Modern Surgical Techniques of Thyroidectomy and Advances in the Prevention and Treatment of Perioperative Complications
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Modern Surgical Techniques
3.1.1. Introduction
3.1.2. Trans-Axillary Approach (TAA)
3.1.3. Bilateral Axillo-Breast Approach (BABA)
3.1.4. Natural Orifice Surgery
3.2. Thermal Ablation
3.3. Identification and Assessment of Parathyroid Function
3.3.1. Autofluorescence Imaging
3.3.2. Indocyanine Green Fluorescence (ICGF)
3.3.3. Others
3.4. Perioperative Bleeding
3.4.1. Introduction
3.4.2. Risk Groups
3.4.3. Operating Techniques
3.4.4. Postoperative Management
3.4.5. Others
3.5. Recurrent Laryngeal Nerve
3.5.1. Introduction
3.5.2. Intraoperative Neuromonitoring—Prevention of RLN Paralysis
3.5.3. Surgery Technique—Prevention of RLN Paralysis
3.5.4. Artificial Intelligence (AI) Techniques—Prevention of RLN Paralysis
3.5.5. Treatment of RLN Paralysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ABBA | axillo-bilateral-breast approach |
AC | accuracy |
AI | artificial intelligence |
AR | augmented reality |
ATA | American Thyroid Association |
BABA | bilateral axillo-breast approach |
BABA–RT | robot-assisted bilateral axillo-breast approach |
CIONM | continuous intraoperative neuromonitoring |
DL | deep learning |
DTC | differentiated thyroid cancer |
ESMO | the European Society for Medical Oncology |
ET | endoscopic thyroidectomy |
ETT | endotracheal tube |
ETBAA | endoscopic thyroidectomy via bilateral areola approach |
GETTA | gasless endoscopic thyroidectomy through an axilla |
GTAA | gasless trans-axillary approach |
GUAA | gasless unilateral trans-axillary approach |
ICG | indocyanine green |
ICGF | indocyanine green fluorescence |
IIONM | intermittent intraoperative neuromonitoring |
IIORRLN | immediate intraoperative repair of ralyngeal nerve |
IONM | intraoperative neuromonitoring |
LOS | loss of signal |
LTA | laser thermal ablation |
MWA | microwave ablation |
NC | nanocarbon |
NIFI | near-infrared fluorescence imaging |
NPV | negative predictive value |
OT | open thyroidectomy |
OTA | open thyroidectomy approach |
P/B | the average intensity of parathyroid gland’s surface autofluorescence relative to the average intensity of its background tissue surface fluorescence |
PAP | peak airway pressure |
PECS II | pectoralis major II |
PF | postauricular facelift |
PG | parathyroid gland |
PH | postoperative hypocalcaemia |
POD | postoperative day |
PPV | positive predictive value |
PTC | papillary thyroid cancer |
PTH | parathyroid hormone |
PTX | parathyroidectomy |
RA | retroauricular |
RATT | robotic-assisted trans-axillary thyroidectomy |
RFA | radiofrequency ablation |
RLN | recurrent laryngeal nerve |
RT | robotic thyroidectomy |
TA | trans-axillary |
TAA | trans-axillary approach |
TAb | thermal ablation |
TET | total endoscopic thyroidectomy |
TOA | transoral approach |
TOaST | transoral and submental thyroidectomy |
TOETVA | transoral endoscopic thyroidectomy by vestibular approach |
TORT | transoral robotic thyroidectomy |
VAS | Visual Analog Scale |
UABA | unilateral axillo-breast with carbon dioxide insufflation |
References
- Kitahara, C.M.; Sosa, J.A. The Changing Incidence of Thyroid Cancer. Nat. Rev. Endocrinol. 2016, 12, 646–653. [Google Scholar] [CrossRef] [PubMed]
- Seib, C.D.; Sosa, J.A. Evolving Understanding of the Epidemiology of Thyroid Cancer. Endocrinol. Metab. Clin. N. Am. 2019, 48, 23–35. [Google Scholar] [CrossRef] [PubMed]
- Bikas, A.; Burman, K.D. Epidemiology of Thyroid Cancer. In The Thyroid and Its Diseases; Luster, M., Duntas, L., Wartofsky, L., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 541–547. [Google Scholar]
- Li, M.; Brito, J.P.; Vaccarella, S. Long-Term Declines of Thyroid Cancer Mortality: An International Age-Period-Cohort Analysis. Thyroid 2020, 30, 838–846. [Google Scholar] [CrossRef]
- Jensen, C.B.; Saucke, M.C.; Francis, D.O.; Voils, C.I.; Pitt, S.C. From Overdiagnosis to Overtreatment of Low-Risk Thyroid Cancer: A Thematic Analysis of Attitudes and Beliefs of Endocrinologists, Surgeons, and Patients. Thyroid 2020, 30, 696–703. [Google Scholar] [CrossRef] [PubMed]
- Krajewska, J.; Kukulska, A.; Oczko-Wojciechowska, M.; Kotecka-Blicharz, A.; Drosik-Rutowicz, K.; Haras-Gil, M.; Jarzab, B.; Handkiewicz-Junak, D. Early Diagnosis of Low-Risk Papillary Thyroid Cancer Results Rather in Overtreatment than a Better Survival. Front. Endocrinol. 2020, 11, 71421. [Google Scholar] [CrossRef]
- Jegerlehner, S.; Bulliard, J.L.; Aujesky, D.; Rodondi, N.; Germann, S.; Konzelmann, I.; Chiolero, A.; Mousavi, M.; Camey, B.; Bouchardy, C.; et al. Overdiagnosis and Overtreatment of Thyroid Cancer: A Population-Based Temporal Trend Study. PLoS ONE 2017, 12, e0179387. [Google Scholar] [CrossRef]
- Solis-Pazmino, P.; Salazar-Vega, J.; Lincango-Naranjo, E.; Garcia, C.; Koupermann, G.J.; Ortiz-Prado, E.; Ledesma, T.; Rojas, T.; Alvarado-Mafla, B.; Carcamo, C.; et al. Thyroid Cancer Overdiagnosis and Overtreatment: A Cross- Sectional Study at a Thyroid Cancer Referral Center in Ecuador. BMC Cancer 2021, 21, 42. [Google Scholar] [CrossRef]
- Miranda-Filho, A.; Lortet-Tieulent, J.; Bray, F.; Cao, B.; Franceschi, S.; Vaccarella, S.; Dal Maso, L. Thyroid Cancer Incidence Trends by Histology in 25 Countries: A Population-Based Study. Lancet Diabetes Endocrinol. 2021, 9, 225–234. [Google Scholar] [CrossRef]
- Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016, 26, 1–133. [Google Scholar] [CrossRef]
- Filetti, S.; Durante, C.; Hartl, D.; Leboulleux, S.; Locati, L.D.; Newbold, K.; Papotti, M.G.; Berruti, A. Thyroid Cancer: ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up. Ann. Oncol. 2019, 30, 1856–1883. [Google Scholar] [CrossRef]
- Tae, K. Complications of Transoral Thyroidectomy: Overview and Update. In Clinical and Experimental Otorhinolaryngology; Korean Society of Otolaryngology: Busan, Republic of Korea, 2021; pp. 169–178. [Google Scholar]
- Chahardahmasumi, E.; Salehidoost, R.; Amini, M.; Aminorroaya, A.; Rezvanian, H.; Kachooei, A.; Iraj, B.; Nazem, M.; Kolahdoozan, M. Assessment of the Early and Late Complication after Thyroidectomy. Adv. Biomed. Res. 2019, 8, 14. [Google Scholar] [PubMed]
- Welbourn, R.B. Highlights from Endocrine Surgical History. World J. Surg. 1996, 20, 603–612. [Google Scholar] [CrossRef] [PubMed]
- Hannan, S.A. The Magnificent Seven: A History of Modern Thyroid Surgery. Int. J. Surg. 2006, 4, 187–191. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Wang, X.; Zheng, G.; Wu, G.; Zeng, Q.; Zheng, H. Comparison Between Transoral Endoscopic Thyroidectomy Vestibular Approach (TOETVA) and Conventional Open Thyroidectomy for Patients Undergoing Total Thyroidectomy and Central Neck Dissection: A Propensity Score-Matching Analysis. Front. Oncol. 2022, 12, 856021. [Google Scholar] [CrossRef] [PubMed]
- Jasaitis, K.; Midlenko, A.; Bekenova, A.; Ignatavicius, P.; Gulbinas, A.; Dauksa, A. Transaxillary Gasless Endoscopic Thyroidectomy versus Conventional Open Thyroidectomy: Systematic Review and Meta-Analysis. Wideochir. Inne Tech. Maloinwazyjne 2021, 16, 482–490. [Google Scholar] [CrossRef]
- Choi, Y.; Lee, J.H.; Kim, Y.H.; Lee, Y.S.; Chang, H.S.; Park, C.S.; Roh, M.R. Impact of Postthyroidectomy Scar on the Quality of Life of Thyroid Cancer Patients. Ann. Dermatol. 2014, 26, 693–699. [Google Scholar] [CrossRef]
- Hoon Koo, D.; Myoung Kim, D.; Young Choi, J.; Eun Lee, K.; Ho Cho, S.; Youn, Y.-K. In-Depth Survey of Scarring and Distress in Patients Undergoing Bilateral Axillo-Breast Approach Robotic Thyroidectomy or Conventional Open Thyroidectomy; Surg. Laparosc. Endosc. Percutan. Tech. 2015, 25, 436–439. [Google Scholar]
- Lee, M.C.; Park, H.; Lee, B.C.; Lee, G.H.; Choi, I.J. Comparison of Quality of Life between Open and Endoscopic Thyroidectomy for Papillary Thyroid Cancer. Head Neck 2016, 38, E827–E831. [Google Scholar] [CrossRef]
- Kim, W.W.; Jung, J.H.; Park, H.Y. A Single Surgeon’s Experience and Surgical Outcomes of 300 Robotic Thyroid Surgeries Using a Bilateral Axillo-Breast Approach. J. Surg. Oncol. 2015, 111, 135–140. [Google Scholar] [CrossRef]
- Kwak, H.Y.; Kim, H.Y.; Lee, H.Y.; Jung, S.P.; Woo, S.U.K.; Son, G.S.; Lee, J.B.; Bae, J.W. Robotic Thyroidectomy Using Bilateral Axillo-Breast Approach: Comparison of Surgical Results with Open Conventional Thyroidectomy. J. Surg. Oncol. 2015, 111, 141–145. [Google Scholar] [CrossRef]
- Russell, J.O.; Noureldine, S.I.; al Khadem, M.G.; Tufano, R.P. Minimally Invasive and Remote-Access Thyroid Surgery in the Era of the 2015 American Thyroid Association Guidelines. Laryngoscope Investig. Otolaryngol. 2016, 1, 175–179. [Google Scholar] [CrossRef] [PubMed]
- Anuwong, A.; Sasanakietkul, T.; Jitpratoom, P.; Ketwong, K.; Kim, H.Y.; Dionigi, G.; Richmon, J.D. Transoral Endoscopic Thyroidectomy Vestibular Approach (TOETVA): Indications, Techniques and Results. Surg. Endosc. 2018, 32, 456–465. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Li, Y.; Wang, Y.; Xiang, C.; Yu, X.; Zhang, M.; Wang, P. Comparison of the Transoral Endoscopic Thyroidectomy Vestibular Approach and Open Thyroidectomy: A Propensity Score–Matched Analysis of Surgical Outcomes and Safety in the Treatment of Papillary Thyroid Carcinoma. Surgery 2021, 170, 1680–1686. [Google Scholar] [CrossRef] [PubMed]
- You, J.Y.; Kim, H.Y.; Park, D.W.; Yang, H.W.; Kim, H.K.; Dionigi, G.; Tufano, R.P. Transoral Robotic Thyroidectomy versus Conventional Open Thyroidectomy: Comparative Analysis of Surgical Outcomes Using Propensity Score Matching. Surg. Endosc. 2021, 35, 124–129. [Google Scholar] [CrossRef]
- Razavi, C.R.; Russell, J.O. Indications and Contraindications to Transoral Thyroidectomy. Ann. Thyroid. 2017, 2, 12. [Google Scholar] [CrossRef]
- Razavi, C.R.; Khadem, M.G.A.; Fondong, A.; Clark, J.H.; Richmon, J.D.; Tufano, R.P.; Russell, J.O. Early Outcomes in Transoral Vestibular Thyroidectomy: Robotic versus Endoscopic Techniques. Head Neck 2018, 40, 2246–2253. [Google Scholar] [CrossRef]
- Lira, R.B.; Ramos, A.T.; Nogueira, R.M.R.; de Carvalho, G.B.; Russell, J.O.; Tufano, R.P.; Kowalski, L.P. Transoral Thyroidectomy (TOETVA): Complications, Surgical Time and Learning Curve. Oral Oncol. 2020, 110, 104871. [Google Scholar] [CrossRef]
- Yan, X.; Zhu, C.; Wu, W.; Geng, X.; Ding, Y.; Li, Y. Transoral Endoscopic Thyroidectomy Vestibular Approach for Papillary Thyroid Microcarcinoma: An Analysis of Clinical Outcomes. Am. J. Transl. Res. 2022, 14, 7907. [Google Scholar]
- Chai, Y.J.; Chae, S.; Oh, M.Y.; Kwon, H.; Park, W.S. Transoral Endoscopic Thyroidectomy Vestibular Approach (Toetva): Surgical Outcomes and Learning Curve. J. Clin. Med. 2021, 10, 863. [Google Scholar] [CrossRef]
- Yang, S.M.; Park, W.S.; You, J.Y.; Park, D.W.; Kangleon-Tan, H.L.; Kim, H.K.; Dionigi, G.; Kim, H.Y.; Tufano, R.P. Comparison of Postoperative Outcomes between Bilateral Axillo-Breast Approach-Robotic Thyroidectomy and Transoral Robotic Thyroidectomy. Gland Surg. 2020, 9, 1998–2004. [Google Scholar] [CrossRef]
- Liang, T.J.; Wang, N.Y.; Tsai, C.Y.; Liu, S.I.; Chen, I.S. Outcome Comparison between Endoscopic Transoral and Bilateral Axillo-Breast Approach Thyroidectomy Performed by a Single Surgeon. World J. Surg. 2021, 45, 1779–1784. [Google Scholar] [CrossRef] [PubMed]
- Kwak, J.; Yu, H.W.; Lee, K.E. Bilateral Axillo-Breast Approach Robotic Thyroid Surgery. Ann. Robot. Innov. Surg. 2020, 1, 69–80. [Google Scholar] [CrossRef]
- Shin, I.B.; Bae, D.S. Comparison of the Postoperative Outcomes of the Mini-Flap Bilateral Axillo-Breast Approach (BABA) and Conventional BABA Robot-Assisted Thyroidectomy. J. Clin. Med. 2022, 11, 4894. [Google Scholar] [CrossRef]
- Yu, H.W.; Yi, J.W.; Seong, C.Y.; Kim, J.-K.; Bae, I.E.; Kwon, H.; Chai, Y.J.; Kim, S.-J.; Choi, J.Y.; Lee, K.E. Development of a Surgical Training Model for Bilateral Axillo-Breast Approach Robotic Thyroidectomy. Surg. Endosc. 2018, 32, 1360–1367. [Google Scholar] [CrossRef] [PubMed]
- Sung, E.S.; Ji, Y.B.; Song, C.M.; Yun, B.R.; Chung, W.S.; Tae, K. Robotic Thyroidectomy: Comparison of a Postauricular Facelift Approach with a Gasless Unilateral Axillary Approach. Otolaryngol. Head Neck Surg. 2016, 154, 997–1004. [Google Scholar] [CrossRef]
- Duncan, T.D.; Rashid, Q.; Speights, F.; Ejeh, I. Endoscopic Transaxillary Approach to the Thyroid Gland: Our Early Experience. Surg. Endosc. Other Interv. Tech. 2007, 21, 2166–2171. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, Y.; Takami, H.; Niimi, M.; Kan, S.; Sasaki, Y.; Takayama, J. Endoscopic Thyroidectomy by the Axillary Approach. Surg. Endosc. 2001, 15, 1362–1364. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Yoon, J.H.; Park, C.H. Gasless Endoscopic Thyroidectomy Via an Axillary Approach: Experience of 30 Cases. Korean J. Endocr. Surg. 2005, 5, 81–86. [Google Scholar] [CrossRef]
- Chantawibul, S.; Lokechareonlarp, S.; Pokawatana, C. Total video endoscopic thyroidectomy by an axillary approach. J. Laparoendosc. Adv. Surg. Tech. A 2003, 13, 295–299. [Google Scholar] [CrossRef]
- Miyano, G.; Lobe, T.E.; Wright, S.K. Bilateral Transaxillary Endoscopic Total Thyroidectomy. J. Pediatr. Surg. 2008, 43, 299–303. [Google Scholar] [CrossRef]
- Kang, S.W.; Jeong, J.J.; Yun, J.S.; Sung, T.Y.; Lee, S.C.; Lee, Y.S.; Nam, K.H.; Chang, H.S.; Chung, W.Y.; Park, C.S. Robot-Assisted Endoscopic Surgery for Thyroid Cancer: Experience with the First 100 Patients. Surg. Endosc. 2009, 23, 2399–2406. [Google Scholar] [CrossRef]
- Kuppersmith, R.B.; Holsinger, F.C. Robotic Thyroid Surgery: An Initial Experience with North American Patients. Laryngoscope 2011, 121, 521–526. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Nah, K.Y.; Kim, R.M.; Ahn, Y.H.; Soh, E.Y.; Chung, W.Y. Differences in Postoperative Outcomes, Function, and Cosmesis: Open versus Robotic Thyroidectomy. Surg. Endosc. 2010, 24, 3186–3194. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.J.; Lee, J.; Lee, S.G.; Choi, J.B.; Kim, T.H.; Ban, E.J.; Lee, C.R.; Kang, S.W.; Jeong, J.J.; Nam, K.H.; et al. Transaxillary Robotic Modified Radical Neck Dissection: A 5-Year Assessment of Operative and Oncologic Outcomes. Surg. Endosc. 2017, 31, 1599–1606. [Google Scholar] [CrossRef]
- Kang, S.-W.; Jeong, J.J.; Yun, J.-S.; Sung, Y.; Lee, S.C.; Lee, Y.S.; Nam, K.-H.; Chang, H.S.; Chung, Y.; Park, S. Gasless Endoscopic Thyroidectomy Using Trans-Axillary Approach; Surgical Outcome of 581 Patients. Endocrinology 2009, 56, 361–369. [Google Scholar] [CrossRef]
- Jantharapattana, K.; Maethasith, J. Transaxillary Gasless Endoscopic Thyroidectomy versus Conventional Open Thyroidectomy: A Randomized Study. Eur. Arch. Oto-Rhino-L 2017, 274, 495–500. [Google Scholar] [CrossRef]
- Ji, Y.B.; Song, C.M.; Bang, H.S.; Lee, S.H.; Park, Y.S.; Tae, K. Long-Term Cosmetic Outcomes after Robotic/Endoscopic Thyroidectomy by a Gasless Unilateral Axillo-Breast or Axillary Approach. J. Laparoendosc. Adv. Surg. Tech. A 2014, 24, 248–253. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.W.; Ko, S.H.; Song, C.M.; Ji, Y.B.; Kim, J.K.; Tae, K. Comparison of Postoperative Cosmesis in Transaxillary, Postauricular Facelift, and Conventional Transcervical Thyroidectomy. Surg. Endosc. 2020, 34, 3388–3397. [Google Scholar] [CrossRef]
- Chae, M.S.; Park, Y.; Shim, J.W.; Hong, S.H.; Park, J.; Kang, I.K.; Bae, J.S.; Kim, J.S.; Kim, K. Clinical Application of Pectoralis Nerve Block II for Flap Dissection-Related Pain Control after Robot-Assisted Transaxillary Thyroidectomy: A Preliminary Retrospective Cohort Study. Cancers 2022, 14, 4097. [Google Scholar] [CrossRef]
- Ye, Z.; Wu, K.; Hu, Z.; Jin, F. Nanocarbon or Indocyanine Green: Which Is Superior for Gasless Transaxillary Endoscopic Thyroidectomy to Protect the Parathyroid Gland? Front. Surg. 2022, 9, 1035840. [Google Scholar] [CrossRef]
- Chen, D.; Bai, B.; Liu, Z.; Yu, Y. Effect of gasless endoscopic thyroidectomy through an axillary approach on the recurrent laryngeal nerve injury in patients with thyroid cancer. Am. J. Transl. Res. 2022, 14, 7512. [Google Scholar] [PubMed]
- Razavi, A.C.; Ibraheem, K.; Haddad, A.; Saparova, L.; Shalaby, H.; Abdelgawad, M.; Kandil, E. Efficacy of Indocyanine Green Fluorescence in Predicting Parathyroid Vascularization during Thyroid Surgery. Head Neck 2019, 41, 3276–3281. [Google Scholar] [CrossRef]
- Ma, J.J.; Zhang, D.B.; Zhang, W.F.; Wang, X. Application of Nanocarbon in Breast Approach Endoscopic Thyroidectomy Thyroid Cancer Surgery. J. Laparoendosc. Adv. Surg. Tech. A 2020, 30, 547–552. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Tian, W.; Xu, Z.; Jiang, K.; Sun, H.; Wang, P.; Huang, T.; Guo, Z.; Zhang, H.; Liu, S.; et al. Expert Consensus Statement on Parathyroid Protection in Thyroidectomy. Ann. Transl. Med. 2015, 3, 230. [Google Scholar] [PubMed]
- Yang, F.; Jin, C.; Yang, D.; Jiang, Y.; Li, J.; Di, Y.; Hu, J.; Wang, C.; Ni, Q.; Fu, D. Magnetic Functionalised Carbon Nanotubes as Drug Vehicles for Cancer Lymph Node Metastasis Treatment. Eur. J. Cancer 2011, 47, 1873–1882. [Google Scholar] [CrossRef]
- Meißner, M.; Austenfeld, E.; Kranke, P.; Zahn, P.K.; Pogatzki-Zahn, E.M.; Meyer-Frießem, C.H.; Weibel, S.; Schnabel, A. Pectoral Nerve Blocks for Breast Surgery: A Meta-Analysis. Eur. J. Anaesthesiol. 2021, 38, 383–393. [Google Scholar] [CrossRef]
- Choe, J.H.; Kim, S.W.; Chung, K.W.; Park, K.S.; Han, W.; Noh, D.Y.; Oh, S.K.; Youn, Y.K. Endoscopic Thyroidectomy Using a New Bilateral Axillo-Breast Approach. World J. Surg. 2007, 31, 601–606. [Google Scholar] [CrossRef]
- Linos, D. Minimally invasive thyroidectomy: A comprehensive appraisal of existing techniques. Surgery 2011, 150, 17–24. [Google Scholar] [CrossRef]
- Lee, M.C.; Ahn, J.; Choi, I.J.; Lee, B.C.; Ryu, J. Comparative Study of Gasless Transaxillary, Bilateral Axillo-Breast, Unilateral Axillo-Breast With Carbon Dioxide Insufflation, Retroauricular, and Transoral Vestibular Endoscopic Thyroidectomy Approaches at a Single Institution: A Retrospective Analysis and Lessons Learned. Clin. Exp. Otorhinolaryngol. 2022, 15, 283–291. [Google Scholar]
- Liu, S.Y.W.; Kim, J.S. Bilateral Axillo-Breast Approach Robotic Thyroidectomy: Review of Evidences. Gland Surg. 2017, 6, 250–257. [Google Scholar] [CrossRef]
- Lee, K.E.; Rao, J.; Youn, Y.-K. Endoscopic thyroidectomy with the da Vinci robot system using the bilateral axillary breast approach (BABA) technique: Our initial experience. Surg. Laparosc. Endosc. Percutan. Tech. 2009, 19, e71–e75. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.W.; Lee, J.; Jung, J.H.; Park, H.Y.; Tufano, R.P.; Kim, H.Y. A Comparison Study of the Transoral and Bilateral Axillo-Breast Approaches in Robotic Thyroidectomy. J. Surg. Oncol. 2018, 118, 381–387. [Google Scholar] [CrossRef] [PubMed]
- Shin, I.B.; Koo, D.H.; Ko, M.J.; Kim, S.H.; Bae, D.S. A Prospective, Randomized Controlled Study of the Safety and Efficacy of Gasless Bilateral Axillo-Breast Approach (BABA) Robotic Thyroidectomy. Surg. Endosc. 2020, 34, 4846–4856. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.Y.; Bae, I.E.; Kim, H.S.; Yoon, S.G.; Yi, J.W.; Yu, H.W.; Kim, S.J.; Chai, Y.J.; Lee, K.E.; Youn, Y.-K. Comparative Study of Bilateral Axillo-Breast Approach Endoscopic and Robotic Thyroidectomy: Propensity Score Matching Analysis of Large Multi-Institutional Data. Ann. Surg. Treat. Res. 2020, 98, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.H.; Chen, C.Y. Postoperative Quality of Life and Cosmetic Outcome between Minimally Invasive Video-Assisted Thyroidectomy and Bilateral Axillo-Breast Approach Robotic Thyroidectomy: A Single Center Retrospective Cohort Study. Updat. Surg. 2021, 73, 1459–1465. [Google Scholar] [CrossRef]
- Benhidjeb, T.; Wilhelm, T.; Harlaar, J.; Kleinrensink, G.J.; Schneider, T.A.J.; Stark, M. Natural Orifice Surgery on Thyroid Gland: Totally Transoral Video-Assisted Thyroidectomy (TOVAT): Report of First Experimental Results of a New Surgical Method. Surg. Endosc. 2009, 23, 1119–1120. [Google Scholar] [CrossRef]
- Wilhelm, T.; Metzig, A. Video. Endoscopic Minimally Invasive Thyroidectomy: First Clinical Experience. Surg. Endosc. 2010, 24, 1757–1758. [Google Scholar] [CrossRef]
- Karakas, E.; Steinfeldt, T.; Gockel, A.; Schlosshauer, T.; Dietz, C.; Jäger, J.; Westermann, R.; Sommer, F.; Richard, H.R.; Exner, C.; et al. Transoral Thyroid and Parathyroid Surgery—Development of a New Transoral Technique. Surgery 2011, 150, 108–115. [Google Scholar] [CrossRef]
- Karakas, E.; Steinfeldt, T.; Gockel, A.; Westermann, R.; Kiefer, A.; Bartsch, D.K. Transoral Thyroid and Parathyroid Surgery. Surg. Endosc. 2010, 24, 1261–1267. [Google Scholar] [CrossRef]
- Witzel, K.; von Rahden, B.H.A.; Kaminski, C.; Stein, H.J. Transoral Access for Endoscopic Thyroid Resection. Surg. Endosc. Other Interv. Tech. 2008, 22, 1871–1875. [Google Scholar] [CrossRef]
- Anuwong, A. Transoral Endoscopic Thyroidectomy Vestibular Approach: A Series of the First 60 Human Cases. World J. Surg. 2016, 40, 491–497. [Google Scholar] [CrossRef]
- Anuwong, A.; Ketwong, K.; Jitpratoom, P.; Sasanakietkul, T.; Duh, Q.Y. Safety and Outcomes of the Transoral Endoscopic Thyroidectomy Vestibular Approach. JAMA Surg. 2018, 153, 21–27. [Google Scholar] [CrossRef]
- Karakas, E.; Klein, G.; Schopf, S. Transoral Thyroid Surgery Vestibular Approach. Innov. Surg. Sci. 2022, 7, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Cohen, O.; Tufano, R.P.; Anuwong, A.K.; Shaha, A.R.; Olsen, K.D.; Zafereo, M.; Rinaldo, A.; Mäkitie, A.A.; Nixon, I.J.; Russell, J.O.; et al. Transoral Endoscopic Vestibular Approach for Thyroidectomy and Parathyroidectomy—From Promise to Practice. Am. J. Otolaryngol. Head Neck Med. Surg. 2021, 42, 103022. [Google Scholar] [CrossRef] [PubMed]
- Russell, J.O.; Sahli, Z.T.; Shaear, M.; Razavi, C.; Ali, K.; Tufano, R.P. Transoral Thyroid and Parathyroid Surgery via the Vestibular Approach-a 2020 Update. Gland Surg. 2020, 9, 409–416. [Google Scholar] [CrossRef] [PubMed]
- Razavi, C.R.; Vasiliou, E.; Tufano, R.P.; Russell, J.O. Learning Curve for Transoral Endoscopic Thyroid Lobectomy. Otolaryngol. Head Neck Surg. 2018, 159, 625–629. [Google Scholar] [CrossRef]
- Zhang, D.; Park, D.; Sun, H.; Anuwong, A.; Tufano, R.; Kim, H.Y.; Dionigi, G. Indications, Benefits and Risks of Transoral Thyroidectomy. Best Pract. Res. Clin. 2019, 33, 101280. [Google Scholar] [CrossRef]
- Chen, H.; Deng, L.; Xu, K.; Gong, Z.; Zhu, X. Clinical Application of Transoral and Submental Thyroidectomy (TOaST): A Series of 54 Human Cases. Langenbecks Arch. Surg. 2022, 407, 3039–3044. [Google Scholar] [CrossRef]
- Luna-Ortiz, K.; Gómez-Pedraza, A.; Anuwong, A. Lessons Learned from the Transoral Endoscopic Thyroidectomy with Vestibular Approach (TOETVA) for the Treatment of Thyroid Carcinoma. Ann. Surg. Oncol. 2020, 27, 1356–1360. [Google Scholar] [CrossRef]
- Karakas, E.; Klein, G.; Michlmayr, L.; Schardey, M.; Schopf, S. Transoral Thyroid Surgery Vestibular Approach: Is There an Increased Risk of Surgical Site Infections? Updat. Surg. 2022, 74, 303–308. [Google Scholar] [CrossRef]
- Lee, J.S.; Kim, H.J.; Lee, J.S.; Yun, H.J.; Lee, S.; Cheong, J.H.; Kim, S.Y.; Kim, S.M.; Chang, H.; Lee, Y.S.; et al. Prophylactic Antibiotics May Not Be Necessary for Transoral Endoscopic Thyroidectomy. Front. Surg. 2022, 9, 940391. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.H.; Kim, H.Y.; Anuwong, A.; Huang, T.S.; Duh, Q.Y. Transoral Robotic Thyroidectomy versus Transoral Endoscopic Thyroidectomy: A Propensity-Score-Matched Analysis of Surgical Outcomes. Surg. Endosc. 2021, 35, 6179–6189. [Google Scholar] [CrossRef] [PubMed]
- Saavedra-Perez, D.; Manyalich, M.; Dominguez, P.; Vilaça, J.; Jordan, J.; Lopez-Boado, M.A.; Rull, R.; Vidal, O. Thyroidectomy via Unilateral Axillo-Breast Approach (UABA) with Gas Insufflation: Prospective Multicentre European Study. BJS Open 2022, 6, zrac087. [Google Scholar] [CrossRef] [PubMed]
- Vidal, O.; Saavedra-Perez, D.; Vilaça, J.; Pantoja, J.P.; Delgado-Oliver, E.; Lopez-Boado, M.A.; Fondevila, C. Minimally-invasive endocrine neck surgery. Cir. Esp. 2019, 97, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Vidal, Ó.; Saavedra-Perez, D. Remote-access thyroid surgery: Controversies. Cir. Esp. 2020, 98, 1–3. [Google Scholar] [CrossRef]
- Tae, K.; Ji, Y.B.; Song, C.M.; Ryu, J. Robotic and Endoscopic Thyroid Surgery: Evolution and Advances. Clin. Exp. Otorhinolaryngol. 2019, 12, 1157736. [Google Scholar] [CrossRef]
- Arora, A.; Swords, C.; Garas, G.; Chaidas, K.; Prichard, A.; Budge, J.; Davies, D.C.; Tolley, N. The Perception of Scar Cosmesis Following Thyroid and Parathyroid Surgery: A Prospective Cohort Study. Int. Surg. J. 2016, 25, 38–43. [Google Scholar] [CrossRef]
- Liao, D.; Ishii, L.E.; Chen, L.W.; Chen, J.; Juarez, M.; Darrach, H.M.; Kumar, A.R.; Russell, J.O.; Tufano, R.P.; Ishii, M. Transoral Neck Surgery Prevents Attentional Bias towards the Neck Compared to Open Neck Surgery. Laryngoscope 2020, 130, 1603–1608. [Google Scholar] [CrossRef]
- Zhang, D.; Caruso, E.; Sun, H.; Anuwong, A.; Tufano, R.; Materazzi, G.; Dionigi, G.; Kim, H.Y. Classifying Pain in Transoral Endoscopic Thyroidectomy. J. Endocrinol. Invest. 2019, 42, 1345–1351. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, S.; Liu, X.; Rui, S.; Li, Z.; Zhu, J.; Wei, T. Transoral Endoscopic Thyroidectomy Vestibular Approach vs Conventional Open Thyroidectomy: Meta-Analysis. Head Neck 2021, 43, 345–353. [Google Scholar] [CrossRef]
- Guan, S.H.; Wang, H.; Teng, D.K. Comparison of Ultrasound-Guided Thermal Ablation and Conventional Thyroidectomy for Benign Thyroid Nodules: A Systematic Review and Meta-Analysis. Int. J. Hyperth. 2020, 37, 442–449. [Google Scholar] [CrossRef] [PubMed]
- Mainini, A.P.; Monaco, C.; Pescatori, L.C.; de Angelis, C.; Sardanelli, F.; Sconfienza, L.M.; Mauri, G. Image-Guided Thermal Ablation of Benign Thyroid Nodules. J. Ultrasound 2017, 20, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Bo, X.W.; Lu, F.; Yu, S.Y.; Yue, W.W.; Li, X.L.; Hu, M.; Wu, L.L.; Lv, Z.Y.; Sun, L.P.; Xu, H.X. Comparison of Efficacy, Safety, and Patient Satisfaction between Thermal Ablation, Conventional/Open Thyroidectomy, and Endoscopic Thyroidectomy for Symptomatic Benign Thyroid Nodules. Int. J. Hyperth. 2022, 39, 379–389. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Yin, J.; Hu, C.; Ye, Q.; Wang, P.; Huang, P. Comparison of Ultrasound Guided Percutaneous Radiofrequency Ablation and Open Thyroidectomy in the Treatment of Low-Risk Papillary Thyroid Microcarcinoma: A Propensity Score Matching Study. Clin. Hemorheol. Microcirc. 2022, 80, 73–81. [Google Scholar] [CrossRef]
- Crespo Vallejo, E.; Hermosin, A.; Gargallo, M.; Villalba, Á.; Daguer, E.; Flores, J.; Periañez, J.; Amorín, J.; Santos, E. Multiple Overlapping Microwave Ablation in Benign Thyroid Nodule: A Single-Center 24-Month Study. Eur. Thyroid J. 2022, 12, e220175. [Google Scholar] [CrossRef]
- Muhammad, H.; Tehreem, A.; Russell, J.O. Radiofrequency ablation and thyroid cancer: Review of the current literature. Am. J. Otolaryngol. 2022, 43, 103204. [Google Scholar] [CrossRef]
- Issa, P.P.; Omar, M.; Issa, C.P.; Buti, Y.; Hussein, M.; Aboueisha, M.; Abdelhady, A.; Shama, M.; Lee, G.S.; Toraih, E.; et al. Radiofrequency Ablation of Indeterminate Thyroid Nodules: The First North American Comparative Analysis. Int. J. Mol. Sci. 2022, 23, 11493. [Google Scholar] [CrossRef]
- Abbaci, M.; de Leeuw, F.; Breuskin, I.; Casiraghi, O.; Ben Lakhdar, A.; Ghanem, W.; Laplace-Builhé, C.; Hartl, D. Parathyroid Gland Management Using Optical Technologies during Thyroidectomy or Parathyroidectomy: A Systematic Review. Oral Oncol. 2018, 87, 186–196. [Google Scholar] [CrossRef]
- Christou, N.; Mathonnet, M. Complications after Total Thyroidectomy. Journal of Visceral Surgery. Visc. Surg. 2013, 150, 249–256. [Google Scholar] [CrossRef]
- Kaliszewski, K.; Ludwig, M.; Ludwig, B.; Mikuła, A.; Greniuk, M.; Rudnicki, J. Update on the Diagnosis and Management of Medullary Thyroid Cancer: What Has Changed in Recent Years? Cancers 2022, 14, 3643. [Google Scholar] [CrossRef]
- Solórzano, C.C.; Thomas, G.; Baregamian, N.; Mahadevan-Jansen, A. Detecting the Near Infrared Autofluorescence of the Human Parathyroid: Hype or Opportunity? Ann. Surg. 2020, 272, 973–985. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.W.; Song, S.H.; Lee, H.S.; Noh, W.J.; Oak, C.; Ahn, Y.C.; Lee, K.D. Intraoperative Real-Time Localization of Normal Parathyroid Glands with Autofluorescence Imaging. J. Clin. Endocrinol. Metab. 2016, 101, 4646–4652. [Google Scholar] [CrossRef]
- Kim, S.W.; Lee, H.S.; Ahn, Y.C.; Park, C.W.; Jeon, S.W.; Kim, C.H.; Ko, J.B.; Oak, C.; Kim, Y.; Lee, K.D. Near-Infrared Autofluorescence Image-Guided Parathyroid Gland Mapping in Thyroidectomy. J. Am. Coll. Surg. 2018, 226, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Ladurner, R.; al Arabi, N.; Guendogar, U.; Hallfeldt, K.K.J.; Stepp, H.; Gallwas, J.K.S. Near-Infrared Autofluorescence Imaging to Detect Parathyroid Glands in Thyroid Surgery. Ann. R Coll. Surg. Engl. 2018, 100, 33–36. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, T.; Yamazaki, K.; Ota, H.; Shodo, R.; Ueki, Y.; Horii, A. Near-Infrared Fluorescence Imaging in the Identification of Parathyroid Glands in Thyroidectomy. Laryngoscope 2021, 131, 1188–1193. [Google Scholar] [CrossRef] [PubMed]
- Dip, F.; Falco, J.; Verna, S.; Prunello, M.; Loccisano, M.; Quadri, P.; White, K.; Rosenthal, R. Randomized Controlled Trial Comparing White Light with Near-Infrared Autofluorescence for Parathyroid Gland Identification During Total Thyroidectomy. J. Am. Coll. Surg. 2019, 228, 744–751. [Google Scholar] [CrossRef]
- Benmiloud, F.; Rebaudet, S.; Varoquaux, A.; Penaranda, G.; Bannier, M.; Denizot, A. Impact of Autofluorescence-Based Identification of Parathyroids during Total Thyroidectomy on Postoperative Hypocalcemia: A before and after Controlled Study. Surgery 2018, 163, 23–30. [Google Scholar] [CrossRef]
- Benmiloud, F.; Godiris-Petit, G.; Gras, R.; Gillot, J.C.; Turrin, N.; Penaranda, G.; Noullet, S.; Chéreau, N.; Gaudart, J.; Chiche, L.; et al. Association of Autofluorescence-Based Detection of the Parathyroid Glands during Total Thyroidectomy with Postoperative Hypocalcemia Risk: Results of the PARAFLUO Multicenter Randomized Clinical Trial. JAMA Surg. 2020, 155, 106–112. [Google Scholar] [CrossRef]
- Kose, E.; Rudin, A.V.; Kahramangil, B.; Moore, E.; Aydin, H.; Donmez, M.; Krishnamurthy, V.; Siperstein, A.; Berber, E. Autofluorescence Imaging of Parathyroid Glands: An Assessment of Potential Indications. Surgery 2020, 167, 173–179. [Google Scholar] [CrossRef]
- Falco, J.; Dip, F.; Quadri, P.; de la Fuente, M.; Rosenthal, R. Cutting Edge in Thyroid Surgery: Autofluorescence of Parathyroid Glands. J. Am. Coll. Surg. 2016, 223, 374–380. [Google Scholar] [CrossRef]
- McWade, M.A.; Sanders, M.E.; Broome, J.T.; Solórzano, C.C.; Mahadevan-Jansen, A. Establishing the Clinical Utility of Autofluorescence Spectroscopy for Parathyroid Detection. Surgery 2016, 159, 193–203. [Google Scholar] [CrossRef] [PubMed]
- Kahramangil, B.; Dip, F.; Benmiloud, F.; Falco, J.; de La Fuente, M.; Verna, S.; Rosenthal, R.; Berber, E. Detection of Parathyroid Autofluorescence Using Near-Infrared Imaging: A Multicenter Analysis of Concordance Between Different Surgeons. Ann. Surg. Oncol. 2018, 25, 957–962. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Lee, S.; Jung, J.; Kim, S.; Kim, S.W.; Hwang, S.H. Near-infrared autofluorescence-based parathyroid glands identification in the thyroidectomy or parathyroidectomy: A systematic review and meta-analysis. Langenbeck Arch. Surg. 2021, 407, 491–499. [Google Scholar] [CrossRef]
- Zaidi, N.; Bucak, E.; Yazici, P.; Soundararajan, S.; Okoh, A.; Yigitbas, H.; Dural, C.; Berber, E. The Feasibility of Indocyanine Green Fluorescence Imaging for Identifying and Assessing the Perfusion of Parathyroid Glands during Total Thyroidectomy. J. Surg. Oncol. 2016, 113, 775–778. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.W.; Chung, J.W.; Yi, J.W.; Song, R.Y.; Lee, J.H.; Kwon, H.; Kim, S.-J.; Chai, Y.J.; Choi, J.Y.; Lee, K.E. Intraoperative Localization of the Parathyroid Glands with Indocyanine Green and Firefly(R) Technology during BABA Robotic Thyroidectomy. Surg. Endosc. 2017, 31, 3020–3027. [Google Scholar] [CrossRef]
- van den Bos, J.; van Kooten, L.; Engelen, S.M.E.; Lubbers, T.; Stassen, L.P.S.; Bouvy, N.D. Feasibility of Indocyanine Green Fluorescence Imaging for Intraoperative Identification of Parathyroid Glands during Thyroid Surgery. Head Neck 2019, 41, 340–348. [Google Scholar] [CrossRef]
- Rudin, A.V.; McKenzie, T.J.; Thompson, G.B.; Farley, D.R.; Lyden, M.L. Evaluation of Parathyroid Glands with Indocyanine Green Fluorescence Angiography After Thyroidectomy. World J. Surg. 2019, 43, 1538–1543. [Google Scholar] [CrossRef]
- Zaidi, N.; Bucak, E.; Okoh, A.; Yazici, P.; Yigitbas, H.; Berber, E. The Utility of Indocyanine Green near Infrared Fluorescent Imaging in the Identification of Parathyroid Glands during Surgery for Primary Hyperparathyroidism. J. Surg. Oncol. 2016, 113, 771–774. [Google Scholar] [CrossRef]
- Mohebati, A.; Shaha, A.R. Anatomy of Thyroid and Parathyroid Glands and Neurovascular Relations. Clin. Anat. 2012, 25, 19–31. [Google Scholar] [CrossRef]
- Pontin, A.; Pino, A.; Caruso, E.; Pinto, G.; Melita, G.; Maria, D.P.; Dionigi, G. Postoperative Bleeding after Thyroid Surgery: Care Instructions. Sisli Etfal Hast. Tıp Bul. 2019, 53, 329–336. [Google Scholar] [CrossRef]
- Patel, K.N.; Yip, L.; Lubitz, C.C.; Grubbs, E.G.; Miller, B.S.; Shen, W.; Angelos, P.; Chen, H.; Doherty, G.M.; Fahey, T.J.; et al. Executive Summary of the American Association of Endocrine Surgeons Guidelines for the Definitive Surgical Management of Thyroid Disease in Adults. Ann. Surg. 2020, 271, 399–410. [Google Scholar] [CrossRef] [PubMed]
- Doran, H.E.; Wiseman, S.M.; Palazzo, F.F.; Chadwick, D.; Aspinall, S. Post-Thyroidectomy Bleeding: Analysis of Risk Factors from a National Registry. Br. J. Surg. 2021, 108, 851–857. [Google Scholar] [CrossRef] [PubMed]
- Lukinović, J.; Bilić, M. Overview of Thyroid Surgery Complications. Acta Clin. Croat. 2020, 59, 81–86. [Google Scholar] [CrossRef]
- Al-Qahtani, A.S.; Abouzeid Osman, T. Could Post-Thyroidectomy Bleeding Be the Clue to Modify the Concept of Postoperative Drainage? A Prospective Randomized Controlled Study. Asian J. Surg. 2018, 41, 511–516. [Google Scholar] [CrossRef]
- Edafe, O.; Cochrane, E.; Balasubramanian, S.P. Reoperation for Bleeding After Thyroid and Parathyroid Surgery: Incidence, Risk Factors, Prevention, and Management. World J. Surg. 2020, 44, 1156–1162. [Google Scholar] [CrossRef] [PubMed]
- Sun, N.; Zhang, D.; Zheng, S.; Fu, L.; Li, L.; Liu, S.; Li, H.; Qiu, X. Incidence and Risk Factors of Postoperative Bleeding in Patients Undergoing Total Thyroidectomy. Front. Oncol. 2020, 10, 1075. [Google Scholar] [CrossRef]
- Wojtczak, B.; Aporowicz, M.; Kaliszewski, K.; Bolanowski, M. Consequences of Bleeding after Thyroid Surgery—Analysis of 7805 Operations Performed in a Single Center. Arch. Med. Sci. 2018, 14, 329–335. [Google Scholar] [CrossRef]
- Scaroni, M.; von Holzen, U.; Nebiker, C.A. Effectiveness of Hemostatic Agents in Thyroid Surgery for the Prevention of Postoperative Bleeding. Sci. Rep. 2020, 10, 1–6. [Google Scholar] [CrossRef]
- Saitou, M.; Okamoto, M.; Nagaoka, R.; Jikuzono, T.; Sen, M.; Kazusaka, H.; Matsui, M.; Sugitani, I. Congenital Hemophilia A Diagnosed with Postoperative Hemorrhage after Thyroidectomy for Papillary Thyroid Carcinoma: A Case Report. Surg. Case Rep. 2021, 7, 189. [Google Scholar] [CrossRef]
- Weiss, A.; Lee, K.C.; Brumund, K.T.; Chang, D.C.; Bouvet, M. Risk Factors for Hematoma after Thyroidectomy: Results from the Nationwide Inpatient Sample. Surgery 2014, 156, 399–404. [Google Scholar] [CrossRef]
- Liu, J.; Sun, W.; Dong, W.; Wang, Z.; Zhang, P.; Zhang, T.; Zhang, H. Risk Factors for Post-Thyroidectomy Haemorrhage: A Meta-Analysis. Eur. J. Endocrinol. 2017, 176, 591–602. [Google Scholar] [CrossRef] [PubMed]
- Bononi, M.; Bonapasta, S.A.; Vari, A.; Scarpini, M.; de Cesare, A.; Miccini, M.; Meucci, M.; Tocchi, A. Incidence and Circumstances of Cervical Hematoma Complicating Thyroidectomy and Its Relationship to Postoperative Vomiting. Head Neck 2010, 32, 1173–1177. [Google Scholar] [CrossRef] [PubMed]
- Pacilli, M.; Pavone, G.; Gerundo, A.; Fersini, A.; Ambrosi, A.; Tartaglia, N. Clinical Usefulness of the Valsalva Manoeuvre to Improve Hemostasis during Thyroidectomy. J. Clin. Med. 2022, 11, 5791. [Google Scholar] [CrossRef] [PubMed]
- Beyoglu, C.A.; Teksoz, S.; Ozdilek, A.; Akcivan, M.; Erbabacan, E.; Altindas, F.; Koksal, G. A Comparison of the Efficacy of Three Different Peak Airway Pressures on Intraoperative Bleeding Point Detection in Patients Undergoing Thyroidectomy: A Randomized, Controlled, Clinical Trial. BMC Surg. 2020, 20, 69. [Google Scholar] [CrossRef] [PubMed]
- Materazzi, G.; Ambrosini, C.E.; Fregoli, L.; de Napoli, L.; Frustaci, G.; Matteucci, V.; Papini, P.; Bakkar, S.; Miccoli, P. Prevention and Management of Bleeding in Thyroid Surgery. Gland Surg. 2017, 6, 510–515. [Google Scholar] [CrossRef]
- Xie, Q.-P.; Xiang, C.; Wang, Y.; Yan, H.-C.; Zhao, Q.-Z.; Yu, X.; Zhang, M.-L.; Wang, P. The Patterns and Treatment of Postoperative Hemorrhage and Hematoma in Total Endoscopic Thyroidectomy via Breast Approach: Experience of 1932 Cases. Endocrine 2019, 63, 422–429. [Google Scholar] [CrossRef]
- Lee, M.; Rhee, J.; Kim, Y.; Jung, Y.H.; Ahn, S.H.; Jeong, W.J. Perioperative Risk Factors for Post-Thyroidectomy Hematoma: Significance of Pain and Ketorolac Usage. Head Neck 2019, 41, 3656–3660. [Google Scholar] [CrossRef]
- Ardito, G.; Revelli, L.; D’Alatri, L.; Lerro, V.; Guidi, M.L.; Ardito, F. Revisited Anatomy of the Recurrent Laryngeal Nerves. Am. J. Surg. 2004, 187, 249–253. [Google Scholar] [CrossRef]
- Wu, K.T.; Chan, Y.C.; Chou, F.F.; Wu, Y.J.; Chi, S.Y. Association Between Recurrent Laryngeal Nerve Calibre and Body Figure: A Preoperative Tool to Assess Thin-Diameter Nerves in Thyroidectomy. World J. Surg. 2020, 44, 3036–3042. [Google Scholar] [CrossRef]
- Zhang, D.; Fu, Y.; Zhou, L.; Wang, T.; Liang, N.; Zhong, Y.; Dionigi, G.; Kim, H.Y.; Sun, H. Prevention of Non-Recurrent Laryngeal Nerve Injury in Robotic Thyroidectomy: Imaging and Technique. Surg. Endosc. 2021, 35, 4865–4872. [Google Scholar] [CrossRef]
- Agrawal, N.; Evasovich, M.R.; Kandil, E.; Noureldine, S.I.; Felger, E.A.; Tufano, R.P.; Kraus, D.H.; Orloff, L.A.; Grogan, R.; Angelos, P.; et al. Indications and Extent of Central Neck Dissection for Papillary Thyroid Cancer: An American Head and Neck Society Consensus Statement. Head Neck 2017, 39, 1269–1279. [Google Scholar] [CrossRef] [PubMed]
- Karpathiotakis, M.; D’Orazi, V.; Ortensi, A.; Biancucci, A.; Melcarne, R.; Borcea, M.C.; Scorziello, C.; Tartaglia, F. Intraoperative Neuromonitoring and Optical Magnification in the Prevention of Recurrent Laryngeal Nerve Injuries during Total Thyroidectomy. Medicina 2022, 58, 1560. [Google Scholar] [CrossRef] [PubMed]
- Fundakowski, C.E.; Hales, N.W.; Agrawal, N.; Barczyński, M.; Camacho, P.M.; Hartl, D.M.; Kandil, E.; Liddy, W.E.; McKenzie, T.J.; Morris, J.C.; et al. Surgical Management of the Recurrent Laryngeal Nerve in Thyroidectomy: American Head and Neck Society Consensus Statement. Head Neck 2018, 40, 663–675. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Chen, B.; Li, L.; Zeng, Q.; Sheng, L.; Zhang, B.; Liang, W.; Lv, B. Mechanisms of Recurrent Laryngeal Nerve Injury near the Nerve Entry Point during Thyroid Surgery: A Retrospective Cohort Study. Int. J. Surg. 2020, 83, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Chiang, F.Y.; Wang, L.F.; Huang, Y.F.; Lee, K.W.; Kuo, W.R. Recurrent Laryngeal Nerve Palsy after Thyroidectomy with Routine Identification of the Recurrent Laryngeal Nerve. Surgery 2005, 137, 342–347. [Google Scholar] [CrossRef]
- Pei, M.; Zhu, S.; Zhang, C.; Wang, G.; Hu, M. The Value of Intraoperative Nerve Monitoring against Recurrent Laryngeal Nerve Injury in Thyroid Reoperations. Medicine 2021, 100, E28233. [Google Scholar] [CrossRef]
- Bai, B.; Chen, W. Protective Effects of Intraoperative Nerve Monitoring (IONM) for Recurrent Laryngeal Nerve Injury in Thyroidectomy: Meta-Analysis. Sci. Rep. 2018, 8, 7761. [Google Scholar] [CrossRef]
- Randolph, G.W.; Dralle, H. Electrophysiologic Recurrent Laryngeal Nerve Monitoring during Thyroid and Parathyroid Surgery: International Standards Guideline Statement. Laryngoscope 2011, 121, S1–S16. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, C.; Zhang, D.; Li, S.; Wang, T.; Dionigi, G.; Sun, H. Continuous Neural Monitoring in Endoscopic Thyroidectomy: Feasibility Experimental Study for Transcutaneous Vagal Nerve Stimulation. J. Laparoendosc. Adv. Surg. Tech. A 2020, 30, 1095–1101. [Google Scholar] [CrossRef]
- Priya, S.; Garg, S.; Dandekar, M. Intraoperative Monitoring of the Recurrent Laryngeal Nerve in Surgeries for Thyroid Cancer: A Review. J. Cancer Metastasis Treat. 2021, 7, 70. [Google Scholar] [CrossRef]
- Schneider, R.; Sekulla, C.; Machens, A.; Lorenz, K.; Nguyen Thanh, P.; Dralle, H. Postoperative Vocal Fold Palsy in Patients Undergoing Thyroid Surgery with Continuous or Intermittent Nerve Monitoring. Br. J. Surg. 2015, 102, 1380–1387. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.K.; Chen, C.L.; Wen, K.S.; Lin, Y.F.; Lin, K.Y.; Uen, Y.H. Application of transoral continuous intraoperative neuromonitoring in natural orifice transluminal endoscopic surgery for thyroid disease: A preliminary study. Surg. Endosc. 2018, 32, 517–525. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.W.; Chiang, F.Y.; Randolph, G.W.; Dionigi, G.; Kim, H.Y.; Lin, Y.C.; Chen, H.C.; Chen, H.Y.; Kamani, D.; Tsai, T.Y.; et al. Feasibility of Intraoperative Neuromonitoring during Thyroid Surgery Using Transcartilage Surface Recording Electrodes. Thyroid 2018, 28, 1508–1516. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.S.; Oh, J.; Kim, S.W.; Jeong, Y.W.; Wu, C.W.; Chiang, F.Y.; Lee, K.D. Intraoperative Neuromonitoring of Recurrent Laryngeal Nerve During Thyroidectomy with Adhesive Skin Electrodes. World J. Surg. 2020, 44, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Kriege, M.; Hilt, J.A.; Dette, F.; Wittenmeier, E.; Meuser, R.; Staubitz, J.I.; Musholt, T.J. Impact of Direct Laryngoscopy vs. Videolaryngoscopy on Signal Quality of Recurrent Laryngeal Nerve Monitoring in Thyroid Surgery: A Randomised Parallel Group Trial. Anaesthesia 2022, 78, 55–63. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, C.; Zhang, D.; Zhou, L.; Liu, X.; Li, S.; Wang, T.; Dionigi, G.; Sun, H. Experimental Study of Needle Recording Electrodes Placed on the Thyroid Cartilage for Neuromonitoring during Thyroid Surgery. Br. J. Surg. 2019, 106, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Chiang, F.Y.; Lu, I.C.; Chang, P.Y.; Dionigi, G.; Randolph, G.W.; Sun, H.; Lee, K.D.; Tae, K.; Ji, Y.B.; Kim, S.W.; et al. Comparison of EMG Signals Recorded by Surface Electrodes on Endotracheal Tube and Thyroid Cartilage during Monitored Thyroidectomy. Kaohsiung J. Med. Sci. 2017, 33, 503–509. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, J.; Dionigi, G.; Li, F.; Wang, T.; Li, H.; Liang, N.; Sun, H. Recurrent Laryngeal Nerve Morbidity: Lessons from Endoscopic via Bilateral Areola and Open Thyroidectomy Technique. World J. Surg. 2019, 43, 2829–2841. [Google Scholar] [CrossRef]
- Gong, J.; Holsinger, F.C.; Noel, J.E.; Mitani, S.; Jopling, J.; Bedi, N.; Koh, Y.W.; Orloff, L.A.; Cernea, C.R.; Yeung, S. Using Deep Learning to Identify the Recurrent Laryngeal Nerve during Thyroidectomy. Sci. Rep. 2021, 11, 1–11. [Google Scholar]
- Lee, D.; Yu, H.W.; Kim, S.; Yoon, J.; Lee, K.; Chai, Y.J.; Choi, J.Y.; Kong, H.J.; Lee, K.E.; Cho, H.S.; et al. Vision-Based Tracking System for Augmented Reality to Localize Recurrent Laryngeal Nerve during Robotic Thyroid Surgery. Sci. Rep. 2020, 10, 8437. [Google Scholar] [CrossRef]
- Simó, R.; Nixon, I.J.; Rovira, A.; vander Poorten, V.; Sanabria, A.; Zafereo, M.; Hartl, D.M.; Kowalski, L.P.; Randolph, G.W.; Kamani, D.; et al. Immediate Intraoperative Repair of the Recurrent Laryngeal Nerve in Thyroid Surgery. Laryngoscope 2021, 131, 1429–1435. [Google Scholar] [CrossRef] [PubMed]
- Rosen, C.A.; Smith, L.; Young, V.; Krishna, P.; Muldoon, M.F.; Munin, M.C. Prospective Investigation of Nimodipine for Acute Vocal Fold Paralysis. Muscle Nerve 2014, 50, 114–118. [Google Scholar] [CrossRef] [PubMed]
- Sridharan, S.S.; Rosen, C.A.; Smith, L.J.; Young, V.V.N.; Munin, M.C. Timing of Nimodipine Therapy for the Treatment of Vocal Fold Paralysis. Laryngoscope 2015, 125, 186–190. [Google Scholar] [CrossRef]
- Mattsson, P.; Frostell, A.; Björck, G.; Persson, J.K.E.; Hakim, R.; Zedenius, J.; Svensson, M. Recovery of Voice After Reconstruction of the Recurrent Laryngeal Nerve and Adjuvant Nimodipine. World J. Surg. 2018, 42, 632–638. [Google Scholar] [CrossRef] [PubMed]
- Gurrado, A.; Pasculli, A.; Pezzolla, A.; di Meo, G.; Fiorella, M.L.; Cortese, R.; Avenia, N.; Testini, M. A Method to Repair the Recurrent Laryngeal Nerve during Thyroidectomy. Can. J. Surg. 2018, 61, 278. [Google Scholar] [CrossRef] [PubMed]
- Kumai, Y.; Kodama, N.; Murakami, D.; Yumoto, E. Comparison of Vocal Outcome Following Two Different Procedures for Immediate RLN Reconstruction. Eur. Arch. Oto-Rhino-L. 2016, 273, 967–972. [Google Scholar] [CrossRef]
- Lynch, J.; Parameswaran, R. Management of Unilateral Recurrent Laryngeal Nerve Injury after Thyroid Surgery: A Review. Head Neck 2017, 39, 1470–1478. [Google Scholar] [CrossRef]
- Bhatt, N.K.; Faddis, B.T.; Paniello, R.C. Laryngeal Adductor Function Following KTP Laser Welding of the Recurrent Laryngeal Nerve. Laryngoscope 2020, 130, 1764–1769. [Google Scholar] [CrossRef]
Approach | Indications | Contraindications | Advantages | Disadvantages | Main Complications | Experience Required | Potential Advancements |
---|---|---|---|---|---|---|---|
Conventional Open Approach | Large * or complicated thyroid tumours, previous neck surgery | N/A | Wide surgical field, easy access to entire thyroid gland | Visible scar, higher risk of complication | Haematoma, infection, vocal cord paralysis, hypoparathyroidism | Any ** | N/A |
TAA | Small to large thyroid tumours, good neck mobility | Previous neck surgery, goitre, large thyroid tumours | Minimally invasive, hidden scar, faster recovery | Limited access to entire thyroid gland, longer operation time and higher total treatment costs compared to open surgery | Haematoma/seroma formation, hypoparathyroidism, paraesthesia, infection | Intermediate | Improved robotics, transitioning to GTAA for enhanced experience in oncological thyroidectomy |
BABA | Small to large thyroid tumours, good neck mobility | Previous neck surgery, goitre | Symmetrical view of thyroid, use of same methods as open surgery possible | Wider surgical flap, higher risk of pain and sensory impairment compared to other minimally invasive techniques | Haematoma, infection, vocal cord paralysis, hypoparathyroidism | Intermediate | Development of mini-flap BABA, improvements in robotics |
TOETVA | Small to medium thyroid tumours, good neck mobility | Large thyroid tumours, previous neck surgery, goitre | Minimally invasive, no scar, faster recovery | Limited access to entire thyroid gland, high learning curve for surgeons, small working space, potential for postoperative seroma and infection | Haematoma, infection, vocal cord paralysis, hypoparathyroidism | Advanced | Further research and development of the technique |
Paper | Procedure | Dataset | Sensitivity (%) | Specificity (%) | Other (%) | Autofluorescence of PGs | Time for PG Identification by NIFI |
---|---|---|---|---|---|---|---|
Kim S W 2016 [104] | Thyroidectomy | 16 PGs 8 patients | W | Mean P/B 2.76 P/B 1.95–5.20 | Before operation 5–10 min During operation <1 min | ||
Kim S W 2017 [105] | Thyroidectomy | 70 PGs 38 patients | 100 | 100 | PPV: 100 NPV: 100 AC: 100 | Mean P/B 4.78 P/B 1.96–12.21 | Before operation 10 min During operation 2–3 min |
Ladurner R 2018 [106] | Thyroidectomy | 41 PGs 20 patients | 90 | Extra 10 min of operating time | |||
Takahashi T 2020 [107] | Thyroidectomy | 41 PGs 36 patients | 82.9 | ||||
Kose E 2019 [111] | Thyroidectomy Parathyroidectomy | 971 specimens 310 patients | 98 | Mean P/B 1.73 | During operation <1 min | ||
550 specimens additionally sent to pathology | 98.5 | 97.2 | PPV: 95.1 NPV: 99.1 AC: 97.6 | ||||
Falco J 2016 [112] | Thyroidectomy Parathyroidectomy | 28 patients | Mean 40.6 14.1–67.1 | ||||
McWade WM 2016 [113] | Thyroidectomy Parathyroidectomy | 264 PGs 137 patients | 97 | P/B 1.2–29 | Approximately extra 3–4 min of operating time | ||
Kahramangil B 2018 [114] | Thyroidectomy Parathyroidectomy | 594 PGs 210 patients | 98 | Approximately extra 4 min of operating time | |||
Kim D H 2021 * [115] | Thyroidectomy Parathyroidectomy | 17 studies with 1198 participants | 96.93 | 92.48 | NPV: 95.17 PPV: 94.88 |
Paper | Procedure | Dataset | Detected PGs with ICGF (%) | Transient HP (%) | Permanent HP (%) | Incidental PTX (%) | Mean PTH Level (pg/dL) |
---|---|---|---|---|---|---|---|
Zaidi N 2016 [116] | Thyroidectomy | 85 PGs 27 patients | 84 | Patients with at least 2 PGs with the ICGF < 30% of the PG’s volume, POD 1: 9 | |||
Patients with fewer than 2 PGs with the ICGF < 30% of the PG’s volume, POD 1: 19.5 | |||||||
p = 0.05 | |||||||
Yu H W 2016 [117] | Thyroidectomy | 44 patients without ICGF | 18.2 | 2.3 | 15.9 | ||
22 patients with ICGF | 18.2 | 4.5 | 0 | ||||
Rudin A 2019 [119] | Thyroidectomy | 124 patients without ICGF | 21 | ||||
86 patients with ICGF | 82 | 19 | |||||
Zaidi N 2016 [120] | PTX | 112 PGs 33 patients | 92.9 |
Paper | Risk Factors |
---|---|
Scaroni M 2020 [130] | Graves’ disease, benign pathology, previous thyroid surgery, age > 65 years, African American race, history of alcohol abuse, BMI greater than >30 kg/m, male sex |
Saitou M 2021 [131] | Graves’ disease, advanced age, male sex, use of anticoagulants, complications of haematological diseases (inherited bleeding disorder characterised by the absence or reduced levels of clotting factor VIII or IX) |
Wojtczak B 2018 [129] | Graves–Basedow disease, toxic adenoma, toxic multinodular goitre |
Weiss A 2014 [132] | Age > 45 years, African American and Native American patients, male sex, inflammatory conditions of the thyroid, chronic kidney disease |
Edafe O 2020 [127] | Thyroidectomy (vs. hemithyroidectomy and parathyroidectomy), older age, male gender, antithrombotic medication, bleeding disorders |
Sun N 2020 [128] | BMI > 30 kg/m, age > 45 years, partial thyroidectomy, inflammatory thyroid disease, bleeding disorders, chronic kidney diseases, hypertension, diabetes |
Doran HE 2021 [124] | Retrosternal goitre, hyperthyroidism at presentation, male sex, total thyroidectomy, patient age |
Patel KN 2020 [123] | Male sex, age > 65 years, smoking, continued use of antiplatelet or anticoagulant medications, Graves–Basedow disease, total thyroidectomy (vs. lobectomy), drain placement, African American race, history of alcohol abuse, 3 or more significant comorbidities, substernal thyroidectomy, reoperation |
Liu J 2017 [133] | Older age, male sex, Graves’ disease, antithrombotic agents use, bilateral operation, previous thyroid surgery |
I | Irrigation of wound with water—to clear and search for bleeding |
T | Time—wait for some time |
S R | Systolic blood pressure > 100 mm Hg at closing Relieve neck extension—for example, flexing the neck |
E D | Elevate venous pressure—using the Valsalva manoeuvre or by positioning the patient with their head down Do not drain—do not drain it; deal with it and consider sealing agents, e.g., fibrin |
FRED | Flaps—evaluation of bleeding under subplatysmal flaps prior to closure |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ludwig, B.; Ludwig, M.; Dziekiewicz, A.; Mikuła, A.; Cisek, J.; Biernat, S.; Kaliszewski, K. Modern Surgical Techniques of Thyroidectomy and Advances in the Prevention and Treatment of Perioperative Complications. Cancers 2023, 15, 2931. https://doi.org/10.3390/cancers15112931
Ludwig B, Ludwig M, Dziekiewicz A, Mikuła A, Cisek J, Biernat S, Kaliszewski K. Modern Surgical Techniques of Thyroidectomy and Advances in the Prevention and Treatment of Perioperative Complications. Cancers. 2023; 15(11):2931. https://doi.org/10.3390/cancers15112931
Chicago/Turabian StyleLudwig, Bartłomiej, Maksymilian Ludwig, Anna Dziekiewicz, Agnieszka Mikuła, Jakub Cisek, Szymon Biernat, and Krzysztof Kaliszewski. 2023. "Modern Surgical Techniques of Thyroidectomy and Advances in the Prevention and Treatment of Perioperative Complications" Cancers 15, no. 11: 2931. https://doi.org/10.3390/cancers15112931
APA StyleLudwig, B., Ludwig, M., Dziekiewicz, A., Mikuła, A., Cisek, J., Biernat, S., & Kaliszewski, K. (2023). Modern Surgical Techniques of Thyroidectomy and Advances in the Prevention and Treatment of Perioperative Complications. Cancers, 15(11), 2931. https://doi.org/10.3390/cancers15112931