tomography (CT) in the staging of bladder cancer. BJU Int. 2014, 114, 389–395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nayak, B.; Dogra, P.N.; Naswa, N.; Kumar, R. Diuretic 18F-FDG PET/CT imaging for detection and locoregional staging of urinary bladder cancer: Prospective evaluation of a novel technique. Eur. J. Nucl. Med. Mol. Imaging 2013, 40, 386–393. [Google Scholar] [CrossRef] [PubMed]
- Jeong, I.G.; Hong, S.; You, D.; Hong, J.H.; Ahn, H.; Kim, C.-S. FDG PET–CT for Lymph Node Staging of Bladder Cancer: A Prospective Study of Patients with Extended Pelvic Lymphadenectomy. Ann. Surg. Oncol. 2015, 22, 3150–3156. [Google Scholar] [CrossRef] [PubMed]
- Aljabery, F.; Lindblom, G.; Skoog, S.; Shabo, I.; Olsson, H.; Rosell, J.; Jahnson, S. PET/CT versus conventional CT for detection of lymph node metastases in patients with locally advanced bladder cancer. BMC Urol. 2015, 15, 87. [Google Scholar] [CrossRef] [Green Version]
- Pichler, R.; De Zordo, T.; Fritz, J.; Kroiss, A.; Aigner, F.; Heidegger, I.; Virgolini, I.; Horninger, W.; Uprimny, C. Pelvic Lymph Node Staging by Combined 18 F-FDG-PET/CT Imaging in Bladder Cancer Prior to Radical Cystectomy. Clin. Genitourin. Cancer 2017, 15, e387–e395. [Google Scholar] [CrossRef]
- Mete, U.K.; Nayak, P.; Bhattacharya, A.; Kakkar, N.; Mandal, A. Is [F-18]-fluorodeoxyglucose FDG-PET/CT better than ct alone for the preoperative lymph node staging of muscle invasive bladder cancer? Int. braz j urol 2016, 42, 234–241. [Google Scholar] [CrossRef] [Green Version]
- Soubra, A.; Hayward, D.; Dahm, P.; Goldfarb, R.; Froehlich, J.; Jha, G.; Konety, B.R. The diagnostic accuracy of 18F-fluorodeoxyglucose positron emission tomography and computed tomography in staging bladder cancer: A single-institution study and a systematic review with meta-analysis. World J. Urol. 2016, 34, 1229–1237. [Google Scholar] [CrossRef]
- Alongi, P.; Caobelli, F.; Gentile, R.; Stefano, A.; Russo, G.; Albano, D.; Baldari, S.; Gilardi, M.C.; Midiri, M. Recurrent bladder carcinoma: Clinical and prognostic role of 18 F-FDG PET/CT. Eur. J. Nucl. Med. Mol. Imaging 2017, 44, 224–233. [Google Scholar] [CrossRef]
- Kollberg, P.; Almquist, H.; Bläckberg, M.; Cwikiel, M.; Gudjonsson, S.; Lyttkens, K.; Patschan, O.; Liedberg, F. [18F]Fluorodeoxyglucose-positron emission tomography/computed tomography response evaluation can predict histological response at surgery after induction chemotherapy for oligometastatic bladder cancer. Scand. J. Urol. 2017, 51, 308–313. [Google Scholar] [CrossRef]
- Zattoni, F.; Incerti, E.; Colicchia, M.; Castellucci, P.; Panareo, S.; Picchio, M.; Fallanca, F.; Briganti, A.; Moschini, M.; Gallina, A.; et al. Comparison between the diagnostic accuracies of 18F-fluorodeoxyglucose positron emission tomography/computed tomography and conventional imaging in recurrent urothelial carcinomas: A retrospective, multicenter study. Abdom. Radiol. 2018, 43, 2391–2399. [Google Scholar] [CrossRef] [PubMed]
- Higashiyama, A.; Komori, T.; Juri, H.; Inada, Y.; Azuma, H.; Narumi, Y. Detectability of residual invasive bladder cancer in delayed 18F-FDG PET imaging with oral hydration using 500 mL of water and voiding-refilling. Ann. Nucl. Med. 2018, 32, 561–567. [Google Scholar] [CrossRef] [PubMed]
- Antoch, G.; Saoudi, N.; Kuehl, H.; Dahmen, G.; Mueller, S.P.; Beyer, T.; Bockisch, A.; Debatin, J.F.; Freudenberg, L.S. Accuracy of Whole-Body Dual-Modality Fluorine-18–2-Fluoro-2-Deoxy-d-Glucose Positron Emission Tomography and Computed Tomography (FDG-PET/CT) for Tumor Staging in Solid Tumors: Comparison With CT and PET. J. Clin. Oncol. 2004, 22, 4357–4368. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.-Y.; Chen, J.-H.; Liang, J.-A.; Wang, H.-Y.; Lin, C.-C.; Lin, W.-Y.; Kao, C.-H. Clinical value of FDG PET or PET/CT in urinary bladder cancer: A systemic review and meta-analysis. Eur. J. Radiol. 2012, 81, 2411–2416. [Google Scholar] [CrossRef]
- Civelek, A.C.; Niglio, S.A.; Malayeri, A.A.; Lin, J.; Gurram, S.; Chalfin, H.J.; Turkbey, B.; Valera, V.; Steinberg, S.M.; Apolo, A.B. Clinical value of 18FDG PET/MRI in muscle-invasive, locally advanced, and metastatic bladder cancer. Urol. Oncol. Semin. Orig. Investig. 2021, 39, 787. [Google Scholar] [CrossRef] [PubMed]
- Zattoni, F.; Incerti, E.; Moro, F.D.; Moschini, M.; Castellucci, P.; Panareo, S.; Picchio, M.; Fallanca, F.; Briganti, A.; Gallina, A.; et al. 18F-FDG PET/CT and Urothelial Carcinoma: Impact on Management and Prognosis—A Multicenter Retrospective Study. Cancers 2019, 11, 700. [Google Scholar] [CrossRef] [Green Version]
- Voskuilen, C.S.; van Gennep, E.J.; Einerhand, S.M.; Vegt, E.; Donswijk, M.L.; Bruining, A.; van der Poel, H.G.; Horenblas, S.; Hendricksen, K.; van Rhijn, B.W.; et al. Staging 18F-fluorodeoxyglucose Positron Emission Tomography/Computed Tomography Changes Treatment Recommendation in Invasive Bladder Cancer. Eur. Urol. Oncol. 2022, 5, 366–369. [Google Scholar] [CrossRef]
- Sinha, A.; West, A.; Hayes, J.; Teoh, J.; Decaestecker, K.; Vasdev, N. Methods of Sentinel Lymph Node Detection and Management in Urinary Bladder Cancer—A Narrative Review. Curr. Oncol. 2022, 29, 1335–1348. [Google Scholar] [CrossRef]
Study | Year | Patient Selection (Detecting, Staging, Restaging) | N. Patients | Gender Male (%) | Histology | Image Time | Furosemide | Time after Furosemide Administration |
---|---|---|---|---|---|---|---|---|
Drieskens et al. [11] | 2005 | Staging | 55 | 47 (85.5%) | TCC | 60 min | 20 mg | 10 min |
Anjos et al. [12] | 2007 | Detecting, staging Restaging | 17 | 15 (88.2%) | TCC | 60, 120 min | 20 mg | 60 min |
Jadvar et al. [13] | 2008 | Restaging | 35 | 25 (71.4%) | TCC | 60 min | - | - |
Swinnen et al. [14] | 2009 | Staging | 51 | 43 (84.3%) | TCC | 30 min | - | - |
Kibel et al. [15] | 2009 | Staging, restaging | 43 | 32 (74.4%) | TCC Adenocarcinoma Squamoso | 60 min | 20 mg | 20 min |
Lodde et al. [16] | 2010 | Staging | 70 | 57 (81.4%) | TCC Epidermoide Neuroendocrino | 75, 110 min | 10 mg | 30 min |
Harkirat et al. [17] | 2010 | Staging, restaging | 29 | - | TCC | 60, 150, 190 min | dosage not specified | 60, 90 min |
Apolo et al. [18] | 2010 | Detecting, restaging | 57 | 38 (66.7%) | TCC, Adenocarcinoma Neuroendocrino Squamoso | 60, 90 min | - | - |
Jenses et al. [19] | 2011 | Staging | 18 | 14 (77.8%) | TCC | 60 min | - | - |
Mertens et al. [20] | 2013 | Restaging | 19 | 18 (94.7%) | - | 60 min | - | - |
Hitier-Berthault et al. [21] | 2013 | Staging | 52 | 44 (84.6%) | TCC Adenocarcinoma Squamoso | 60, 90 min | - | - |
Goodfellow et al. [22] | 2013 | Staging | 233 | 175 (75.1%) | TCC Adenocarcinoma Neuroendocrino Paraganglioma Squamoso | 90 min | - | - |
Nayak et al. [23] | 2013 | Staging | 25 | 21 (84%) | - | 45, 60 min | 40 mg | 120 min |
Jeong et al. [24] | 2015 | Staging | 61 | 46 75.4% | - | 60 min | - | - |
Aljabery et al. [25] | 2015 | Staging | 54 | 47 (87%) | TCC | 60, 90 min | - | - |
Pichler et al. [26] | 2016 | Staging | 70 | 53 (75.7%) | - | 60 min | - | - |
Uttam et al. [27] | 2016 | Staging | 15 | 14 (93.3%) | - | 60 min | 20 mg | 10–15 min |
Soubra et al. [28] | 2016 | Staging | 78 | 64 (81.1%) | - | 60 min | 40 mg | 60 min |
Alongi et al. [28] | 2016 | Restaging | 41 | 36 (87.8%) | TCC Papillare Squamoso | 60, 90 min | - | - |
Kollberg et al. [29] | 2017 | Restaging | 50 | 35 (78%) | - | - | 20 mg | - |
Zattoni et al. [30] | 2017 | Restaging | 287 | 223 (77.7%) | TCC | 60 min | - | - |
Higashiyama et al. [31] | 2018 | Staging | 25 | 19 (76%) | TCC Small cell carcinoma | 60, 120 min | - | - |
Girard et al. [10] | 2019 | Staging | 61 | 56 (91.8%) | - | 60 min | - | - |
Study | Year | Patient Selection (Detecting or Staging or Restaging) | Reference Test | Clinical t Stage | Clinical n Stage | Pathological t Stage | Pathological n Stage |
---|---|---|---|---|---|---|---|
Drieskens et al. [11] | 2005 | Staging | AP or FU | - | - | pT0: 0% pT1: 16% pT2: 47% pT3: 31% pT4: 6%. | - |
Anjos et al. [12] | 2007 | Detecting Staging Restaging | APor FU | cT+: 35% | cN+: 47% cM+: 35% | pT+: 35% | pN0: 47% pM+: 35% |
Jadvar et al. [13] | 2008 | Restaging | AP or FU | - | cN0: 34% cN+: 54% | - | pN0: 54% pN-: 34% |
Swinnen et al. [14] | 2009 | Staging | AP | - | cN0: 86% cN+: 14% | pT0: 0% pT1: 24%; pT2: 43% pT3: 24%; pT4: 8%. | pN0: 75% pN+: 25% |
Kibel et al. [15] | 2009 | Staging Restaging | AP | - | cN0: 79% cN+: 21% | - | pN0: 75% pN+: 25% |
Lodde et al. [16] | 2010 | Staging | AP or FU | - | cN0: 82% cN1: 4% cN2: 14% | - | pN0: 3% pN1: 13% pN2: 12% pN3: 7% |
Harkirat et al. [17] | 2010 | Staging Restaging | AP or FU | cT0: 45% cT+: 55% | cN+: 21% cM+: 7% | ; - | pN+: 28% pM+: 14% |
Apolo et al. [18] | 2010 | Detecting Restaging | AP or FU | cT0-T1: 23% pT2-3-4: 77% | - | pT0-T1: 12% pT2-T3: 44% pT4: 44% | - |
Jenses et al. [19] | 2011 | Staging | AP | - | cN0: 99% cN+: 11% | - | pN0: 83% pN+: 17% |
Mertens et al. [20] | 2013 | Restaging | AP | - | cN0: 63% | - | pN0: 74% |
Hitier-Berthault et al. [21] | 2013 | Staging | AP | - | cN0: 77% cN+: 23% | pT0: 10% pTis: 4% pT1: 6% pT2: 13% pT3: 36% pT4: 31% | pN0: 58% pN+: 42% |
Goodfellow et al. [22] | 2013 | Staging | AP or FU | - | cM0: 76% cM+: 24% | pTa: 7% pTis: 3% pT1: 26% pT2: 35% pT3: 21%; pT4: 8% | pN0: 88% pN+: 12% |
Nayak et al. [23] | 2013 | Staging | AP | cT0: 4% cT+: 96% | cN0: 72%; cN+: 28% | pT0: 0% pT+:100%. | pN0: 64% pN+: 36% |
Jeong et al. [24] | 2015 | Staging | AP | - | cN0: 69%; cN+: 31% | - | pN0: 72% pN+: 28% |
Aljabery et al. [25] | 2015 | Staging | AP | cT0: 8% cT1:17% cT2: 19% cT3: 30% cT4: 26% | cN0: 88%; cN+: 22% | pT0: 0% pT1: 26% pT2: 18% pT3: 30% pT4: 26% | pN0: 69% pN+: 31% |
Pichler et al. [32] | 2016 | Staging | AP | - | cN0: 83% cN+: 17% | pT0: 0% pTis: 3% pT1: 24% pT2: 35% pT3: 27% pT4: 11% | pN0: 84% pN1: 7% pN2: 7% pN3: 2% |
Uttam et al. [26] | 2016 | Staging | AP | - | cN0: 47%; cN+: 53% | - | pN0: 80% pN+: 20% |
Soubra et al. [27] | 2016 | Staging | AP (lynfh nodes and biopsy) | - | cM0: 90% cM+: 10% | pT0: 9% pTis: 14% pTa: 8% pT1: 8% pT2: 27% pT3: 19% pT4: 15% | pM0: 90% pM+: 10% |
Alongi et al. [28] | 2016 | Restaging | AP or FU | cT1: 15% cT2: 10% cT3: 10% cT4: 10% | cN0: 49% cN+: 51% | pT0: 0% pT1: 29% pT2: 23% pT3: 25% pT4: 23% | pN0: 44% pN+: 56% |
Kollberg et al. [29] | 2017 | Restaging | AP | cN0: 98% cN1: 2% | pN0: 86% pN1:14% | ||
Zattoni et al. [30] | 2017 | Restaging | FU | - | - | pT0: 5% pTis: 6% pTa: 2% pT1: 9% pT2: 14% pT3: 34% pT4: 14% NA: 16% | pN0: 51% pN1: 12% pN2: 16% pN3: 4% pNx: 17 % |
Higashiyama et al. [31] | 2018 | Staging | AP | cT0: 8% cT+: 92% | - | pT0: 0% pT+: 100% | - |
Girard et al. [10] | 2019 | Staging | AP | - | cN0: 84%; cN+: 16% | pT0: 0% pT1: 25%; pT2: 16% pT3-4: 59% | pN0: 72% pN+: 28% |
Study | Year | Patient Selection (Detecting or Staging/Restaging) | Sensitivity (IQR) | PPV | NPV | Accuracy | Specificity (IQR) |
---|---|---|---|---|---|---|---|
Drieskens et al. [11] | 2005 | Staging | 53% (27–79%) | 75% | 79% | 78% | 72% (0.51–0.88) |
Anjos et al. [12] | 2007 | Detecting Staging Restaging | 100% (54–100%) | 100% (0.48–1.00) | |||
Jadvar et al. [13] | 2008 | Restaging | 100% (83–100%) | 100% (0.78–1.00) | |||
Swinnen et al. [14] | 2009 | Staging | 46% | 85% | 84% | 84% | 97% |
Kibel et al. [15] | 2009 | Staging Restaging | 70% (35–93%) | 78% | 91% | 94% (0.79–0.99) | |
Lodde et al. [16] | 2010 | Staging | 57% (37–74%) | 100% | 80% | 77% | 100% |
Harkirat et al. [17] | 2010 | Staging Restaging | 87% (60–98%) | 100% | 78% | 100% (0.59–1.00) | |
Apolo et al. [18] | 2010 | Detecting Restaging | 81% (63–93%) | 94% (0.70–1.00) | |||
Jenses et al. [19] | 2011 | Staging | 33% | 50% | 87% | 93% | 97% |
Mertens et al. [20] | 2013 | Restaging | 100% | 94% | 100% | 67% | |
Hitier-Berthault et al. [21] | 2013 | Staging | 36% | 67% | 65% | 65% | 87% |
Goodfellow et al. [22] | 2013 | Staging | 69% | 87% | 81% | 86% | 95% |
Nayak et al. [23] | 2013 | Staging | 100% | 100% | |||
Jeong et al. [24] | 2015 | Staging | 47% | 73% | 82% | 93% | |
Aljabery et al. [25] | 2015 | Staging | 41% | 58% | 76% | 86% | |
Pichler et al. [26] | 2016 | Staging | 69% | 50% | 93% | 84% | 88% |
Uttam et al. [27] | 2016 | Staging | 100% | 37% | 100% | 58% | |
Soubra et al. [28] | 2016 | Staging | 56% | 90% | 98% | ||
Alongi et al. [29] | 2016 | Restaging | 87% | 95% | 85% | 90% | 94% |
Kollberg et al. [30] | 2017 | Restaging | 100% | 88% | 100% | 17% | |
Zattoni et al. [31] | 2017 | Restaging | 95% | 95% | 78% | 91% | 78% |
Higashiyama et al. [32] | 2018 | Staging | 92% | ||||
Girard et al. [10] | 2019 | Staging | 47% | 80% | 82% | 82% | 95% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bacchiani, M.; Salamone, V.; Massaro, E.; Sandulli, A.; Mariottini, R.; Cadenar, A.; Di Maida, F.; Pradere, B.; Mertens, L.S.; Longoni, M.; et al. Assessing the Performance of 18F-FDG PET/CT in Bladder Cancer: A Narrative Review of Current Evidence. Cancers 2023, 15, 2951. https://doi.org/10.3390/cancers15112951
Bacchiani M, Salamone V, Massaro E, Sandulli A, Mariottini R, Cadenar A, Di Maida F, Pradere B, Mertens LS, Longoni M, et al. Assessing the Performance of 18F-FDG PET/CT in Bladder Cancer: A Narrative Review of Current Evidence. Cancers. 2023; 15(11):2951. https://doi.org/10.3390/cancers15112951
Chicago/Turabian StyleBacchiani, Mara, Vincenzo Salamone, Eleana Massaro, Alessandro Sandulli, Riccardo Mariottini, Anna Cadenar, Fabrizio Di Maida, Benjamin Pradere, Laura S. Mertens, Mattia Longoni, and et al. 2023. "Assessing the Performance of 18F-FDG PET/CT in Bladder Cancer: A Narrative Review of Current Evidence" Cancers 15, no. 11: 2951. https://doi.org/10.3390/cancers15112951
APA StyleBacchiani, M., Salamone, V., Massaro, E., Sandulli, A., Mariottini, R., Cadenar, A., Di Maida, F., Pradere, B., Mertens, L. S., Longoni, M., Krajewski, W., Del Giudice, F., D’Andrea, D., Laukhtina, E., Shariat, S. F., Minervini, A., Moschini, M., Mari, A., & on behalf of European Association of Urology-Young Academic Urologists (EAU-YAU): Urothelial Carcinoma Working Group. (2023). Assessing the Performance of 18F-FDG PET/CT in Bladder Cancer: A Narrative Review of Current Evidence. Cancers, 15(11), 2951. https://doi.org/10.3390/cancers15112951