Emerging Targeted Therapies in Advanced Non-Small-Cell Lung Cancer
Abstract
:Simple Summary
Abstract
1. Background
2. EGFR
3. EGFR TKI in Combination with Other Targeted Agents
4. EGFR Exon 20 Insertions
5. ALK Rearrangements
6. ROS1
7. KRAS
8. RAF/MEK
9. ERK 1/2
10. HER2
11. MET
12. AXL
13. IL1RAP
14. NRF2
15. ACSS2
16. FGFR
17. Squamous Cell Carcinoma
18. FOLR1/PSMA
19. ATR
20. NSD3
21. PI3K Pathway
22. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Abughanimeh, O.; Kaur, A.; El Osta, B.; Ganti, A.K. Novel targeted therapies for advanced non-small lung cancer. Semin. Oncol. 2022, 49, 326–336. [Google Scholar] [CrossRef] [PubMed]
- Ettinger, D.S.; Wood, D.E.; Aisner, D.L.; Akerley, W.; Bauman, J.R.; Bharat, A.; Bruno, D.S.; Chang, J.Y.; Chirieac, L.R.; D’Amico, T.A. Non–Small Cell Lung Cancer, Version 3.2022, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2022, 20, 497–530. [Google Scholar] [CrossRef] [PubMed]
- Majeed, U.; Manochakian, R.; Zhao, Y.; Lou, Y. Targeted therapy in advanced non-small cell lung cancer: Current advances and future trends. J. Hematol. Oncol. 2021, 14, 108. [Google Scholar] [CrossRef]
- Tan, A.C.; Tan, D.S.W. Targeted Therapies for Lung Cancer Patients With Oncogenic Driver Molecular Alterations. J. Clin. Oncol. 2022, 40, 611–625. [Google Scholar] [CrossRef]
- Reck, M.; Mok, T.S.K.; Nishio, M.; Jotte, R.M.; Cappuzzo, F.; Orlandi, F.; Stroyakovskiy, D.; Nogami, N.; Rodríguez-Abreu, D.; Moro-Sibilot, D.; et al. Atezolizumab plus bevacizumab and chemotherapy in non-small-cell lung cancer (IMpower150): Key subgroup analyses of patients with EGFR mutations or baseline liver metastases in a randomised, open-label phase 3 trial. Lancet Respir. Med. 2019, 7, 387–401. [Google Scholar] [CrossRef]
- White, M.N.; Piper-Vallillo, A.J.; Gardner, R.M.; Cunanan, K.; Neal, J.W.; Das, M.; Padda, S.K.; Ramchandran, K.; Chen, T.T.; Sequist, L.V.; et al. Chemotherapy Plus Immunotherapy Versus Chemotherapy Plus Bevacizumab Versus Chemotherapy Alone in EGFR-Mutant NSCLC After Progression on Osimertinib. Clin. Lung Cancer 2022, 23, e210–e221. [Google Scholar] [CrossRef]
- Yun, J.; Hong, M.H.; Kim, S.Y.; Park, C.W.; Kim, S.; Yun, M.R.; Kang, H.N.; Pyo, K.H.; Lee, S.S.; Koh, J.S.; et al. YH25448, an Irreversible EGFR-TKI with Potent Intracranial Activity in EGFR Mutant Non-Small Cell Lung Cancer. Clin. Cancer Res. 2019, 25, 2575–2587. [Google Scholar] [CrossRef]
- Ahn, M.J.; Han, J.Y.; Lee, K.H.; Kim, S.W.; Kim, D.W.; Lee, Y.G.; Cho, E.K.; Kim, J.H.; Lee, G.W.; Lee, J.S.; et al. Lazertinib in patients with EGFR mutation-positive advanced non-small-cell lung cancer: Results from the dose escalation and dose expansion parts of a first-in-human, open-label, multicentre, phase 1-2 study. Lancet Oncol. 2019, 20, 1681–1690. [Google Scholar] [CrossRef]
- Cho, B.C.; Han, J.-Y.; Kim, S.-W.; Lee, K.H.; Cho, E.K.; Lee, Y.-G.; Kim, D.-W.; Kim, J.-H.; Lee, G.-W.; Lee, J.-S.; et al. A Phase 1/2 Study of Lazertinib 240 mg in Patients With Advanced EGFR T790M-Positive NSCLC After Previous EGFR Tyrosine Kinase Inhibitors. J. Thorac. Oncol. 2022, 17, 558–567. [Google Scholar] [CrossRef]
- Cho, B.; Han, J.-Y.; Lee, K.; Lee, Y.-G.; Kim, D.-W.; Min, Y.; Kim, S.-W.; Cho, E.; Kim, J.-H.; Lee, G.-W. EP08. 02-025 Lazertinib as a Frontline Treatment in Patients with EGFR Mutant Advanced Non-Small Cell Lung Cancer: Results from the Phase I/II Trial. J. Thorac. Oncol. 2022, 17, S408–S409. [Google Scholar] [CrossRef]
- Cho, B.C.; Lee, K.H.; Cho, E.K.; Kim, D.W.; Lee, J.S.; Han, J.Y.; Kim, S.W.; Spira, A.; Haura, E.B.; Sabari, J.K.; et al. 1258O Amivantamab (JNJ-61186372), an EGFR-MET bispecific antibody, in combination with lazertinib, a 3rd-generation tyrosine kinase inhibitor (TKI), in advanced EGFR NSCLC. Ann. Oncol. 2020, 31, S813. [Google Scholar] [CrossRef]
- Shu, C.A.; Goto, K.; Ohe, Y.; Besse, B.; Park, K.; Wang, Y.; Griesinger, F.; Yang, J.C.H.; Felip, E.; Sanborn, R.E.; et al. 1193MO Amivantamab plus lazertinib in post-osimertinib, post-platinum chemotherapy EGFR-mutant non-small cell lung cancer (NSCLC): Preliminary results from CHRYSALIS-2. Ann. Oncol. 2021, 32, S952–S953. [Google Scholar] [CrossRef]
- Shu, C.A.; Goto, K.; Ohe, Y.; Besse, B.; Lee, S.-H.; Wang, Y.; Griesinger, F.; Yang, J.C.-H.; Felip, E.; Sanborn, R.E.; et al. Amivantamab and lazertinib in patients with EGFR-mutant non–small cell lung (NSCLC) after progression on osimertinib and platinum-based chemotherapy: Updated results from CHRYSALIS-2. J. Clin. Oncol. 2022, 40, 9006. [Google Scholar] [CrossRef]
- Cho, B.; Lee, S.-H.; Han, J.-Y.; Cho, E.; Lee, J.-S.; Lee, K.; Curtin, J.; Gao, G.; Xie, J.; Schnepp, R. P1. 16-01 Amivantamab and Lazertinib in Treatment-Naive EGFR-Mutant Non-Small Cell Lung Cancer (NSCLC). J. Thorac. Oncol. 2022, 17, S126. [Google Scholar] [CrossRef]
- Cho, B.C.; Felip, E.; Hayashi, H.; Thomas, M.; Lu, S.; Besse, B.; Sun, T.; Martinez, M.; Sethi, S.N.; Shreeve, S.M.; et al. MARIPOSA: Phase 3 study of first-line amivantamab + lazertinib versus osimertinib in EGFR-mutant non-small-cell lung cancer. Future Oncol. 2022, 18, 639–647. [Google Scholar] [CrossRef]
- Lu, S.; Wang, Q.; Zhang, G.; Dong, X.; Yang, C.T.; Song, Y.; Chang, G.C.; Lu, Y.; Pan, H.; Chiu, C.H.; et al. Efficacy of Aumolertinib (HS-10296) in Patients With Advanced EGFR T790M+ NSCLC: Updated Post-National Medical Products Administration Approval Results From the APOLLO Registrational Trial. J. Thorac. Oncol. 2022, 17, 411–422. [Google Scholar] [CrossRef]
- Liu, K.; Jiang, G.; Zhang, A.; Li, Z.; Jia, J. Icotinib is as efficacious as gefitinib for brain metastasis of EGFR mutated non-small-cell lung cancer. BMC Cancer 2020, 20, 76. [Google Scholar] [CrossRef]
- Huang, M. EP08.02-067 Concurrent Aumolertinib Plus Icotinib for First-Line Treatment of EGFR Mutated Non-small Cell Lung Cancer with Brain Metastases. J. Thorac. Oncol. 2022, 17, S431–S432. [Google Scholar] [CrossRef]
- Lim, S.M.; Park, C.W.; Zhang, Z.; Woessner, R.; Dineen, T.; Stevison, F.; Hsieh, J.; Eno, M.; Wilson, D.; Campbell, J.; et al. Abstract 1467: BLU-945, a fourth-generation, potent and highly selective epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) with intracranial activity, demonstrates robust in vivo antitumor activity in models of osimertinib-resistant non-small cell lung cancer (NSCLC). Cancer Res. 2021, 81, 1467. [Google Scholar] [CrossRef]
- Shum, E.; Elamin, Y.Y.; Piotrowska, Z.; Spigel, D.R.; Reckamp, K.L.; Rotow, J.K.; Tan, D.S.-W.; Lim, S.M.; Kim, T.M.; Lin, C.-C.; et al. A phase 1/2 study of BLU-945 in patients with common activating EGFR-mutant non–small cell lung cancer (NSCLC): SYMPHONY trial in progress. J. Clin. Oncol. 2022, 40, TPS9156. [Google Scholar] [CrossRef]
- Lim, S.M.; Ahn, J.S.; Hong, M.H.; Kim, T.M.; Jung, H.A.; Jung, H.A.; Ou, S.H.I.; Jeong, S.; Lee, Y.H.; Yim, E.; et al. MA07.09 BBT-176, a 4th generation EGFR TKI, for Progressed NSCLC after EGFR TKI Therapy: PK, Safety and Efficacy from Phase 1 Study. J. Thorac. Oncol. 2022, 17, S70–S71. [Google Scholar] [CrossRef]
- Conti, C.; Campbell, J.; Woessner, R.; Guo, J.; Timsit, Y.; Iliou, M.; Wardwell, S.; Davis, A.; Chicklas, S.; Hsieh, J.; et al. Abstract 1262: BLU-701 is a highly potent, brain-penetrant and WT-sparing next-generation EGFR TKI for the treatment of sensitizing (ex19del, L858R) and C797S resistance mutations in metastatic NSCLC. Cancer Res. 2021, 81, 1262. [Google Scholar] [CrossRef]
- Jänne, P.A.; Baik, C.; Su, W.C.; Johnson, M.L.; Hayashi, H.; Nishio, M.; Kim, D.W.; Koczywas, M.; Gold, K.A.; Steuer, C.E.; et al. Efficacy and Safety of Patritumab Deruxtecan (HER3-DXd) in EGFR Inhibitor-Resistant, EGFR-Mutated Non-Small Cell Lung Cancer. Cancer Discov. 2022, 12, 74–89. [Google Scholar] [CrossRef] [PubMed]
- Steuer, C.E.; Hayashi, H.; Su, W.-C.; Nishio, M.; Johnson, M.L.; Kim, D.-W.; Koczywas, M.; Felip, E.; Gold, K.A.; Murakami, H.; et al. Efficacy and safety of patritumab deruxtecan (HER3-DXd) in advanced/metastatic non-small cell lung cancer (NSCLC) without EGFR-activating mutations. J. Clin. Oncol. 2022, 40, 9017. [Google Scholar] [CrossRef]
- Shen, G.; Zheng, F.; Ren, D.; Du, F.; Dong, Q.; Wang, Z.; Zhao, F.; Ahmad, R.; Zhao, J. Anlotinib: A novel multi-targeting tyrosine kinase inhibitor in clinical development. J. Hematol. Oncol. 2018, 11, 120. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhu, C.; Sun, M. 1813P Anlotinib plus osimertinib overcomes acquired resistance to osimertinib via FGFR and EGFR signaling in non-small cell lung cancer (NSCLC). Ann. Oncol. 2021, 32, S1231. [Google Scholar] [CrossRef]
- Zhou, B.; Gong, Q.; Li, B.; Qie, H.L.; Li, W.; Jiang, H.T.; Li, H.F. Clinical outcomes and safety of osimertinib plus anlotinib for patients with previously treated EGFR T790M-positive NSCLC: A retrospective study. J. Clin. Pharm. 2022, 47, 643–651. [Google Scholar] [CrossRef]
- Han, B.; Yan, B.; Gu, A.; Chu, T.; Zhang, W.; Wang, H.; Zhong, H.; Shi, C.; Zhang, X. Phase Ib/IIa study evaluating the safety and clinical activity of osimeritinib combined with anlotinib in EGFRm, treatment-naive advanced NSCLC patients (AUTOMAN). J. Clin. Oncol. 2022, 40, e21140. [Google Scholar] [CrossRef]
- Thatcher, N.; Hirsch, F.R.; Luft, A.V.; Szczesna, A.; Ciuleanu, T.E.; Dediu, M.; Ramlau, R.; Galiulin, R.K.; Bálint, B.; Losonczy, G.; et al. Necitumumab plus gemcitabine and cisplatin versus gemcitabine and cisplatin alone as first-line therapy in patients with stage IV squamous non-small-cell lung cancer (SQUIRE): An open-label, randomised, controlled phase 3 trial. Lancet Oncol. 2015, 16, 763–774. [Google Scholar] [CrossRef]
- Riess, J.W.; Krailo, M.D.; Padda, S.K.; Groshen, S.G.; Wakelee, H.A.; Reckamp, K.L.; Koczywas, M.; Piotrowska, Z.; Steuer, C.E.; Kim, C.; et al. Osimertinib plus necitumumab in EGFR-mutant NSCLC: Final results from an ETCTN California Cancer Consortium phase I study. J. Clin. Oncol. 2022, 40, 9014. [Google Scholar] [CrossRef]
- Goldenson, B.; Crispino, J.D. The aurora kinases in cell cycle and leukemia. Oncogene 2015, 34, 537–545. [Google Scholar] [CrossRef] [PubMed]
- Shah, K.N.; Bhatt, R.; Rotow, J.; Rohrberg, J.; Olivas, V.; Wang, V.E.; Hemmati, G.; Martins, M.M.; Maynard, A.; Kuhn, J.; et al. Aurora kinase A drives the evolution of resistance to third-generation EGFR inhibitors in lung cancer. Nat. Med. 2019, 25, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, M.B.; Sun, H.; Robichaux, J.; Pfeifer, M.; McDermott, U.; Travers, J.; Diao, L.; Xi, Y.; Tong, P.; Shen, L.; et al. A YAP/FOXM1 axis mediates EMT-associated EGFR inhibitor resistance and increased expression of spindle assembly checkpoint components. Sci. Transl. Med. 2020, 12, eaaz4589. [Google Scholar] [CrossRef]
- Shi, K.; Wang, G.; Pei, J.; Zhang, J.; Wang, J.; Ouyang, L.; Wang, Y.; Li, W. Emerging strategies to overcome resistance to third-generation EGFR inhibitors. J. Hematol. Oncol. 2022, 15, 94. [Google Scholar] [CrossRef]
- Elamin, Y.Y.; Negrao, M.V.; Fossella, F.V.; Byers, L.A.; Zhang, J.; Gay, C.M.; Tu, J.C.; Pozadzides, J.V.; Tran, H.T.; Lu, C.; et al. Results of a phase 1b study of osimertinib plus sapanisertib or alisertib for osimertinib-resistant, EGFR-mutant non–small cell lung cancer (NSCLC). J. Clin. Oncol. 2022, 40, 9105. [Google Scholar] [CrossRef]
- Goldman, J.; Huang, H.K.T.; Cummings, A.; Noor, Z.; Slomowitz, S.; Kirimis, E.; Olevsky, O.; Arzoo, K.; Ashouri, S.; DiCarlo, B.; et al. MA07.05 Phase 1b/2 Study of Combined HER Inhibition in Refractory EGFR-mutated Metastatic Non-small Cell Lung Cancer (NSCLC). J. Thorac. Oncol. 2022, 17, S68–S69. [Google Scholar] [CrossRef]
- Cho, B.C.; Doebele, R.C.; Lin, J.; Nagasaka, M.; Baik, C.; Van Der Wekken, A.; Velcheti, V.; Lee, K.H.; Liu, S.; Solomon, B.; et al. MA11.07 Phase 1/2 TRIDENT-1 Study of Repotrectinib in Patients with ROS1+ or NTRK+ Advanced Solid Tumors. J. Thorac. Oncol. 2021, 16, S174–S175. [Google Scholar] [CrossRef]
- Lin, J.J.; Cho, B.C.; Springfeld, C.; Camidge, D.R.; Solomon, B.; Baik, C.; Velcheti, V.; Kim, Y.-C.; Moreno, V.; van der Wekken, A.J.; et al. Abstract P224: Update from the Phase 2 registrational trial of repotrectinib in TKI-pretreated patients with ROS1+ advanced non-small cell lung cancer and with NTRK+ advanced solid tumors (TRIDENT-1). Mol. Cancer Ther. 2021, 20, P224. [Google Scholar] [CrossRef]
- Aguilar, A.; Cobo, M.; Azkárate, A.; Calles, A.; Molina, M.Á.; Rosell, R. EP08.02-011 Design of a Phase I Trial (TOTEM) to Test Repotrectinib in Combination with Osimertinib in Advanced, Metastatic EGFR-Mutant NSCLC. J. Thorac. Oncol. 2022, 17, S401–S402. [Google Scholar] [CrossRef]
- Park, K.; Haura, E.B.; Leighl, N.B.; Mitchell, P.; Shu, C.A.; Girard, N.; Viteri, S.; Han, J.Y.; Kim, S.W.; Lee, C.K.; et al. Amivantamab in EGFR Exon 20 Insertion-Mutated Non-Small-Cell Lung Cancer Progressing on Platinum Chemotherapy: Initial Results From the CHRYSALIS Phase I Study. J. Clin. Oncol. 2021, 39, 3391–3402. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Ramalingam, S.S.; Kim, T.M.; Kim, S.-W.; Yang, J.C.-H.; Riely, G.J.; Mekhail, T.; Nguyen, D.; Garcia Campelo, M.R.; Felip, E.; et al. Treatment Outcomes and Safety of Mobocertinib in Platinum-Pretreated Patients With EGFR Exon 20 Insertion–Positive Metastatic Non–Small Cell Lung Cancer: A Phase 1/2 Open-label Nonrandomized Clinical Trial. JAMA Oncol. 2021, 7, e214761. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Yang, J.C.-H.; Mitchell, P.L.; Fang, J.; Camidge, D.R.; Nian, W.; Chiu, C.-H.; Zhou, J.; Zhao, Y.; Su, W.-C.; et al. Sunvozertinib, a Selective EGFR Inhibitor for Previously Treated Non–Small Cell Lung Cancer with EGFR Exon 20 Insertion Mutations. Cancer Discov. 2022, 12, 1676–1689. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.-H.; Wang, M.; Mitchell, P.; Fang, J.; Nian, W.; Chiu, C.; Zhou, J.; Zhao, Y.; Su, W.-C.; Camidge, R. EP08. 02-029 Sunvozertinib in NSCLC Patients with EGFR Exon20 Insertion Mutations: Effect of Prior Treatment. J. Thorac. Oncol. 2022, 17, S410–S411. [Google Scholar] [CrossRef]
- Wang, M.; Yang, J.-H.; Mitchell, P.; Fang, J.; Nian, W.; Chiu, C.; Zhou, J.; Zhao, Y.; Su, W.; Camidge, D. 987P Sunvozertinib for NSCLC patients with EGFR exon 20 insertion mutations: Preliminary analysis of WU-KONG6, the first pivotal study. Ann. Oncol. 2022, 33, S1003–S1004. [Google Scholar] [CrossRef]
- Schoenfeld, A.J.; Arbour, K.C.; Rizvi, H.; Iqbal, A.N.; Gadgeel, S.M.; Girshman, J.; Kris, M.G.; Riely, G.J.; Yu, H.A.; Hellmann, M.D. Severe immune-related adverse events are common with sequential PD-(L)1 blockade and osimertinib. Ann. Oncol. 2019, 30, 839–844. [Google Scholar] [CrossRef]
- To, K.K.W.; Fong, W.; Cho, W.C.S. Immunotherapy in Treating EGFR-Mutant Lung Cancer: Current Challenges and New Strategies. Front. Oncol. 2021, 11, 635007. [Google Scholar] [CrossRef]
- Hasako, S.; Terasaka, M.; Abe, N.; Uno, T.; Ohsawa, H.; Hashimoto, A.; Fujita, R.; Tanaka, K.; Okayama, T.; Wadhwa, R.; et al. TAS6417, A Novel EGFR Inhibitor Targeting Exon 20 Insertion Mutations. Mol. Cancer 2018, 17, 1648–1658. [Google Scholar] [CrossRef]
- Yu, H.A.; Tan, D.S.-W.; Smit, E.F.; Spira, A.I.; Soo, R.A.; Nguyen, D.; Lee, V.H.-F.; Yang, J.C.-H.; Velcheti, V.; Wrangle, J.M.; et al. Phase (Ph) 1/2a study of CLN-081 in patients (pts) with NSCLC with EGFR exon 20 insertion mutations (Ins20). J. Clin. Oncol. 2022, 40, 9007. [Google Scholar] [CrossRef]
- Pearson, P.G.; Pandey, A.; Roth, B.; Saxton, T.; Estes, D.J.; Trivedi, R.; Agrawal, H.; Hallur, G.; Ahmad, I.; Jenkins, H. LNG-451 (BLU-451), a potent inhibitor of EGFR exon 20 insertion mutations with high CNS exposure. Available online: https://www.blueprintmedicines.com/wp-content/uploads/2022/04/Blueprint-Medicines-AACR-2022-BLU-451-EGFR-Exon-20-Insertions-DMPK-Preclinical-Poster.pdf (accessed on 17 March 2023).
- Spira, A.I.; Yu, H.A.; Sun, L.; Nguyen, D.; Pearson, P.; Shim-Lopez, J.; Hausman, D.F.; Le, X. Phase 1/2 study of BLU-451, a central nervous system (CNS) penetrant, small molecule inhibitor of EGFR, in incurable advanced cancers with EGFR exon 20 insertion (ex20ins) mutations. J. Clin. Oncol. 2022, 40, TPS9155. [Google Scholar] [CrossRef]
- Singal, G.; Miller, P.G.; Agarwala, V.; Li, G.; Kaushik, G.; Backenroth, D.; Gossai, A.; Frampton, G.M.; Torres, A.Z.; Lehnert, E.M.; et al. Association of Patient Characteristics and Tumor Genomics With Clinical Outcomes Among Patients With Non-Small Cell Lung Cancer Using a Clinicogenomic Database. JAMA 2019, 321, 1391–1399. [Google Scholar] [CrossRef] [PubMed]
- Soda, M.; Choi, Y.L.; Enomoto, M.; Takada, S.; Yamashita, Y.; Ishikawa, S.; Fujiwara, S.; Watanabe, H.; Kurashina, K.; Hatanaka, H.; et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 2007, 448, 561–566. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.-J.; Zhou, J.; Cheng, Y.; Li, M.; Zhao, Q.; Zhang, Z.; Zang, A.; Fan, Y.; Hui, A.-M.; Zhou, Y.; et al. SAF-189s in advanced, ALK-positive, non–small cell lung cancer: Results from a first-in-human phase 1/2, multicenter study. J. Clin. Oncol. 2022, 40, 9076. [Google Scholar] [CrossRef]
- Fang, D.D.; Tao, R.; Wang, G.; Li, Y.; Zhang, K.; Xu, C.; Zhai, G.; Wang, Q.; Wang, J.; Tang, C.; et al. Discovery of a novel ALK/ROS1/FAK inhibitor, APG-2449, in preclinical non-small cell lung cancer and ovarian cancer models. BMC Cancer 2022, 22, 752. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Chen, J.; Song, Z.; Zhao, Y.; Guo, Y.; Wu, G.; Ma, Y.; Zhou, W.; Yu, X.; Gao, F.; et al. First-in-human phase I results of APG-2449, a novel FAK and third-generation ALK/ ROS1 tyrosine kinase inhibitor (TKI), in patients (pts) with second-generation TKI-resistant ALK/ROS1+ non–small cell lung cancer (NSCLC) or mesothelioma. J. Clin. Oncol. 2022, 40, 9071. [Google Scholar] [CrossRef]
- Azelby, C.M.; Sakamoto, M.R.; Bowles, D.W. ROS1 Targeted Therapies: Current Status. Curr. Oncol. Rep. 2021, 23, 94. [Google Scholar] [CrossRef]
- Davies, K.D.; Doebele, R.C. Molecular Pathways: ROS1 Fusion Proteins in Cancer. Clin. Cancer Res. 2013, 19, 4040–4045. [Google Scholar] [CrossRef]
- Li, W.; Yang, N.; Ma, H.; Fan, H.; Li, K.; Wu, H.; Yu, Q.; Wang, Y.; Meng, X.; Wang, X.; et al. The efficacy and safety of taletrectinib in patients with TKI-naïve or crizotinib-pretreated ROS1-positive non–small cell lung cancer (NSCLC). J. Clin. Oncol. 2022, 40, 8572. [Google Scholar] [CrossRef]
- Tangpeerachaikul, A.; Keddy, C.; Nicholson, K.; Davare, M.; Pelish, H.E. Abstract 3336: Preclinical activity of NVL-520 in ROS1-driven cancer models with diverse fusion partners and kinase-domain mutations. Cancer Res. 2022, 82, 3336. [Google Scholar] [CrossRef]
- Drilon, A.; Ou, S.H.I.; Gadgeel, S.; Johnson, M.; Spira, A.; Lopes, G.; Besse, B.; Felip, E.; van der Wekken, A.J.; Calles, A.; et al. EP08.02-041 NVL-520, a Highly Selective ROS1 Inhibitor, in Patients with Advanced ROS1-Positive Solid Tumors: The Phase 1/2 ARROS-1 Study. J. Thorac. Oncol. 2022, 17, S416. [Google Scholar] [CrossRef]
- Drilon, A. Safety and preliminary clinical activity of NVL-520, a highly selective ROS1inhibitor, in patients with advanced ROS1 fusion-positive solid tumors. Eur. J. Cancer 2022, 174, S3–S128. [Google Scholar] [CrossRef]
- Salgia, R.; Pharaon, R.; Mambetsariev, I.; Nam, A.; Sattler, M. The improbable targeted therapy: KRAS as an emerging target in non-small cell lung cancer (NSCLC). Cell Rep. Med. 2021, 2, 100186. [Google Scholar] [CrossRef] [PubMed]
- Skoulidis, F.; Li, B.T.; Dy, G.K.; Price, T.J.; Falchook, G.S.; Wolf, J.; Italiano, A.; Schuler, M.; Borghaei, H.; Barlesi, F.; et al. Sotorasib for Lung Cancers with KRAS p.G12C Mutation. N. Engl. J. Med. 2021, 384, 2371–2381. [Google Scholar] [CrossRef] [PubMed]
- Jänne, P.A.; Riely, G.J.; Gadgeel, S.M.; Heist, R.S.; Ou, S.-H.I.; Pacheco, J.M.; Johnson, M.L.; Sabari, J.K.; Leventakos, K.; Yau, E.; et al. Adagrasib in Non–Small-Cell Lung Cancer Harboring a KRASG12C Mutation. N. Engl. J. Med. 2022, 387, 120–131. [Google Scholar] [CrossRef] [PubMed]
- Purkey, H. Abstract ND11: Discovery of GDC-6036, a clinical stage treatment for KRAS G12C-positive cancers. Cancer Res. 2022, 82, ND11. [Google Scholar] [CrossRef]
- Sacher, A.; Patel, M.R.; Miller, W.H., Jr.; Desai, J.; Garralda, E.; Bowyer, S.; Kim, T.W.; De Miguel, M.; Falcon, A.; Krebs, M.G.; et al. OA03.04 Phase I A Study to Evaluate GDC-6036 Monotherapy in Patients with Non-small Cell Lung Cancer (NSCLC) with KRAS G12C Mutation. J. Thorac. Oncol. 2022, 17, S8–S9. [Google Scholar] [CrossRef]
- Shi, Z.; Weng, J.; Fan, X.; Wang, E.; Zhu, Q.; Tao, L.; Han, Z.; Wang, Z.; Niu, H.; Jiang, Y.; et al. Abstract 932: Discovery of D-1553, a novel and selective KRas-G12C Inhibitor with potent anti-tumor activity in a broad spectrum of tumor cell lines and xenograft models. Cancer Res. 2021, 81, 932. [Google Scholar] [CrossRef]
- Lu, S.; Jian, H.; Zhang, Y.; Song, Z.; Zhao, Y.; Wang, P.; Jiang, L.; Gong, Y.; Zhou, J.; Dong, X.; et al. OA03.07 Safety and Efficacy of D-1553 in Patients with KRAS G12C Mutated Non-Small Cell Lung Cancer: A Phase 1 Trial. J. Thorac. Oncol. 2022, 17, S11. [Google Scholar] [CrossRef]
- Wan, P.T.C.; Garnett, M.J.; Roe, S.M.; Lee, S.; Niculescu-Duvaz, D.; Good, V.M.; Project, C.G.; Jones, C.M.; Marshall, C.J.; Springer, C.J.; et al. Mechanism of Activation of the RAF-ERK Signaling Pathway by Oncogenic Mutations of B-RAF. Cell 2004, 116, 855–867. [Google Scholar] [CrossRef]
- Planchard, D.; Besse, B.; Groen, H.J.M.; Hashemi, S.M.S.; Mazieres, J.; Kim, T.M.; Quoix, E.; Souquet, P.J.; Barlesi, F.; Baik, C.; et al. Phase 2 Study of Dabrafenib Plus Trametinib in Patients With BRAF V600E-Mutant Metastatic NSCLC: Updated 5-Year Survival Rates and Genomic Analysis. J. Thorac. Oncol. 2022, 17, 103–115. [Google Scholar] [CrossRef]
- Planchard, D.; Smit, E.F.; Groen, H.J.M.; Mazieres, J.; Besse, B.; Helland, Å.; Giannone, V.; D’Amelio, A.M., Jr.; Zhang, P.; Mookerjee, B.; et al. Dabrafenib plus trametinib in patients with previously untreated BRAFV600E-mutant metastatic non-small-cell lung cancer: An open-label, phase 2 trial. Lancet Oncol. 2017, 18, 1307–1316. [Google Scholar] [CrossRef] [PubMed]
- Ishii, N.; Harada, N.; Joseph, E.W.; Ohara, K.; Miura, T.; Sakamoto, H.; Matsuda, Y.; Tomii, Y.; Tachibana-Kondo, Y.; Iikura, H.; et al. Enhanced Inhibition of ERK Signaling by a Novel Allosteric MEK Inhibitor, CH5126766, That Suppresses Feedback Reactivation of RAF Activity. Cancer Res 2013, 73, 4050–4060. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Chénard-Poirier, M.; Roda, D.; de Miguel, M.; Harris, S.J.; Candilejo, I.M.; Sriskandarajah, P.; Xu, W.; Scaranti, M.; Constantinidou, A.; et al. Intermittent schedules of the oral RAF-MEK inhibitor CH5126766/VS-6766 in patients with RAS/RAF-mutant solid tumours and multiple myeloma: A single-centre, open-label, phase 1 dose-escalation and basket dose-expansion study. Lancet Oncol. 2020, 21, 1478–1488. [Google Scholar] [CrossRef] [PubMed]
- Krebs, M.G.; Shinde, R.; Rahman, R.A.; Grochot, R.; Little, M.; King, J.; Kitchin, J.; Parmar, M.; Turner, A.; Mahmud, M.; et al. Abstract CT019: A phase I trial of the combination of the dual RAF-MEK inhibitor VS-6766 and the FAK inhibitor defactinib: Evaluation of efficacy in KRAS mutated NSCLC. Cancer Res. 2021, 81, CT019. [Google Scholar] [CrossRef]
- Camidge, D.R.; Reuss, J.E.; Spira, A.I.; Janne, P.A.; Rehman, M.; Pachter, J.A.; Patrick, G.; Denis, L.J.; Spigel, D.R. A phase 2 study of VS-6766 (RAF/MEK clamp) RAMP 202, as a single agent and in combination with defactinib (FAK inhibitor) in recurrent KRAS mutant (mt) and BRAF mt non–small cell lung cancer (NSCLC). J. Clin. Oncol. 2022, 40, TPS9147. [Google Scholar] [CrossRef]
- Govindan, R.; Awad, M.M.; Gadgeel, S.M.; Pachter, J.A.; Patrick, G.; Denis, L.J. A phase 1/2 study of VS-6766 (RAF/MEK clamp) in combination with sotorasib (G12C inhibitor) in patients with KRAS G12C mutant non–small cell lung cancer (NSCLC) (RAMP 203). J. Clin. Oncol. 2022, 40, TPS9148. [Google Scholar] [CrossRef]
- Mendoza, M.C.; Er, E.E.; Blenis, J. The Ras-ERK and PI3K-mTOR pathways: Cross-talk and compensation. Trends Biochem. Sci. 2011, 36, 320–328. [Google Scholar] [CrossRef]
- Minchom, A.R.; Perez, V.S.; Morton, C.; Manickavasagar, T.; Nintos, G.; Lai-Kwon, J.E.; Guo, C.; Tunariu, N.; Parker, T.; Prout, T.; et al. Phase I trial of the RAF/MEK clamp VS-6766 in combination with everolimus using an intermittent schedule with expansion in NSCLC across multiple KRAS variants. J. Clin. Oncol. 2022, 40, 9018. [Google Scholar] [CrossRef]
- Hazar-Rethinam, M.; Kleyman, M.; Han, G.C.; Liu, D.; Ahronian, L.G.; Shahzade, H.A.; Chen, L.; Parikh, A.R.; Allen, J.N.; Clark, J.W.; et al. Convergent Therapeutic Strategies to Overcome the Heterogeneity of Acquired Resistance in BRAF(V600E) Colorectal Cancer. Cancer Discov. 2018, 8, 417–427. [Google Scholar] [CrossRef]
- Munck, J.M.; Berdini, V.; Bevan, L.; Brothwood, J.L.; Castro, J.; Courtin, A.; East, C.; Ferraldeschi, R.; Heightman, T.D.; Hindley, C.J.; et al. ASTX029, a Novel Dual-mechanism ERK Inhibitor, Modulates Both the Phosphorylation and Catalytic Activity of ERK. Mol. Cancer 2021, 20, 1757–1768. [Google Scholar] [CrossRef]
- LoRusso, P.; Rasco, D.W.; Shapiro, G.; Mita, A.C.; Azad, N.S.; Swiecicki, P.; El-Khoueiry, A.B.; Gandara, D.R.; Kummar, S.; Tanajian, H.; et al. A first-in-human, phase 1 study of ASTX029, a dual-mechanism inhibitor of ERK1/2, in relapsed/refractory solid tumors. J. Clin. Oncol. 2022, 40, 9085. [Google Scholar] [CrossRef]
- Li, B.T.; Smit, E.F.; Goto, Y.; Nakagawa, K.; Udagawa, H.; Mazières, J.; Nagasaka, M.; Bazhenova, L.; Saltos, A.N.; Felip, E.; et al. Trastuzumab Deruxtecan in HER2-Mutant Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2022, 386, 241–251. [Google Scholar] [CrossRef]
- Goto, K.; Sang-We, K.; Kubo, T.; Goto, Y.; Ahn, M.J.; Planchard, D.; Kim, D.W.; Yang, J.C.H.; Yang, T.Y.; Pereira, K.M.C.; et al. LBA55 Trastuzumab deruxtecan (T-DXd) in patients (Pts) with HER2-mutant metastatic non-small cell lung cancer (NSCLC): Interim results from the phase 2 DESTINY-Lung02 trial. Ann. Oncol. 2022, 33, S1422. [Google Scholar] [CrossRef]
- Heymach, J.; Opdam, F.; Barve, M.; Gibson, N.; Sadrolhefazi, B.; Serra, J.; Yamamoto, N. Abstract CT212: A phase I, open-label, dose escalation, confirmation, and expansion trial of BI 1810631 as monotherapy in patients with advanced or metastatic solid tumors with HER2 aberrations. Cancer Res. 2022, 82, CT212. [Google Scholar] [CrossRef]
- Opdam, F.; Heymach, J.; Barve, M.; Gibson, N.; Sadrolhefazi, B.; Serra, J.; Yamamoto, N.; Yoh, K.; Wu, Y.L. EP08.02-049 A Phase I Trial of the HER2 Exon 20 Inhibitor, BI 1810631, In Patients With Advanced Solid Tumors With HER2 Aberrations. J. Thorac. Oncol. 2022, 17, S421–S422. [Google Scholar] [CrossRef]
- Kim, E.S.; Salgia, R. MET Pathway as a Therapeutic Target. J. Thorac. Oncol. 2009, 4, 444–447. [Google Scholar] [CrossRef]
- Lee, M.; Jain, P.; Wang, F.; Ma, P.C.; Borczuk, A.; Halmos, B. MET alterations and their impact on the future of non-small cell lung cancer (NSCLC) targeted therapies. Expert Opin. Targets 2021, 25, 249–268. [Google Scholar] [CrossRef]
- Paik, P.K.; Felip, E.; Veillon, R.; Sakai, H.; Cortot, A.B.; Garassino, M.C.; Mazieres, J.; Viteri, S.; Senellart, H.; Van Meerbeeck, J.; et al. Tepotinib in Non–Small-Cell Lung Cancer with MET Exon 14 Skipping Mutations. N. Engl. J. Med. 2020, 383, 931–943. [Google Scholar] [CrossRef]
- Wolf, J.; Seto, T.; Han, J.-Y.; Reguart, N.; Garon, E.B.; Groen, H.J.M.; Tan, D.S.W.; Hida, T.; de Jonge, M.; Orlov, S.V.; et al. Capmatinib in MET Exon 14–Mutated or MET-Amplified Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2020, 383, 944–957. [Google Scholar] [CrossRef]
- Camidge, D.R.; Bar, J.; Horinouchi, H.; Goldman, J.W.; Moiseenko, F.V.; Filippova, E.; Cicin, I.; Bradbury, P.A.; Daaboul, N.; Tomasini, P.; et al. Telisotuzumab vedotin (Teliso-V) monotherapy in patients (pts) with previously treated c-Met–overexpressing (OE) advanced non-small cell lung cancer (NSCLC). J. Clin. Oncol. 2022, 40, 9016. [Google Scholar] [CrossRef]
- DaSilva, J.O.; Yang, K.; Perez Bay, A.E.; Andreev, J.; Ngoi, P.; Pyles, E.; Franklin, M.C.; Dudgeon, D.; Rafique, A.; Dore, A.; et al. A Biparatopic Antibody That Modulates MET Trafficking Exhibits Enhanced Efficacy Compared with Parental Antibodies in MET-Driven Tumor Models. Clin. Cancer Res. 2020, 26, 1408–1419. [Google Scholar] [CrossRef] [PubMed]
- Drilon, A.E.; Awad, M.M.; Gadgeel, S.M.; Villaruz, L.C.; Sabari, J.K.; Perez, J.; Daly, C.; Patel, S.; Li, S.; Seebach, F.A.; et al. A phase 1/2 study of REGN5093-M114, a METxMET antibody-drug conjugate, in patients with mesenchymal epithelial transition factor (MET)-overexpressing NSCLC. J. Clin. Oncol. 2022, 40, TPS8593. [Google Scholar] [CrossRef]
- O’Bryan, J.P.; Frye, R.A.; Cogswell, P.C.; Neubauer, A.; Kitch, B.; Prokop, C.; Espinosa, R., 3rd; Le Beau, M.M.; Earp, H.S.; Liu, E.T. axl, a transforming gene isolated from primary human myeloid leukemia cells, encodes a novel receptor tyrosine kinase. Mol. Cell Biol. 1991, 11, 5016–5031. [Google Scholar] [CrossRef] [PubMed]
- Ramkumar, K.; Stewart, C.A.; Cargill, K.R.; Della Corte, C.M.; Wang, Q.; Shen, L.; Diao, L.; Cardnell, R.J.; Peng, D.H.; Rodriguez, B.L.; et al. AXL Inhibition Induces DNA Damage and Replication Stress in Non-Small Cell Lung Cancer Cells and Promotes Sensitivity to ATR Inhibitors. Mol. Cancer Res. 2021, 19, 485–497. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Liu, Z.; Liu, L.; Zhang, H.; Han, C.; Girard, L.; Park, H.; Zhang, A.; Dong, C.; Ye, J.; et al. AXL targeting restores PD-1 blockade sensitivity of STK11/LKB1 mutant NSCLC through expansion of TCF1(+) CD8 T cells. Cell Rep. Med. 2022, 3, 100554. [Google Scholar] [CrossRef] [PubMed]
- Bhalla, S.; Fattah, F.J.; Williams, J.N.; Macchiaroli, A.; Padro, J.; Pogue, M.; Dowell, J.; Brekken, R.A.; Putnam, W.C.; McCracken, N.W.; et al. Phase 1 dose escalation and expansion study of bemcentinib (BGB324), a first-in-class, selective AXL inhibitor, with docetaxel in patients with previously treated advanced NSCLC. J. Clin. Oncol. 2022, 40, 9081. [Google Scholar] [CrossRef]
- Litmanovich, A.; Khazim, K.; Cohen, I. The Role of Interleukin-1 in the Pathogenesis of Cancer and its Potential as a Therapeutic Target in Clinical Practice. Oncol. Ther. 2018, 6, 109–127. [Google Scholar] [CrossRef]
- Millrud, C.R.; von Wachenfeldt, K.; Falk, H.H.; Forsberg, G.; Liberg, D. Abstract 2269: The anti-IL1RAP antibody CAN04 increases tumor sensitivity to platinum-based chemotherapy. Cancer Res. 2020, 80, 2269. [Google Scholar] [CrossRef]
- Paulus, A.; Cicenas, S.; Zvirbule, Z.; Paz-Ares, L.G.; Awada, A.; Garcia-Ribas, I.; Losic, N.; Zemaitis, M. Phase 1/2a trial of nadunolimab, a first-in-class fully humanized monoclonal antibody against IL1RAP, in combination with cisplatin and gemcitabine (CG) in patients with non-small cell lung cancer (NSCLC). J. Clin. Oncol. 2022, 40, 9020. [Google Scholar] [CrossRef]
- Lignitto, L.; LeBoeuf, S.E.; Homer, H.; Jiang, S.; Askenazi, M.; Karakousi, T.R.; Pass, H.I.; Bhutkar, A.J.; Tsirigos, A.; Ueberheide, B.; et al. Nrf2 Activation Promotes Lung Cancer Metastasis by Inhibiting the Degradation of Bach1. Cell 2019, 178, 316–329. [Google Scholar] [CrossRef]
- Singh, A.; Daemen, A.; Nickles, D.; Jeon, S.-M.; Foreman, O.; Sudini, K.; Gnad, F.; Lajoie, S.; Gour, N.; Mitzner, W.; et al. NRF2 Activation Promotes Aggressive Lung Cancer and Associates with Poor Clinical Outcomes. Clin. Cancer Res. 2021, 27, 877–888. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Liu, Q.; He, X.; Yuan, X.; Chen, Y.; Chu, Q.; Wu, K. Emerging roles of Nrf2 signal in non-small cell lung cancer. J. Hematol. Oncol. 2016, 9, 14. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Liu, F.; Fan, N.; Zhou, C.; Li, D.; Macvicar, T.; Dong, Q.; Bruns, C.J.; Zhao, Y. Targeting Glutaminolysis: New Perspectives to Understand Cancer Development and Novel Strategies for Potential Target Therapies. Front. Oncol. 2020, 10, 589508. [Google Scholar] [CrossRef] [PubMed]
- Paik, P.K.; Fan, P.D.; Qeriqi, B.; Namakydoust, A.; Daly, B.; Ahn, L.; Kim, R.; Plodkowski, A.; Ni, A.; Chang, J.; et al. Targeting NFE2L2/KEAP1 mutations in advanced non-small cell lung cancer with the TORC1/2 inhibitor TAK-228. J. Thorac. Oncol. 2022, 18, 516–526. [Google Scholar] [CrossRef]
- Riess, J.; Frankel, P.; Massarelli, E.; Nieva, J.; Lai, W.C.V.; Koczywas, M.; Shackelford, D.; Lanza, I.; Reid, J.M.; Gonsalves, W.I.; et al. MA13.08 A Phase 1 Trial of Sapanisertib and Telaglenastat (CB-839) in Patients with Advanced NSCLC (NCI 10327): Results from Dose Escalation. J. Thorac. Oncol. 2022, 17, S91–S92. [Google Scholar] [CrossRef]
- Schug, Z.T.; Peck, B.; Jones, D.T.; Zhang, Q.; Grosskurth, S.; Alam, I.S.; Goodwin, L.M.; Smethurst, E.; Mason, S.; Blyth, K.; et al. Acetyl-CoA Synthetase 2 Promotes Acetate Utilization and Maintains Cancer Cell Growth under Metabolic Stress. Cancer Cell 2015, 27, 57–71. [Google Scholar] [CrossRef]
- Perets, R.; Geva, R.; McKean, M.; Goutopoulos, A.; Erez, O.; Phadnis, M.; Youssoufian, H.; Schwartz, B.E.; Kansra, V.; Fattaey, A. Phase 1 first-in-human trial of MTB-9655, the first oral inhibitor of ACSS2, in patients with advanced solid tumors. J. Clin. Oncol. 2022, 40, e20609. [Google Scholar] [CrossRef]
- Subbiah, V.; Iannotti, N.O.; Gutierrez, M.; Smith, D.C.; Féliz, L.; Lihou, C.F.; Tian, C.; Silverman, I.M.; Ji, T.; Saleh, M. FIGHT-101, a first-in-human study of potent and selective FGFR 1-3 inhibitor pemigatinib in pan-cancer patients with FGFFGFR alterations and advanced malignancies. Ann. Oncol. 2022, 33, 522–533. [Google Scholar] [CrossRef]
- Meric-Bernstam, F.; Bahleda, R.; Hierro, C.; Sanson, M.; Bridgewater, J.; Arkenau, H.-T.; Tran, B.; Kelley, R.K.; Park, J.O.; Javle, M.; et al. Futibatinib, an Irreversible FGFR1–4 Inhibitor, in Patients with Advanced Solid Tumors Harboring FGF/FGFR Aberrations: A Phase I Dose-Expansion Study. Cancer Discov. 2022, 12, 402–415. [Google Scholar] [CrossRef]
- Rodon, J.; O’Neil, B.; Wacheck, V.; Liu, M.; Rosen, L.S. 1198TiP A phase Ib/II open-label, nonrandomized study of FGFR inhibitor futibatinib in combination with MEK inhibitor binimetinib in patients with advanced KRAS-mutant cancer. Ann. Oncol. 2022, 33, S1096. [Google Scholar] [CrossRef]
- Addeo, A.; Rothschild, S.I.; Holer, L.; Schneider, M.; Waibel, C.; Haefliger, S.; Mark, M.; Fernandez, E.; Mach, N.; Mauti, L.; et al. Fibroblast growth factor receptor (FGFR) inhibitor rogaratinib in patients with advanced pretreated squamous-cell non-small cell lung cancer over-expressing FGFR mRNA: The SAKK 19/18 phase II study. Lung Cancer 2022, 172, 154–159. [Google Scholar] [CrossRef] [PubMed]
- Barta, J.A.; Powell, C.A.; Wisnivesky, J.P. Global Epidemiology of Lung Cancer. Ann. Glob. Health. 2019, 85, 8. [Google Scholar] [CrossRef] [PubMed]
- Liam, C.-K.; Mallawathantri, S.; Fong, K.M. Is Tissue Still the Issue in Detecting Molecular Alterations in Lung Cancer? Respirology 2020, 25, 933–943. [Google Scholar] [CrossRef] [PubMed]
- Herbst, R.S.; Morgensztern, D.; Boshoff, C. The Biology and Management of Non-small Cell Lung Cancer. Nature 2018, 553, 446–454. [Google Scholar] [CrossRef] [PubMed]
- Heist, R.S.; Sequist, L.V.; Engelman, J.A. Genetic Changes in Squamous Cell Lung Cancer: A Review. J. Thorac. Oncol. 2012, 7, 924–933. [Google Scholar] [CrossRef]
- O’Shannessy, D.J.; Yu, G.; Smale, R.; Fu, Y.S.; Singhal, S.; Thiel, R.P.; Somers, E.B.; Vachani, A. Folate Receptor AlphaE in Lung Cancer: Diagnostic and Prognostic Significance. Oncotarget 2012, 3, 414–425. [Google Scholar] [CrossRef]
- Li, K.; Shi, Y.; Wu, J.; Zhou, L.; Ye, S.; Lai, X.; Huang, R.; Teng, Y.; Yu, J.; Chia, X.; et al. An Open-label, Non-randomized, Multi-center Phase I Study Evaluating the safety, Tolerability, Pharmacokinetics and Preliminary Efficacy of Bi-ligand-drug Conjugate CBP-1018 in Patients with Advanced Solid Tumors. J. Clin. Oncology 2022, 40, TPS2694. [Google Scholar] [CrossRef]
- Hall, A.B.; Newsome, D.; Wang, Y.; Boucher, D.M.; Eustace, B.; Gu, Y.; Hare, B.; Johnson, M.A.; Milton, S.; Murphy, C.E.; et al. Potentiation of tumor responses to DNA damaging therapy by the selective ATR inhibitor VX-970. Oncotarget 2014, 5, 5674–5685. [Google Scholar] [CrossRef]
- Middleton, M.R.; Dean, E.; Evans, T.R.J.; Shapiro, G.I.; Pollard, J.; Hendriks, B.S.; Falk, M.; Diaz-Padilla, I.; Plummer, R. Phase 1 study of the ATR inhibitor berzosertib (formerly M6620, VX-970) combined with gemcitabine ± cisplatin in patients with advanced solid tumours. Br. J. Cancer 2021, 125, 510–519. [Google Scholar] [CrossRef]
- Yuan, G.; Flores, N.M.; Hausmann, S.; Lofgren, S.M.; Kharchenko, V.; Angulo-Ibanez, M.; Sengupta, D.; Lu, X.; Czaban, I.; Azhibek, D.; et al. Elevated NSD3 histone methylation activity drives squamous cell lung cancer. Nature 2021, 590, 504–508. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.; Ipsaro, J.J.; Shi, J.; Milazzo, J.P.; Wang, E.; Roe, J.S.; Suzuki, Y.; Pappin, D.J.; Joshua-Tor, L.; Vakoc, C.R. NSD3-Short Is an Adaptor Protein that Couples BRD4 to the CHD8 Chromatin Remodeler. Mol. Cell. 2015, 60, 847–859. [Google Scholar] [CrossRef] [PubMed]
- Alzahrani, A.S. PI3K/Akt/mTOR inhibitors in cancer: At the bench and bedside. Semin. Cancer Biol. 2019, 59, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Carneiro, B.A.; Jotte, R.; Gabrail, N.; Hamid, O.; Huang, F.; Chaturvedi, S.; Herpers, M.; Soler, L.M.; Childs, B.H.; Hansen, A. Abstract P239: Safety and efficacy of copanlisib in combination with nivolumab: A phase Ib study in patients with advanced solid tumors. Mol. Cancer Ther. 2021, 20, P239. [Google Scholar] [CrossRef]
- Bonelli, M.A.; Digiacomo, G.; Fumarola, C.; Alfieri, R.; Quaini, F.; Falco, A.; Madeddu, D.; La Monica, S.; Cretella, D.; Ravelli, A.; et al. Combined Inhibition of CDK4/6 and PI3K/AKT/mTOR Pathways Induces a Synergistic Anti-Tumor Effect in Malignant Pleural Mesothelioma Cells. Neoplasia 2017, 19, 637–648. [Google Scholar] [CrossRef] [PubMed]
- Rampioni Vinciguerra, G.L.; Sonego, M.; Segatto, I.; Dall’Acqua, A.; Vecchione, A.; Baldassarre, G.; Belletti, B. CDK4/6 Inhibitors in Combination Therapies: Better in Company Than Alone: A Mini Review. Front Oncol. 2022, 12, 891580. [Google Scholar] [CrossRef]
- Jamal-Hanjani, M.; Wilson, G.A.; McGranahan, N.; Birkbak, N.J.; Watkins, T.B.; Veeriah, S.; Shafi, S.; Johnson, D.H.; Mitter, R.; Rosenthal, R. Tracking the Evolution of Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2017, 376, 2109–2121. [Google Scholar] [CrossRef]
- Passaro, A.; Jänne, P.A.; Mok, T.; Peters, S. Overcoming therapy resistance in EGFR-mutant lung cancer. Nat. Cancer 2021, 2, 377–391. [Google Scholar] [CrossRef]
- Russo, A.; Cardona, A.F.; Caglevic, C.; Manca, P.; Ruiz-Patiño, A.; Arrieta, O.; Rolfo, C. Overcoming TKI resistance in fusion-driven NSCLC: New generation inhibitors and rationale for combination strategies. Transl. Lung Cancer Res. 2020, 9, 2581–2598. [Google Scholar] [CrossRef]
- Gillette, M.A.; Satpathy, S.; Cao, S.; Dhanasekaran, S.M.; Vasaikar, S.V.; Krug, K.; Petralia, F.; Li, Y.; Liang, W.W.; Reva, B.; et al. Proteogenomic Characterization Reveals Therapeutic Vulnerabilities in Lung Adenocarcinoma. Cell 2020, 182, 200–225.e35. [Google Scholar] [CrossRef]
Drug Name | Mechanism of Action | Clinical Trial | Phase | Study Design | Target Group | Status | Preliminary Result |
---|---|---|---|---|---|---|---|
Lazertinib | EGFR TKI | NCT03046992 | I/II | Monotherapy | EGFR T790M+ NSCLC progressed after TKI | Active, not recruiting | n = 127, ORR 54% |
NCT03046992, additional cohort C | I/II | Monotherapy | First-line therapy in EGFRm + NSCLC | Active, not recruiting | n = 43, ORR 70%, mPFS 24.6mo | ||
NCT04248829 (LASER301) | III | Monotherapy | First-line treatment in advanced EGFRm + NSCLC | Active, not recruiting | |||
Amivantamab | EGFR-MET bispecific antibody | NCT04077463 (CHRYSALIS-2) | I | Combination with lazertnib | EGFRm+ NSCLC progressed after TKI | Recruiting | n = 116, ORR 32% |
NCT02609776 (CHRYSALIS) | I | Combination with lazertnib | First-line treatment in advanced EGFRm + NSCLC | Recruiting | n = 20, ORR 100% | ||
NCT04487080 (MARIPOSA) | III | Combination with lazertnib | First-line treatment in advanced EGFRm + NSCLC | Active, not recruiting | |||
Aumolertinib | Third generation EGFR TKI | NCT02981108 (APOLLO) | I/II | Monotherapy | EGFR T790M + NSCLC progressed after TKI | Active, not recruiting | n = 244, ORR 68.9%, mPFS 12.4mo |
ChiCTR2100044216 | I/II | Combination with icotinib | First-line therapy in EGFRm + NSCLC with brain metastasis | n = 12, ORR 100% | |||
BLU-945 | EGFR TKI | NCT04862780 (SYMPHONY) | I/II | Monotherapy, or combination with osimertinib | EGFRm + NSCLC progressed after TKI | Recruiting | |
BBT-176 | Fourth generation EGFR TKI against C797S mutation | NCT04820023 | I/II | Monotherapy | EGFRm + NSCLC progressed after TKI | Recruiting | |
BLU-701 | EGFR TKI against C797S mutation | NCT05153408 (HARMONY) | I/II | Monotherapy, or combination with osimertinib or chemotherapy | EGFRm + NSCLC progressed after TKI | Recruiting | |
Necitumumab | EGFR monoclonal antibody | NCT02496663 | I | Combination with osimertinib | EGFRm + NSCLC progressed after TKI | Active, not recruiting | n = 101, ORR 19% |
Sunvozertinib | EGFR ex20ins inhibitor | NCT03974022 and CTR20192097 (WU-KONG1 and 2) | I/II | Monotherapy | EGFR ex20ins + NSCLC progressed after platinum-based chemotherapy | Recruiting | n = 119, ORR 52.4% |
CTR20211009 (WU-KONG6) | II | Monotherapy | EGFR ex20ins + NSCLC progressed after platinum-based chemotherapy | n = 97, ORR 59.8% | |||
CLN-081 | EGFR ex20ins inhibitor | NCT04036682 | I/II | Monotherapy | EGFR ex20ins + NSCLC progressed after prior therapy | Recruiting | At optimal dose, n = 39, ORR 41%, mPFS 12mo |
BLU-451 | EGFR ex20ins inhibitor | NCT05241873 | I/II | Monotherapy | EGFR ex20ins + NSCLC progressed after platinum-based chemotherapy | Recruiting |
Drug Name | Mechanism of Action | Clinical Trial | Phase | Study Design | Target Group | Status | Preliminary Result |
---|---|---|---|---|---|---|---|
Patritumab deruxtecan | Anti-HER3 antibody-drug conjugate | NCT03260491 | I | Monotherapy | EGFRm + NSCLC progressed after TKI | Recruiting | n = 57, ORR 39%, mPFS 8.2mo |
NCT03260491, cohort 2 | I | Monotherapy | EGFR wild-type NSCLC progressed after chemotherapy +/− immunotherapy | Recruiting | n = 47, ORR 28%, mPFS 5.4mo | ||
NCT04619004 (HERTHENA-Lung01) | II | Monotherapy | EGFRm + NSCLC progressed after TKI | Recruiting | |||
Anlotinib | Multi-targeting TKI | NCT04770688 | I/II | Combination with osimertinib | First-line therapy in EGFRm + NSCLC | Recruiting | n = 25, ORR 65.2%, DCR 95.7% |
Alisertib | Aurora kinase inhibitor | NCT04479306 | I | Combination with osimertinib | EGFRm + NSCLC progressed after TKI | Active, not recruiting | No meaningful clinical efficacy |
Sapanisertib | mTOR inhibitor | NCT04479306 | I | Combination with osimertinib | EGFRm + NSCLC progressed after TKI | Active, not recruiting | ORR 12.5%, DCR 68.7%, mPFS 4.6mo |
Necitumumab and trastuzumab | HER2 monoclonal antibody | NCT04285671 | I/II | Combination with osimertinib | EGFRm + NSCLC progressed after osimertinib | Recruiting | 5 of 10 patients achieved tumor size reduction |
Repotrectinib | ROS1/TRK/ALK Inhibitor | NCT04772235 | I | Combination with osimertinib | Advanced EGFRm+ NSCLC | Recruiting | |
SAF-189s | ALK inhibitor | NCT04237805 | I/II | Monotherapy | ALK-altered NSCLC with/without prior ALK inhibitor | Recruiting | ORR 92.3% and 65.4% in ALKi-naive and ALKi-pretreated, respectively |
APG-2449 | ALK/ROS1/FAK TKI | NCT03917043 | I | Monotherapy | ALK-altered NSCLC with/without prior therapy | Recruiting | 4 of 14 patients resistant to 2nd-gen TKIs achieved PR |
Taletrectinib | ROS1 inhibitor | NCT04395677 | II | Monotherapy | ROS1-positive, TKI-naïve, NSCLC | Recruiting | n = 40, ORR of 90% |
NVL-520 | ROS1 inhibitor | NCT05118789 (ARROS-1) | I/II | Monotherapy | ROS1-positive solid tumors, progressed after ROS1 TKI | Recruiting | n = 21, ORR of 48% |
GDC-6036 | KRAS G12C inhibitor | NCT04449874 | I | Monotherapy | KRAS G12C + NSCLC, progressed after prior therapy | Recruiting | n = 57, ORR 53% |
NCT03178552 (BFAST), cohort G | II/III | Monotherapy | KRAS G12C + NSCLC, progressed after prior therapy | Recruiting | |||
D-1553 | KRAS G12C inhibitor | NCT05383898 | I/II | Monotherapy | KRAS G12C + NSCLC, progressed after prior therapy | Recruiting | n = 79, ORR 37.8%, mPFS 7.6mo |
ASTX029 | ERK inhibitor | NCT03520075 | I/II | Monotherapy | advanced solid tumors refractory to available therapies | Recruiting | 3 of 12 NSCLC patients achieved durable PR |
VS-6766 | Dual MEK and RAF inhibitor | NCT02407509 | I | Monotherapy or combination with everolimus | Advanced solid tumors or multiple myeloma harboring RAS-RAF-MEK pathway mutations | Recruiting | In monotherapy cohort, 3 of 10 KRASm+ NSCLC achieved PR; in combination cohort, 2 patients with G12D+ had PFS 35.8mo and 41.8mo |
NCT03875820 (FRAME) | I | Combination with defactinib | RAS or RAF mutant advanced solid tumors refractory to conventional treatment | Recruiting | ORR 15%, DCR 65% | ||
NCT04620330 (RAMP 202) | III | Monotherapy or combination with defactinib | KRAS or BRAF mutant NSCLC progressed after prior therapy | Recruiting | |||
NCT05074810 (RAMP 203) | I/II | Combination with sotoracib | KRAS G12C+ NSCLC with/without prior G12C inhibitors | Recruiting | |||
Trastuzumab deruxtecan (T-DXd) | Anti-HER2 antibody-drug conjugate | NCT05048797 (DESTINY-Lung04) | III | Monotherapy | First-line therapy for HER2m + advanced NSCLC | Recruiting | |
BI 1810631 | Selective HER2 inhibitor | NCT04886804 | I | Monotherapy | HER2-altered advanced solid tumors progressed after available therapies | Recruiting | |
Telisotuzumab vedotin | Anti-MET antibody-drug conjugate | NCT03539536 (LUMINOSITY) | II | Monotherapy | Advanced MET-overexpressing NSCLC received less than two prior therapies | Recruiting | n = 122, ORR 36.5% in non-squamous EGFR wild-type cohort |
REGN5093-M114 | Anti-MET antibody-drug conjugate | NCT04982224 | I/II | Monotherapy | Advanced MET-overexpressing NSCLC progressed after current therapies | Recruiting | |
BGB324 (bemcentinib) | Selective AXL inhibitor | NCT05469178 | I/II | Combination of with chemo-immunotherapy | First-line therapy for non-squamous NSCLC with STK11 mutation | Not yet recruiting | |
NCT02922777 | I | Combination with docetaxel | Advanced NSCLC progressed after prior therapy | Active, not recruiting | n = 21, PR 27% | ||
Nadunolimab (CAN04) | Anti-1L1RAP antibody | NCT03267316 (CANFOUR) | I/II | Combination with cisplatin and gemcitabine | Advanced NSCLC treatment-naïve or progressed after pembrolizumab | Recruiting | n = 33, ORR 53%, PFS 6.8mo |
Telaglenastat (CB-839) | Glutaminase inhibitor | NCT04250545 | I | Combination with mTOR inhibitor sapanisertib | Advanced NSCLC progressed after prior therapy | Suspended (pending dose update) | 5 of 8 patients had tumor shrinkage |
MTB-9655 | ACSS2 inhibitor | NCT04990739 | I | Monotherapy | Advanced solid tumors failed standard treatment | Recruiting | |
Pemigatinib | FGFR1-3 inhibitor | NCT05253807 | II | Monotherapy | Advanced FGFR + NSCLC progressed after available therapies | Recruiting | |
Futibatinib | FGFR1-4 inhibitor | NCT04965818 | I/II | Combination with MEKi binimetinib | Advanced solid tumors failed standard treatment | Active, not re-cruiting |
Drug Name | Mechanism of Action | Clinical Trial | Phase | Study Design | Target Group | Status | Preliminary Result |
---|---|---|---|---|---|---|---|
CBP-1018 | FOLR1 and PSMA bi-ligand drug conjugate | NCT04928612 | I | Monotherapy | LSCC and other solid tumor patients with relapse on prior lines of therapy | Recruiting | |
Berzosertib | ATR inhibitor | NCT04216316 | I/II | Combination with carboplatin, gemcitabine, and pembrolizumab | LSCC patients that are chemotherapy-naive | Recruiting | |
Rogaritinib | Pan-FGFR inhibitor | NCT03762122 | II | Monotherapy | Advanced and pretreated LSCC with FGFR1-3 mRNA overexpression | Terminated | mPFS 1.6mo mOS 3.5mo |
ZEN003694 | BET inhibitor | NCT05607108 | II | Monotherapy | Recurrent or metastatic LSCC with NSD3 amplification | Recruiting | |
Copanlisib | Pan-class I PI3K inhibitor | NCT03735628 | I/II | Combination with nivolumab | Advanced solid tumors | Active, recruiting phase completed | Disease control rate: 75% |
Gedatolisib | PI3K/mTOR inhibitor | NCT03065062 | I | Combination with palbociclib | Advanced LSCC and other solid tumors | Recruiting |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; de Camargo Correia, G.S.; Wang, J.; Manochakian, R.; Zhao, Y.; Lou, Y. Emerging Targeted Therapies in Advanced Non-Small-Cell Lung Cancer. Cancers 2023, 15, 2899. https://doi.org/10.3390/cancers15112899
Li S, de Camargo Correia GS, Wang J, Manochakian R, Zhao Y, Lou Y. Emerging Targeted Therapies in Advanced Non-Small-Cell Lung Cancer. Cancers. 2023; 15(11):2899. https://doi.org/10.3390/cancers15112899
Chicago/Turabian StyleLi, Shenduo, Guilherme Sacchi de Camargo Correia, Jing Wang, Rami Manochakian, Yujie Zhao, and Yanyan Lou. 2023. "Emerging Targeted Therapies in Advanced Non-Small-Cell Lung Cancer" Cancers 15, no. 11: 2899. https://doi.org/10.3390/cancers15112899
APA StyleLi, S., de Camargo Correia, G. S., Wang, J., Manochakian, R., Zhao, Y., & Lou, Y. (2023). Emerging Targeted Therapies in Advanced Non-Small-Cell Lung Cancer. Cancers, 15(11), 2899. https://doi.org/10.3390/cancers15112899