Efficacy and Safety of First-Line Targeted Treatment and Immunotherapy for Patients with Biliary Tract Cancer: A Systematic Review and Meta-Analysis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Study Design
2.2. Inclusion Criteria for Study Selection
2.2.1. Types of Studies
2.2.2. Population
2.2.3. Interventions
2.2.4. Outcome Measures
Primary Outcomes
Secondary Outcomes
2.3. Data Sources and Search Strategy
2.4. Literature Selection
2.5. Data Extraction
2.6. Quality Assessment
2.7. Statistical Analysis
3. Results
3.1. Study Inclusion
3.2. Characteristics of the Included Studies
3.2.1. Targeted Therapies
No. | Study | Phase | pts | Location | Intervention | Dose | Chemotherapy | Mean Age | Gender | Race |
---|---|---|---|---|---|---|---|---|---|---|
1 | Khoueiry (2012) [24] | II | 31 | US | Sorafenib | 400 mg po twice daily continuously. | NA | 57.8 (33–81) | male: 15 (48%) |
|
2 | Khoueiry (2014) [25] | II | 34 | US | Sorafenib | 400 mg BID and 100 mg daily | NA | 63 | male: 13 (38%) |
|
3 | Hezel (2014) [26] | II | 31 | US | Panitumumab | 6 mg/kg | GEMOX | NA | NA | NA |
4 | Santoro (2015) [21] | II | 173 | Italy | Vandetanib | Vandetanib (300 mg or 100 mg) or placebo was given in single oral daily doses. | Gemcitabine | 63.6 (sd: 9.5) | male: 81 (46.8) |
|
5 | Zhu (2010) [25] | II | 35 | US | Bevacizumab | 10 m g/kg | GEMOX | NA | NA | NA |
6 | Gruenberger (2010) [27] | II | 30 | Austria | Cetuximab | 500 mg/m2 | GEMOX | median age: 68 years (IQR 62–73) | NA | NA |
7 | Lau (2018) [28] | II | 27 | Australia | Everolimus | 10 mg/d | NA | NA | NA | NA |
8 | Malka (2014) [29] | II | 150 | France | Cetuximab | GEMOX | NA | NA | NA | |
9 | Sohal (2013) [30] | II | 35 | US | Panitumumab | 9 mg/kg | Gemcitabine Irinotecan | NA | NA | NA |
10 | Borbath (2013) [31] | II | 44 | Multi- center | Cetuximab | 400 mg/m2 at week 1, then 250 mg/m2/week | GEM | median age: 61.5 | NA | NA |
11 | Lee (2013) [32] | II | 39 | US | Sorafenib | 400 mg twice daily | GEMCIS | NA | NA | NA |
12 | Lee (2012) [33] | III | −135 −133 | Korea | Erlotinib | GEMOX | chemotherapy alone: 61 (55–68) C + T: 59 (54–66) | male: A: 79 (59%) B: 91 (67%) | NA | |
13 | Chen (2015) [34] | II | −62 −60 | Taiwan | Cetuximab | C-GEMOX (500 mg/m2 cetuximab plus GEMOX) every 2 weeks | GEMOX | C-GEMOX: 61 (32–78) GEMOX: 59 (32–80) | male: C-GEMOX: 28 (45%) GEMOX: 30 (50%) | NA |
14 | Valle (2015) [22] | II | 62 | Multi -center | Cediranib | GEMCIS | NA | NA | NA | |
15 | Valle (2020) [20] | II | 106 102 101 | Multi -center | Ramucirumab | GEMCIS | NA | NA | NA | |
16 | Jensen (2012) [35] | II | 46 | Denmark | Panitumumab | GEMOX | NA | NA | NA | |
17 | Leone (2016) [36] | II | 45 44 | Italy | Panitumumab | GEMOX | NA | NA | NA | |
18 | Lowery (2019) [37] | II | 41 | US | Binimetinib | 45 mg orally twice daily | GEMCIS | 66 (45–83) | male: 21 (51.2%) | NA |
19 | Moehler (2014) [23] | II | 102 | Germany | Sorafenib | 400 mg bid orally continuously | GEM | Sorafenib: 64.0 placebo: 64.5 | sorafenib: male: 20 Gemcitabine: male: 23 |
|
20 | Iyer (2018) [38] | II | 50 | Multi -center | Bevacizumab | Gemcitabine Capecitabine | NA | NA | NA | |
21 | Lubner (2010) [39] | II | 53 | Multi -center | Bevacizumab Erlotinib | NA | 63 (31–87) | male: 23 (43%) | NA | |
22 | Vogel (2018) [40] | II | −62 −28 | Germany | Panitumumab | 9 mg/kg BW at day 1 | GEMCIS | NA | NA |
|
3.2.2. Immunotherapies
3.3. Quality Assessment
3.4. Systematic Review
3.4.1. Targeted Therapies
3.4.2. Immunotherapies
3.4.3. Combined Therapies
3.5. Meta-Analysis for OS
3.5.1. Meta-Analysis for OS of Targeted Therapy
3.5.2. Meta-Analysis for OS of Immunotherapy
3.6. Meta-Analysis for PFS
3.6.1. Meta-Analysis for PFS of Targeted Therapies
3.6.2. Meta-Analysis of PFS of Immunotherapies
3.7. Meta-Analysis of ORR
3.8. Meta-Analysis of DCR
3.9. Treatment-Related Adverse Events
3.9.1. TRAE of Targeted Therapies
3.9.2. TRAE of Immunotherapies
3.9.3. TRAE of Combined Therapies
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Full Search Strategy for PubMed
Appendix A.2. Full Search Strategy for Web of Science
Appendix A.3. Full Search Strategy for Web of Embase
Appendix A.4. Full Search Strategy for Cochrane
References
- Altekruse, S.F.; Devesa, S.S.; Dickie, L.A.; McGlynn, K.A.; Kleiner, D.E. Histological classification of liver and intrahepatic bile duct cancers in SEER registries. J. Regist. Manag. 2011, 38, 201–205. [Google Scholar]
- Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin. 2015, 65, 87–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, K.J.; Jabbour, S.; Parekh, N.; Lin, Y.; Moss, R.A. Increasing mortality in the United States from cholangiocarcinoma: An analysis of the National Center for Health Statistics Database. BMC Gastroenterol. 2016, 16, 117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valle, J.; Wasan, H.; Palmer, D.H.; Cunningham, D.; Anthoney, A.; Maraveyas, A.; Madhusudan, S.; Iveson, T.; Hughes, S.; Pereira, S.P.; et al. Cisplatin plus Gemcitabine versus Gemcitabine for Biliary Tract Cancer. N. Engl. J. Med. 2010, 362, 1273–1281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vogel, A.; Bathon, M.; Saborowski, A. Immunotherapies in clinical development for biliary tract cancer. Expert Opin. Investig. Drugs 2020, 30, 351–363. [Google Scholar] [CrossRef] [PubMed]
- Valle, J.W.; Lamarca, A.; Goyal, L.; Barriuso, J.; Zhu, A.X. New Horizons for Precision Medicine in Biliary Tract CancersPrecision Medicine in BTC. Cancer Discov. 2017, 7, 943–962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahn, D.H.; Bekaii-Saab, T. Biliary cancer: Intrahepatic cholangiocarcinoma vs. extrahepatic cholangiocarcinoma vs. gallbladder cancers: Classification and therapeutic implications. J. Gastrointest. Oncol. 2017, 8, 293–301. [Google Scholar] [CrossRef] [Green Version]
- Kang, S.; El-Rayes, B.F.; Akce, M. Evolving Role of Immunotherapy in Advanced Biliary Tract Cancers. Cancers 2022, 14, 1748. [Google Scholar] [CrossRef]
- Jiang, Y.; Zeng, Z.; Zeng, J.; Liu, C.; Qiu, J.; Li, Y.; Tang, J.; Mo, N.; Du, L.; Ma, J. Efficacy and Safety of First-Line Chemotherapies for Patients With Advanced Biliary Tract Carcinoma: A Systematic Review and Network Meta-Analysis. Front. Oncol. 2021, 11, 3739. [Google Scholar] [CrossRef]
- Rizzo, A.; Frega, G.; Ricci, A.D.; Palloni, A.; Abbati, F.; De Lorenzo, S.; Deserti, M.; Tavolari, S.; Brandi, G. Anti-EGFR Monoclonal Antibodies in Advanced Biliary Tract Cancer: A Systematic Review and Meta-analysis. Vivo 2020, 34, 479–488. [Google Scholar] [CrossRef] [Green Version]
- Mavros, M.N.; Economopoulos, K.P.; Alexiou, V.G.; Pawlik, T.M. Treatment and Prognosis for Patients With Intrahepatic Cholangiocarcinoma: Systematic Review and Meta-analysis. JAMA Surg. 2014, 149, 565–574. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Syst. Rev. 2021, 89, 105906. [Google Scholar]
- Methley, A.M.; Campbell, S.; Chew-Graham, C.; McNally, R.; Cheraghi-Sohi, S. PICO, PICOS and SPIDER: A comparison study of specificity and sensitivity in three search tools for qualitative systematic reviews. BMC Health Serv. Res. 2014, 14, 579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, A.B.; Hoogstraten, B.; Staquet, M.; Winkler, A. Reporting results of cancer treatment. Cancer 1981, 47, 207–214. [Google Scholar] [CrossRef]
- Higgins, J.P.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V.A. Cochrane Handbook for Systematic Reviews of Interventions; John Wiley & Sons: New York, NY, USA, 2019. [Google Scholar]
- Sterne, J.A.C.; Hernán, M.A.; Reeves, B.C.; Savović, J.; Berkman, N.D.; Viswanathan, M.; Henry, D.; Altman, D.G.; Ansari, M.T.; Boutron, I.; et al. ROBINS-I: A tool for assessing risk of bias in non-randomised studies of interventions. BMJ 2016, 355, i4919. [Google Scholar] [CrossRef] [Green Version]
- Stang, A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomised studies in meta-analyses. Eur. J. Epidemiol. 2010, 25, 603–605. [Google Scholar] [CrossRef] [Green Version]
- Balduzzi, S.; Rücker, G.; Schwarzer, G. How to perform a meta-analysis with R: A practical tutorial. Évid. Based Ment. Health 2019, 22, 153–160. [Google Scholar] [CrossRef] [Green Version]
- Sterne, J.A.C.; Sutton, A.J.; Ioannidis, J.P.A.; Terrin, N.; Jones, D.R.; Lau, J.; Carpenter, J.; Rücker, G.; Harbord, R.M.; Schmid, C.H.; et al. Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. BMJ 2011, 343, d4002. [Google Scholar] [CrossRef] [Green Version]
- Valle, J.; Kelley, R.; Furuse, J.; Edeline, J.; Finn, R.; Ren, Z.; Su, S.-C.; Malhotra, U.; Siegel, A.; Vogel, A. 78TiP KEYNOTE-966 trial in progress: Pembrolizumab plus gemcitabine and cisplatin for advanced biliary tract cancer. Ann. Oncol. 2020, 31, S270–S271. [Google Scholar] [CrossRef]
- Santoro, A.; Gebbia, V.; Pressiani, T.; Testa, A.; Personeni, N.; Bajardi, E.A.; Foa, P.; Buonadonna, A.; Bencardino, K.; Barone, C.; et al. A randomized, multicenter, phase II study of vandetanib monotherapy versus vandetanib in combination with gemcitabine versus gemcitabine plus placebo in subjects with advanced biliary tract cancer: The VanGogh study. Ann. Oncol. 2014, 26, 542–547. [Google Scholar] [CrossRef]
- Valle, J.W.; Wasan, H.; Lopes, A.; Backen, A.C.; Palmer, D.H.; Morris, K.; Duggan, M.; Cunningham, D.; Anthoney, D.A.; Corrie, P.; et al. Cediranib or placebo in combination with cisplatin and gemcitabine chemotherapy for patients with advanced biliary tract cancer (ABC-03): A randomised phase 2 trial. Lancet Oncol. 2015, 16, 967–978. [Google Scholar] [CrossRef] [PubMed]
- Moehler, M.; Maderer, A.; Schimanski, C.; Kanzler, S.; Denzer, U.; Kolligs, F.; Ebert, M.; Distelrath, A.; Geissler, M.; Trojan, J.; et al. Gemcitabine plus sorafenib versus gemcitabine alone in advanced biliary tract cancer: A double-blind placebo-controlled multicentre phase II AIO study with biomarker and serum programme. Eur. J. Cancer 2014, 50, 3125–3135. [Google Scholar] [CrossRef] [PubMed]
- El-Khoueiry, A.B.; Rankin, C.J.; Ben-Josef, E.; Lenz, H.-J.; Gold, P.J.; Hamilton, R.D.; Govindarajan, R.; Eng, C.; Blanke, C.D. SWOG 0514: A phase II study of sorafenib in patients with unresectable or metastatic gallbladder carcinoma and cholangiocarcinoma. Investig. New Drugs 2011, 30, 1646–1651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Khoueiry, A.B.; Rankin, C.; Siegel, A.B.; Iqbal, S.; Gong, I.-Y.; Micetich, K.; Kayaleh, O.R.; Lenz, H.-J.; Blanke, C.D. S0941: A phase 2 SWOG study of sorafenib and erlotinib in patients with advanced gallbladder carcinoma or cholangiocarcinoma. Br. J. Cancer 2014, 110, 882–887. [Google Scholar] [CrossRef]
- Hezel, A.F.; Noel, M.S.; Allen, J.N.; A Abrams, T.; Yurgelun, M.B.; E Faris, J.; Goyal, L.K.; Clark, J.W.; Blaszkowsky, L.S.; E Murphy, J.; et al. Phase II study of gemcitabine, oxaliplatin in combination with panitumumab in KRAS wild-type unresectable or metastatic biliary tract and gallbladder cancer. Br. J. Cancer 2014, 111, 430–436. [Google Scholar] [CrossRef]
- Gruenberger, B.; Schueller, J.; Heubrandtner, U.; Wrba, F.; Tamandl, D.; Kaczirek, K.; Roka, R.; Freimann-Pircher, S.; Gruenberger, T. Cetuximab, gemcitabine, and oxaliplatin in patients with unresectable advanced or metastatic biliary tract cancer: A phase 2 study. Lancet Oncol. 2010, 11, 1142–1148. [Google Scholar] [CrossRef]
- Lau, D.K.; Tay, R.Y.; Yeung, Y.H.; Chionh, F.; Mooi, J.; Murone, C.; Skrinos, E.; Price, T.J.; Mariadason, J.M.; Tebbutt, N.C. Phase II study of everolimus (RAD001) monotherapy as first-line treatment in advanced biliary tract cancer with biomarker exploration: The RADiChol Study. Br. J. Cancer 2018, 118, 966–971. [Google Scholar] [CrossRef] [Green Version]
- Malka, D.; Cervera, P.; Foulon, S.; Trarbach, T.; de la Fouchardière, C.; Boucher, E.; Fartoux, L.; Faivre, S.; Blanc, J.-F.; Viret, F.; et al. Gemcitabine and oxaliplatin with or without cetuximab in advanced biliary-tract cancer (BINGO): A randomised, open-label, non-comparative phase 2 trial. Lancet Oncol. 2014, 15, 819–828. [Google Scholar] [CrossRef]
- Sohal, D.; Mykulowycz, K.; Uehara, T.; Teitelbaum, U.; Damjanov, N.; Giantonio, B.; Carberry, M.; Wissel, P.; Jacobs-Small, M.; O’Dwyer, P.; et al. A phase II trial of gemcitabine, irinotecan and panitumumab in advanced cholangiocarcinoma. Ann. Oncol. 2013, 24, 3061–3065. [Google Scholar] [CrossRef]
- Borbath, I.; Ceratti, A.; Verslype, C.; Demols, A.; Delaunoit, T.; Laurent, S.; Deleporte, A.; Vergauwe, P.; Van Maanen, A.; Sempoux, C.; et al. Combination of gemcitabine and cetuximab in patients with advanced cholangiocarcinoma: A phase II study of the Belgian Group of Digestive Oncology. Ann. Oncol. 2013, 24, 2824–2829. [Google Scholar] [CrossRef]
- Lee, J.K.; Capanu, M.; O’Reilly, E.M.; Ma, J.; Chou, J.F.; Shia, J.; Katz, S.; Gansukh, B.; Reidylagunes, D.; Segal, N.H.; et al. A phase II study of gemcitabine and cisplatin plus sorafenib in patients with advanced biliary adenocarcinomas. Br. J. Cancer 2013, 109, 915–919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.; Park, S.H.; Chang, H.M.; Kim, J.S.; Choi, H.J.; Lee, M.A.; Jang, J.S.; Jeung, H.C.; Kang, J.H.; Lee, H.W.; et al. Gemcitabine and oxaliplatin with or without erlotinib in advanced biliary-tract cancer: A multicentre, open-label, randomised, phase 3 study. Lancet Oncol. 2012, 13, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.S.; Hsu, C.; Chiang, N.J.; Tsai, C.S.; Tsou, H.H.; Huang, S.F.; Bai, L.Y.; Chang, I.C.; Shiah, H.S.; Ho, C.L.; et al. A KRAS mutation status-stratified randomized phase II trial of gemcitabine and oxaliplatin alone or in combination with cetuximab in advanced biliary tract cancer. Ann. Oncol. 2015, 26, 943–949. [Google Scholar] [CrossRef] [PubMed]
- Jensen, L.; Lindebjerg, J.; Ploen, J.; Hansen, T.; Jakobsen, A. Phase II marker-driven trial of panitumumab and chemotherapy in KRAS wild-type biliary tract cancer. Ann. Oncol. 2012, 23, 2341–2346. [Google Scholar] [CrossRef] [PubMed]
- Leone, F.; Marino, D.; Cereda, S.; Filippi, R.; Belli, C.; Spadi, R.; Nasti, G.; Montano, M.; Amatu, A.; Aprile, G.; et al. Panitumumab in combination with gemcitabine and oxaliplatin does not prolong survival in wild-type KRAS advanced biliary tract cancer: A randomized phase 2 trial (V ecti-BIL study). Cancer 2016, 122, 574–581. [Google Scholar] [CrossRef] [PubMed]
- Lowery, M.A.; Bradley, M.; Chou, J.F.; Capanu, M.; Gerst, S.; Harding, J.J.; El Dika, I.; Berger, M.; Zehir, A.; Ptashkin, R.; et al. Binimetinib plus Gemcitabine and Cisplatin Phase I/II Trial in Patients with Advanced Biliary Cancers. Clin. Cancer Res. 2019, 25, 937–945. [Google Scholar] [CrossRef] [Green Version]
- Iyer, R.V.; Pokuri, V.K.; Groman, A.; Ma, W.W.; Malhotra, U.; Iancu, D.M.; Grande, C.; Saab, T.B. A Multicenter Phase II Study of Gemcitabine, Capecitabine, and Bevacizumab for Locally Advanced or Metastatic Biliary Tract Cancer. Am. J. Clin. Oncol. 2018, 41, 649–655. [Google Scholar] [CrossRef]
- Lubner, S.J.; Mahoney, M.R.; Kolesar, J.L.; LoConte, N.K.; Kim, G.P.; Pitot, H.C.; Philip, P.A.; Picus, J.; Yong, W.-P.; Horvath, L.; et al. Report of a Multicenter Phase II Trial Testing a Combination of Biweekly Bevacizumab and Daily Erlotinib in Patients With Unresectable Biliary Cancer: A Phase II Consortium Study. J. Clin. Oncol. 2010, 28, 3491–3497. [Google Scholar] [CrossRef] [Green Version]
- Vogel, A.; Kasper, S.; Bitzer, M.; Block, A.; Sinn, M.; Schulze-Bergkamen, H.; Moehler, M.; Pfarr, N.; Endris, V.; Goeppert, B.; et al. PICCA study: Panitumumab in combination with cisplatin/gemcitabine chemotherapy in KRAS wild-type patients with biliary cancer—a randomised biomarker-driven clinical phase II AIO study. Eur. J. Cancer 2018, 92, 11–19. [Google Scholar] [CrossRef]
- Oh, D.-Y.; de Braud, F.; Bridgewater, J.; Furuse, J.; Hsu, C.-H.; Ikeda, M.; Javle, M.; Moehler, M.; Park, J.; Shen, L.; et al. 79TiP A phase II/III, randomized, placebo-controlled study of bintrafusp alfa with gemcitabine plus cisplatin as first-line treatment of biliary tract cancer. Ann. Oncol. 2020, 31, S271–S272. [Google Scholar] [CrossRef]
- Oh, D.-Y.; Lee, K.-H.; Lee, D.-W.; Yoon, J.; Kim, T.-Y.; Bang, J.-H.; Nam, A.-R.; Oh, K.-S.; Kim, J.-M.; Lee, Y.; et al. Gemcitabine and cisplatin plus durvalumab with or without tremelimumab in chemotherapy-naive patients with advanced biliary tract cancer: An open-label, single-centre, phase 2 study. Lancet Gastroenterol. Hepatol. 2022, 7, 522–532. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Huang, S.; Chen, J.; Yu, F.; Zhang, L.; Xiang, X.; Deng, J.; Fang, Z.; Li, J.; Xiong, J. An Assessment of Combination of the Camrelizumab With Chemotherapy in Metastatic Biliary Tract Cancers. Cancer Control 2021, 28, 10732748211017165. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; Ma, J.; Han, C.; Wang, J.; Qian, Y.; Chen, G.; Li, X.; Zhang, J.; Song, J.; Zhao, X.; et al. Anti-PD-1 therapy combined with chemotherapy or target therapy in patients with advanced biliary tract cancer in real-world clinical setting. Ann. Oncol. 2018, 29, viii437. [Google Scholar] [CrossRef]
- Gou, M.; Zhang, Y.; Liu, T.; Si, H.; Wang, Z.; Yan, H.; Qian, N.; Dai, G. PD-1 Inhibitors Could Improve the Efficacy of Chemotherapy as First-Line Treatment in Biliary Tract Cancers: A Propensity Score Matching Based Analysis. Front. Oncol. 2021, 11, 2202. [Google Scholar] [CrossRef]
- Oh, D.Y.; Lee, K.H.; Lee, D.W.; Kim, T.Y.; Bang, J.H.; Nam, A.R.; Lee, Y.; Zhang, Q.; Rebelatto, M.; Li, W.; et al. Phase II study assessing tolerability, efficacy, and biomarkers for durvalumab (D) ± tremelimumab (T) and gemcitabine/cisplatin (GemCis) in chemo-naïve advanced biliary tract cancer (aBTC). J. Clin. Oncol. 2020, 38, 4520. [Google Scholar] [CrossRef]
- Chen, X.; Wu, X.; Wu, H.; Gu, Y.; Shao, Y.; Shao, Q.; Zhu, F.; Li, X.; Qian, X.; Hu, J.; et al. Camrelizumab plus gemcitabine and oxaliplatin (GEMOX) in patients with advanced biliary tract cancer: A single-arm, open-label, phase II trial. J. Immunother. Cancer 2020, 8, e001240. [Google Scholar] [CrossRef]
- Chiang, N.-J.; Bai, L.-Y.; Huang, C.-J.; Chen, S.-C.; Hsiao, C.-F.; Shan, Y.-S.; Su, Y.-Y.; Chen, L.; Chen, M.-H. 49P A phase II trial of nivolumab and gemcitabine and S-1 as the first-line treatment in patients with advanced biliary tract cancer. Ann. Oncol. 2021, 32, S377. [Google Scholar] [CrossRef]
- Sahai, V.; Griffith, K.A.; Beg, M.S.; Shaib, W.L.; Mahalingam, D.; Zhen, D.B.; Deming, D.A.; Dey, S.; Mendiratta-Lala, M.; Zalupski, M. A multicenter randomised phase II study of nivolumab in combination with gemcitabine/cisplatin or ipilimumab as first-line therapy for patients with advanced unresectable biliary tract cancer (BilT-01). J. Clin. Oncol. 2020, 38, 4582. [Google Scholar] [CrossRef]
- Oh, D.-Y.; Chen, L.-T.; He, A.; Okusaka, T.; Qin, S.; Chin, S.; Rokutanda, N.; Uchinda, H.; Vogel, A.; Valle, J.; et al. A phase III, randomized, double-blind, placebo-controlled, international study of durvalumab in combination with gemcitabine plus cisplatin for patients with advanced biliary tract cancers: TOPAZ-1. Ann. Oncol. 2019, 30, v319. [Google Scholar] [CrossRef]
- Li, W.; Yu, Y.; Xu, X.; Guo, X.; Wang, Y.; Li, Q.; Wang, Y.; Cui, Y.; Liu, H.; Hao, Q.; et al. Toripalimab with chemotherapy as first-line treatment for advanced biliary tract tumors: Update analytic results of an open-label phase II clinical study (JS001-ZS-BC001). J. Clin. Oncol. 2021, 39, e16170. [Google Scholar] [CrossRef]
- Zhu, A.X.; Meyerhardt, J.A.; Blaszkowsky, L.S.; Kambadakone, A.R.; Muzikansky, A.; Zheng, H.; Clark, J.W.; Abrams, T.A.; Chan, J.A.; Enzinger, P.C.; et al. Efficacy and safety of gemcitabine, oxaliplatin, and bevacizumab in advanced biliary-tract cancers and correlation of changes in 18-fluorodeoxyglucose PET with clinical outcome: A phase 2 study. Lancet Oncol. 2010, 11, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Fan, J.; Shi, G.; Huang, X.; Wu, D.; Yang, G.; Ge, N.; Hou, Y.; Sun, H.; He, Y.; et al. 56P Anti-PD1 antibody toripalimab, lenvatinib and gemox chemotherapy as first-line treatment of advanced and unresectable intrahepatic cholangiocarcinoma: A phase II clinical trial. Ann. Oncol. 2020, 31, S262–S263. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, X.; Wei, S.; Zhang, L.; Tian, Y.; Gao, Z.; Jin, M.; Yan, S. Lenvatinib Plus PD-1 Inhibitors as First-Line Treatment in Patients With Unresectable Biliary Tract Cancer: A Single-Arm, Open-Label, Phase II Study. Front. Oncol. 2021, 11, 751391. [Google Scholar] [CrossRef] [PubMed]
Targets | Drugs |
---|---|
MEK1/2 | Binimetinib |
EGFR | Panitumumab, Cetuximab, Vandetanib, Erlotinib |
VEGF | Bevacizumab, Cediranib, Ramucirumab |
mTOR | Everolimus |
PD-1/PD-L1 | Pembrolizumab, Nivolumab, Bintrafusp, Camrelizumab, Durvalumab |
Multi targets | Sorafenib, Bintrafusp Alfa, Lenvatinib, Toripalimab |
MET | Merestinib |
CTLA-4 | Tremelimumab, Ipilimumab |
Disease Type | Patients |
---|---|
IHC | 694 |
EHC | 235 |
Cholangiocarcinoma | 219 |
Gallbladder Cancer | 384 |
Perihillar | 44 |
Vater ampulla carcinoma | 17 |
Other | 48 |
No. | Study | Phase | Patients | Intervention | Dose | Chemotherapy Type | Age | Gender |
---|---|---|---|---|---|---|---|---|
1 | Yu (2021) [43] | II | 14 | Camrelizumab | Camrelizumab 3 mg/kg d1, Q2 W or Q3 W | different chemotherapy regimens | median age: 50.5 (36–70) | male: 71.43% |
2 | Sun (2018) [44] | II | −15 −22 (C + I) | PD-1 inhibitors | 1 cycle of Gem 1000 mg/m2 + Cis 25 mg/m2 on D1 and D8, followed by GEMCIS + D 1120 mg and T 75 mg, Q3W | Gemcitabine-based (n = 12) Paclitaxel-Albumin-based (n = 4) Oxaliplatin + tegafur (n = 2) Other (n = 1) | average age > 65 | NA |
3 | Gou (2021) [45] | II | −59 −75 (C + I) | PD-1 inhibitors (Pembrolizumab, Nivolumab, Sintilimab, Toripalimab) | SHR-1210 3mg/kg and Gemcitabine 800 mg/m2 will be administered IV Q2W | different chemotherapy regimens | NA | male: 67.2% |
4 | Oh (2020) [46] | II | 121 | Durvalumab (D) ± Tremelimumab (T) | Durvalumab (1500 mg every 3 weeks [Q3W]) or placebo + GEMCIS (Gem 1000 mg/m2 and Cis 25 mg/m2 | GEMCIS | NA | NA |
5 | Chen (2020) [47] | II | 38 | Camrelizumab | GEMOX | NA | NA | |
6 | Chiang (2021) [48] | II | 48 | Nivolumab | Gemcitabine and S-1 | NA | NA | |
7 | Oh (2020) [41] | II | 30 | Bintrafusp alfa | Bintrafusp alfa 1200 mg every 2 weeks | GEMCIS | NA | NA |
8 | Sahai (2020) [49] | II | 71 | Ipilimumab Nivolumab | GEMCIS | median age: 62 (20–80) | male: 49% | |
9 | Oh (2020) [50] | III | −341 −344 (placebo) | Durvalumab | durvalumab (1500 mg every 3 weeks [Q3W]) or placebo + GEMCIS (Gem 1000 mg/m2 and Cis 25 mg/m2 on Days 1 and 8 Q3W) for up to 8 cycles | GEMCIS | 64 | male: 50.4% |
10 | Oh (2022) [42] | II | −30 (chemo) −47 (C + D) −47 (C + D) 47 (C + D + T) | Durvalumab Tremelimumab | Gemcitabine 1000 mg/m2 plus Cisplatin 25 mg/m2 Durvalumab 1120 mg Tremelimumab 75 mg | GEMCIS | median age: 64 years (58–70) | male: 49% |
11 | Li (2021) [51] | II | 15 | Toripalimab | Toripalimab (240 mg intravenously every three weeks) gemcitabine 1000 mg/m2 d1, d8 + S-1 40–60 mg bid D1-14, Q21d | Gemcitabine | median age: 62 years | male: 56% |
Disease Type | 1 [41] | 2 [42] | 3 [43] | 10 [40] | Summary |
---|---|---|---|---|---|
Gallbladder | 2 | 8 | NA | 171 | 181 |
Cholangiocarcinoma | NA | 69 | NA | NA | 69 |
Intrahepatic | 9 | NA | 74 | 377 | 460 |
Extrahepatic | 3 | NA | 60 | 130 | 193 |
Study | R1 * | R2 | R3 | R4 | R5 | R6 | R7 |
---|---|---|---|---|---|---|---|
Khoueiry (2012) [24] | Moderate | Moderate | Moderate | Low | High | High | Low |
Khoueiry (2014) [25] | Low | Moderate | Low | Moderate | High | Moderate | Low |
Hezel (2014) [26] | Moderate | Low | Low | Low | Low | Low | Moderate |
Zhu (2010) [52] | Low | Low | Low | Low | Low | Low | Low |
Gruenberger (2010) [27] | Low | Low | Low | Low | Low | Low | Low |
Lau (2018) [28] | Moderate | Low | Low | Low | Moderate | Low | Low |
Sohal (2013) [30] | Low | Low | Low | Low | Low | Low | Low |
Borbath (2013) [31] | Low | Low | Low | Low | Low | Low | Low |
Lee (2013) [32] | Low | Low | Moderate | Low | Moderate | Low | Low |
Lowery (2019) [37] | Low | Low | Low | Low | Low | Low | Low |
Lubner (2010) [39] | Low | Low | Low | Low | Low | Low | Low |
Yu (2021) [43] | Moderate | Low | Low | Low | Low | Low | Low |
Oh (2020) [50] | Moderate | Moderate | Moderate | Moderate | Moderate | Moderate | Moderate |
Chen (2020) [47] | Low | Low | Low | Low | Low | Low | Low |
Chiang (2021) [48] | Low | Low | Low | Low | Low | Low | Low |
Jensen (2012) [35] | Low | Low | Low | Low | Low | Low | Low |
Moehler (2014) [23] | Low | Low | Low | Low | Low | Moderate | Low |
TRAE | Arm A | Arm B | |||
---|---|---|---|---|---|
Malka-2014 | Cetuximab + GEMOX | GEMOX | J. W. Valle-2015 | Cediranib | placebo |
peripheral neuropathy | 18 | 10 | hypertension | 23 | 13 |
neutropenia | 17 | 11 | diarrhoea | 8 | 2 |
increased aminotransferase | 17 | 10 | platelet count decreased | 10 | 4 |
J. Lee-2012 | GEMOX + Erlotinib | GEMOX | white blood cell decreased | 15 | 7 |
Nausea | 1 | 3 | fatigue | 16 | 7 |
Vomiting | 0 | 4 | neutropenia | 52 | 33 |
Diarrhoea | 5 | 1 | thrombocytopenia | 37 | 17 |
Stomatitis | 1 | 0 | anemia | 29 | 19 |
Constipation | 0 | 0 | J. W. Valle-2020 | Merestinib | placebo |
hand-foot syndrome | 0 | 20 | neutropenia | 48 | 33 |
Neutropenia | 3 | 5 | thrombocytopenia | 17 | 17 |
Thrombocytopenia | 3 | 0 | alanine aminotransferase (ALT) increased | 11 | 5 |
Raised AST | 3 | 4 | J. W. Valle-2020 | Ramucirumab | placebo |
Raised ALT | 3 | 4 | neutropenia | 52 | 33 |
Skin rash | 3 | 0 | thrombocytopenia | 37 | 17 |
Neuropathy | 1 | 0 | anemia | 29 | 5 |
Asthenia | 1 | 2 | Leone. F-2016 | GEMOX + Panitumumab | GEMOX |
Anorexia | 3 | 1 | skin toxicity | 36 | 6 |
Mucositis | 0 | 0 | diarrhea | 25 | 14 |
Pruritus | 0 | 0 | mucositis | 10 | 6 |
J. S. Chen-2015 | C-GEMOX | GEMOX | Constipation | 11 | 7 |
Neutropenia | 11 | 2 | M. Moehler-2014 | gemcitabine + sorafenib | placebo |
Thrombocytopenia | 8 | 2 | Fatigue | 1 | 2 |
Oral mucositis | 2 | 1 | Thrombocytopenia | 4 | 6 |
Diarrhea | 2 | 2 | Hand-foot syndrome | 0 | 7 |
Nausea | 0 | 2 | Diarrhea | 0 | 1 |
Vomiting | 0 | 0 | Leukopenia | 2 | 4 |
Fatigue | 2 | 2 | Rash | 0 | 0 |
ALT increased | 2 | 1 | Oral disorder | 0 | 0 |
Anorexia | 2 | 5 | Nausea | 4 | 2 |
Neuropathy | 5 | 5 | Alopecia | 0 | 0 |
Allergic reaction | 1 | 0 | Anaemia | 1 | 2 |
Skin rash | 27 | 0 | Stomatitis | 0 | 0 |
Vogel. A-2018 | GEMCIS + panitumumab | GEMCIS | Vomiting | 1 | 2 |
Leucopenia | 8 | 13 | Pruritus | 0 | 0 |
Neutropenia | 13 | 26 | Epistaxis | 0 | 0 |
Febrile neutropenia | 0 | 3 | Fever | 1 | 2 |
Thrombopenia | 12 | 18 | Neutropenia | 4 | 2 |
Anemia | 3 | 7 | Obstipation | 0 | 0 |
Dry Skin | 0 | 3 | |||
Nail changes | 0 | 1 | |||
Rash | 0 | 7 | |||
Acne | 0 | 10 | |||
Diarrhea | 0 | 3 | |||
Mucositis | 1 | 0 | |||
Nausea | 1 | 2 | |||
Fatigue | 0 | 4 | |||
Fever | 0 | 0 | |||
Infection | 6 | 6 | |||
Neuropathy | 0 | 0 | |||
Dyspnea | 0 | 1 | |||
total | 669 | 476 |
Y. Yu-2021 | Arm A | Arm B |
---|---|---|
Vomiting | 4 | |
Fever | 1 | |
Anorexia | 1 | |
Drug-induced allergy | 1 | |
Hepatitis | 1 | |
White blood cell count decreased | 1 | |
Aspartic aminotransferase increased | 1 | |
Platelet count decreased | 1 | |
Neutrophil count decreased | 1 | |
D. Sun-2018 | combination group | monotherapy group |
thrombocytopenia | 5 | 2 |
leukopenia | 3 | |
M. Gou-2021 | ||
hypothyroidism | 3 | |
rash | 2 | |
hepatitis | 1 | |
leukopenia | 3 | |
D. Y. Oh-2020 | ||
neutropenia | 66 | |
nausea | 72 | |
pruritus | 67 | |
anemia | 43 | |
thrombocytopenia | 20 | |
X. Chen-2020 | ||
fatigue | 27 | |
fever | 27 | |
hypokalemia | 7 | |
N. J. Chiang-2021 | nivolumab and gemcitabine and S-1 | gemcitabine and S-1 |
skin toxicity | 17 | 7 |
hypothyroidism | 3 | |
hypophysis | 3 | |
pneumonitis | 3 | |
D. Y. Oh, F. de Braud-2020 | ||
rash | ||
maculopapular rash | 5 | |
fever | 4 | |
increased lipase | 3 |
TRAE, n | All Grades | Grade 1 | Grade 2 | Grade 3 | Grade 4 |
---|---|---|---|---|---|
All | 32 | 28 | 19 | 12 | 1 |
Fatigue | 14 | 7 | 2 | 5 | NA |
Anorexia | 8 | 8 | NA | NA | NA |
ALT elevation | 7 | 7 | NA | NA | NA |
AST elevation | 7 | 6 | 1 | NA | NA |
Rash | 6 | NA | 4 | 2 | NA |
Hypertension | 5 | 1 | NA | 3 | 1 |
Hoarseness | 5 | 5 | NA | NA | NA |
Leukopenia | 4 | 2 | 2 | NA | NA |
Erythrocytopenia | 4 | 4 | NA | NA | NA |
Muscle soreness | 4 | 1 | 3 | NA | NA |
Pruritus | 4 | NA | 2 | 2 | NA |
Hand and foot syndrome | 4 | 1 | 3 | 1 | NA |
Anemia | 3 | 3 | NA | NA | NA |
Nausea | 3 | NA | 3 | NA | NA |
Fever | 3 | 1 | 2 | NA | NA |
Diarrhea | 3 | 2 | 1 | NA | NA |
Hypothyroidism | 3 | NA | 3 | NA | NA |
Alkaline phosphatase increased | 3 | 3 | NA | NA | NA |
Weight loss | 3 | 3 | NA | NA | NA |
Alopecia | 3 | 3 | NA | NA | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, X.; Zou, H.; Lai, Y.; Ung, C.O.L.; Hu, H. Efficacy and Safety of First-Line Targeted Treatment and Immunotherapy for Patients with Biliary Tract Cancer: A Systematic Review and Meta-Analysis. Cancers 2023, 15, 39. https://doi.org/10.3390/cancers15010039
Yan X, Zou H, Lai Y, Ung COL, Hu H. Efficacy and Safety of First-Line Targeted Treatment and Immunotherapy for Patients with Biliary Tract Cancer: A Systematic Review and Meta-Analysis. Cancers. 2023; 15(1):39. https://doi.org/10.3390/cancers15010039
Chicago/Turabian StyleYan, Xin, Huimin Zou, Yunfeng Lai, Carolina Oi Lam Ung, and Hao Hu. 2023. "Efficacy and Safety of First-Line Targeted Treatment and Immunotherapy for Patients with Biliary Tract Cancer: A Systematic Review and Meta-Analysis" Cancers 15, no. 1: 39. https://doi.org/10.3390/cancers15010039
APA StyleYan, X., Zou, H., Lai, Y., Ung, C. O. L., & Hu, H. (2023). Efficacy and Safety of First-Line Targeted Treatment and Immunotherapy for Patients with Biliary Tract Cancer: A Systematic Review and Meta-Analysis. Cancers, 15(1), 39. https://doi.org/10.3390/cancers15010039