Tumor Microenvironment before and after Chemoradiation in Locally Advanced Rectal Cancer: Beyond PD-L1
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Laser Microdissection and Gene Expression
2.3. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Howlader, N.; Noone, A.M.; Krapcho, M.; Miller, D.; Brest, A.; Yu, M.; Ruhl, J.; Tatalovich, Z.; Mariotto, A.; Lewis, D.R.; et al. (Eds.) SEER Cancer Statistics Review, 1975–2016; National Cancer Institute: Bethesda, MD, USA, 2019; based on November 2018 SEER data submission, posted to the SEER web site, April 2019. Available online: https://seer.cancer.gov/csr/1975_2016/ (accessed on 28 November 2022).
- Cercek, A.; Roxburgh, C.S.; Strombom, P.; Smith, J.; Temple, L.K.; Nash, G.M.; Guillem, J.G.; Paty, P.B.; Yaeger, R.; Stadler, Z.K.; et al. Adoption of Total Neoadjuvant Therapy for Locally Advanced Rectal Cancer. JAMA Oncol. 2018, 4, e180071. [Google Scholar] [CrossRef] [PubMed]
- National Comprehensive Cancer Network. Rectal Cancer (Version 3.2022). Available online: https://www.nccn.org/professionals/physician_gls/pdf/rectal.pdf (accessed on 28 November 2022).
- Garcia-Aguilar, J.; Smith, D.; Avila, K.; Bergsland, E.K.; Chu, P.; Krieg, R.M. Optimal Timing of Surgery After Chemoradiation for Advanced Rectal Cancer: Preliminary Results of a Multicenter, Nonrandomized Phase II Prospective Trial. Ann. Surg. 2011, 254, 97–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Habr-Gama, A.; Perez, R.; Proscurshim, I.; Gama-Rodrigues, J. Complete clinical response after neoadjuvant chemoradiation for distal rectal cancer. Surg. Oncol. Clin. N. Am. 2010, 19, 829–845. [Google Scholar] [CrossRef]
- Martin, S.T.; Heneghan, H.M.; Winter, D.C. Systematic review and meta-analysis of outcomes following pathological complete response to neoadjuvant chemoradiotherapy for rectal cancer. Br. J. Surg. 2012, 99, 918–928. [Google Scholar] [CrossRef]
- Maas, M.; Nelemans, P.J.; Valentini, V.; Das, P.; Rödel, C.; Kuo, L.J.; Calvo, F.A.; García-Aguilar, J.; Glynne-Jones, R.; Haustermans, K.; et al. Long-term outcome in patients with a pathological complete response after chemoradiation for rectal cancer: A pooled analysis of individual patient data. Lancet Oncol. 2010, 11, 835–844. [Google Scholar] [CrossRef]
- Rödel, C.; Martus, P.; Papadoupolos, T.; Füzesi, L.; Klimpfinger, M.; Fietkau, R.; Liersch, T.; Hohenberger, W.; Raab, R.; Sauer, R.; et al. Prognostic significance of tumor regression after preoperative chemoradiotherapy for rectal cancer. J. Clin. Oncol. 2005, 23, 8688–8696. [Google Scholar] [CrossRef]
- Jin, M.Z.; Jin, W.L. The updated landscape of tumor microenvironment and drug repurposing. Signal Transduct. Target. Ther. 2020, 5, 166. [Google Scholar] [CrossRef]
- Jani, P.M.; Renz, P.; Brem, C.; Abel, S.; Raj, M.S.; Monga, D.K.; McCormick, J.; Silverman, J.F.; Kirichenko, A.V.; Finley, G.G. Effect of neoadjuvant chemoradiation on the tumor microenvironment in rectal cancer. J. Clin. Oncol. 2017, 35, e15115. [Google Scholar] [CrossRef]
- Matsui, D.; Zaidi, A.H.; Martin, S.A.; Omstead, A.N.; Kosovec, J.E.; Huleihel, L.; Saldin, L.T.; DiCarlo, C.; Silverman, J.F.; Hoppo, T.; et al. Primary tumor microRNA signature predicts recurrence and survival in patients with locally advanced esophageal adenocarcinoma. Oncotarget 2016, 7, 81281–81291. [Google Scholar] [CrossRef]
- Baghban, R.; Roshangar, L.; Jahanban-Esfahlan, R.; Seidi, K.; Ebrahimi-Kalan, A.; Jaymand, M.; Kolahian, S.; Javaheri, T.; Zare, P. Tumor microenvironment complexity and therapeutic implications at a glance. Cell Commun. Signal 2020, 18, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Postow, M.A.; Callahan, M.K.; Barker, C.A.; Yamada, Y.; Yuan, J.; Kitano, S.; Mu, Z.; Rasalan, T.; Adamow, M.; Ritter, E.; et al. Immunologic correlates of the abscopal effect in a patient with melanoma. N. Engl. J. Med. 2012, 366, 925–931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vatner, R.E.; Cooper, B.T.; Vanpouille-Box, C.; Demaria, S.; Formenti, S.C. Combinations of immunotherapy and radiation in cancer therapy. Front. Oncol. 2014, 4, 325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baumeister, S.H.; Freeman, G.J.; Dranoff, G.; Sharpe, A.H. Coinhibitory Pathways in Immunotherapy for Cancer. Annu. Rev. Immunol. 2016, 34, 539–573. [Google Scholar] [CrossRef] [PubMed]
- Pardoll, D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 2012, 12, 252–264. [Google Scholar] [CrossRef] [Green Version]
- Spranger, S.; Gajewski, T.F. Mechanisms of Tumor Cell-Intrinsic Immune Evasion. Annu. Rev. Cancer Biol. 2018, 2, 213–228. [Google Scholar] [CrossRef]
- Gooden, M.J.; de Bock, G.H.; Leffers, N.; Daemen, T.; Nijman, H.W. The prognostic influence of tumour-infiltrating lymphocytes in cancer: A systematic review with meta-analysis. Br. J. Cancer 2011, 105, 93–103. [Google Scholar] [CrossRef] [Green Version]
- Pagès, F.; Kirilovsky, A.; Mlecnik, B.; Asslaber, M.; Tosolini, M.; Bindea, G.; Lagorce, C.; Wind, P.; Marliot, F.; Bruneval, P.; et al. In situ cytotoxic and memory T cells predict outcome in patients with early-stage colorectal cancer. J. Clin. Oncol. 2009, 27, 5944–5951. [Google Scholar] [CrossRef]
- Galon, J.; Costes, A.; Sanchez-Cabo, F.; Kirilovsky, A.; Mlecnik, B.; Lagorce-Pagès, C.; Tosolini, M.; Camus, M.; Berger, A.; Wind, P.; et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 2006, 313, 1960–1964. [Google Scholar] [CrossRef] [Green Version]
- Däster, S.; Eppenberger-Castori, S.; Hirt, C.; Zlobec, I.; Delko, T.; Nebiker, C.A.; Soysal, S.D.; Amicarella, F.; Iezzi, G.; Sconocchia, G.; et al. High frequency of CD8 positive lymphocyte infiltration correlates with lack of lymph node involvement in early rectal cancer. Dis. Markers 2014, 2014. [Google Scholar] [CrossRef]
- Ouyang, W.; Kolls, J.K.; Zheng, Y. The biological functions of T helper 17 cell effector cytokines in inflammation. Immunity 2008, 28, 454–467. [Google Scholar] [CrossRef] [Green Version]
- Yang, B.; Kang, H.; Fung, A.; Zhao, H.; Wang, T.; Ma, D. The role of interleukin 17 in tumour proliferation, angiogenesis, and metastasis. Mediators Inflamm. 2014, 2014, 623759. [Google Scholar] [CrossRef] [PubMed]
- Croft, M.; Salek-Ardakani, S.; Song, J.; So, T.; Bansal-Pakala, P. Regulation of T Cell Immunity by OX40 and OX40L. In Madame Curie Bioscience Database; Landes Bioscience: Austin, TX, USA, 2013. Available online: https://www.ncbi.nlm.nih.gov/books/NBK5990/ (accessed on 10 October 2021).
- Willoughby, J.; Griffiths, J.; Tews, I.; Cragg, M.S. OX40: Structure and function–What questions remain? Mol. Immunol. 2017, 83, 13–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marin-Acevedo, J.A.; Dholaria, B.; Soyano, A.E.; Knutson, K.L.; Chumsri, S.; Lou, Y. Next generation of immune checkpoint therapy in cancer: New developments and challenges. J. Hematol. Oncol. 2018, 11, 39. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Rivard, C.J.; Rozeboom, L.; Yu, H.; Ellison, K.; Kowalewski, A.; Zhou, C.; Hirsch, F.R. Lymphocyte-activation gene-3, an important immune checkpoint in cancer. Cancer Sci. 2016, 107, 1193–1197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, H.F.; Cheng, C.S.; Tang, J.; Li, Y.; Chen, H.; Meng, Z.Q.; Chen, Z.; Chen, L.-Y. CXCL9 chemokine promotes the progression of human pancreatic adenocarcinoma through STAT3-dependent cytotoxic T lymphocyte suppression. Aging 2020, 12, 502–517. [Google Scholar] [CrossRef]
- Chaput, N.; Svrcek, M.; Aupérin, A.; Locher, C.; Drusch, F.; Malka, D.; Taïeb, J.; Goéré, D.; Ducreux, M.; Boige, V. Tumour-infiltrating CD68+ and CD57+ cells predict patient outcome in stage II-III colorectal cancer. Br. J. Cancer 2013, 109, 1013–1022. [Google Scholar] [CrossRef] [Green Version]
- Ding, Q.; Lu, P.; Xia, Y.; Ding, S.; Fan, Y.; Li, X.; Han, P.; Liu, J.; Tian, D.; Liu, M. CXCL9: Evidence and contradictions for its role in tumor progression. Cancer Med. 2016, 5, 3246–3259. [Google Scholar] [CrossRef]
- Yeung, A.W.; Terentis, A.C.; King, N.J.; Thomas, S.R. Role of indoleamine 2,3-dioxygenase in health and disease. Clin. Sci. 2015, 129, 601–672. [Google Scholar] [CrossRef]
- Chung, D.J.; Rossi, M.; Romano, E.; Ghith, J.; Yuan, J.; Munn, D.H.; Young, J.W. Indoleamine 2,3-dioxygenase-expressing mature human monocyte-derived dendritic cells expand potent autologous regulatory T cells. Blood 2009, 114, 555–563. [Google Scholar] [CrossRef]
- Katz, J.B.; Muller, A.J.; Prendergast, G.C. C. Indoleamine 2,3-dioxygenase in T-cell tolerance and tumoral immune escape. Immunol. Rev. 2008, 222, 206–221. [Google Scholar] [CrossRef] [PubMed]
- Watcharanurak, K.; Zang, L.; Nishikawa, M.; Yoshinaga, K.; Yamamoto, Y.; Takahashi, Y.; Ando, M.; Saito, K.; Watanabe, Y.; Takakura, Y. Effects of upregulated indoleamine 2, 3-dioxygenase 1 by interferon gamma gene transfer on interferon gamma-mediated antitumor activity. Gene Ther. 2014, 21, 794–801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, M.; Wang, X.; Wang, L.; Ma, X.; Gong, Z.; Zhang, S.; Li, Y. Targeting the IDO1 pathway in cancer: From bench to bedside. J. Hematol. Oncol. 2018, 11, 100. [Google Scholar] [CrossRef] [Green Version]
- Ladomersky, E.; Zhai, L.; Lenzen, A.; Lauing, K.L.; Qian, J.; Scholtens, D.M.; Gritsina, G.; Sun, X.; Liu, Y.; Yu, F.; et al. IDO1 Inhibition Synergizes with Radiation and PD-1 Blockade to Durably Increase Survival Against Advanced Glioblastoma. Clin. Cancer Res. 2018, 24, 2559–2573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prendergast, G.C.; Malachowski, W.P.; DuHadaway, J.B.; Muller, A.J. Discovery of IDO1 Inhibitors: From Bench to Bedside. Cancer Res. 2017, 77, 6795–6811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, C.H.; Maher, S.G.; Young, H.A. Clinical Use of Interferon-gamma. Ann. N. Y. Acad. Sci. 2009, 1182, 69–79. [Google Scholar] [CrossRef]
- Mandai, M.; Hamanishi, J.; Abiko, K.; Matsumura, N.; Baba, T.; Konishi, I. Dual Faces of IFNgamma in Cancer Progression: A Role of PD-L1 Induction in the Determination of Pro- and Antitumor Immunity. Clin. Cancer Res. 2016, 22, 2329–2334. [Google Scholar] [CrossRef] [Green Version]
- Anderson, A.C.; Joller, N.; Kuchroo, V.K. Lag-3, Tim-3, and TIGIT: Co-inhibitory Receptors with Specialized Functions in Immune Regulation. Immunity 2016, 44, 989–1004. [Google Scholar] [CrossRef] [Green Version]
- Koyama, S.; Akbay, E.A.; Li, Y.Y.; Herter-Sprie, G.S.; Buczkowski, K.A.; Richards, W.G.; Gandhi, L.; Redig, A.J.; Rodig, S.J.; Asahina, H.; et al. Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints. Nat. Commun. 2016, 7, 10501. [Google Scholar] [CrossRef] [Green Version]
- Cercek, A.; Lumish, M.; Sinopoli, J.; Weiss, J.; Shia, J.; Lamendola-Essel, M.; El Dika, I.H.; Segal, N.; Shcherba, M.; Sugarman, R.; et al. PD-1 Blockade in Mismatch Repair-Deficient, Locally Advanced Rectal Cancer. N. Engl. J. Med. 2022, 386, 2363–2376. [Google Scholar] [CrossRef]
Biomarker | Pre-Treatment (n = 40) [n, (%)] | Post-Treatment (n = 42) [n, (%)] | ||||
PD-L1 | ||||||
<1% | 36 (90.0) | 32 (76.2) | ||||
1–49% | 4 (10.0) | 8 (19) | ||||
Biomarker | Pre-Treatment (n = 40) | Post-Treatment (n = 42) | ||||
N | Mean (SD) | Median (IQR) | N | Mean (SD) | Median (IQR) | |
CD8 | 40 | 3.9 (0.8) | 3.9 (3.3, 4.4) | 42 | 4.5 (0.8) | 4.4 (4.1, 5.2) |
CXCL9 | 38 | 1.1 (2.4) | 0.5 (−0.3, 2.8) | 37 | 2.1 (2.4) | 2.2 (1.0, 3.3) |
TIM-3 | 38 | 0.4 (2.7) | 0.4 (−1.6, 2.3) | 37 | 1.6 (2.7) | 1.5 (0.1, 3.8) |
IDO1 | 38 | 2.2 (4.2) | 2.6 (−0.2, 5.2) | 37 | 4.1 (4.0) | 4.7 (1.9, 7.0) |
IFN-G | 38 | 0.9 (3.4) | 1.0 (−1.2, 2.6) | 37 | 2.5 (3.4) | 3.5 (0.1, 4.9) |
IL17RE | 38 | 0.5 (2.6) | 0.5 (−1.3, 2.7) | 37 | 2.0 (2.4) | 2.4 (0.9, 3.8) |
LAG3 | 38 | 0.9 (2.9) | 1.0 (−1.1, 2.7) | 37 | 2.5 (2.8) | 2.9 (0.5, 4.8) |
OX40 | 38 | 0.5 (2.1) | 0.8 (−1.1, 2.0) | 37 | 1.8 (2.2) | 2.1 (0.5, 3.4) |
Biomarker | Pre-Treatment | Post-Treatment | Estimated Difference (SE) | Estimated Odds Ratio (95% CI) * | p Value |
---|---|---|---|---|---|
Estimated Mean (SE) | Estimated Mean (SE) | ||||
PD-L1 (ref = Pre-treatment) | −2.2 (0.5) ** | −1.4 (0.4) *** | 0.8 (0.5) | 2.2 (0.7, 6.4) | 0.1546 |
CD8 | 3.9 (0.1) | 4.5 (0.1) | 0.6 (0.2) | N/A | 0.0008 |
CXCL9 | 1.1 (0.4) | 2.1 (0.4) | 1.0 (0.6) | N/A | 0.0752 |
TIM-3 | 0.4 (0.4) | 1.6 (0.4) | 1.2 (0.6) | N/A | 0.0620 |
IDO1 | 2.2 (0.7) | 4.1 (0.7) | 1.9 (0.9) | N/A | 0.0573 |
IFN-G | 0.9 (0.6) | 2.5 (0.6) | 1.6 (0.8) | N/A | 0.0543 |
IL17RE | 0.5 (0.4) | 2.0 (0.4) | 1.5 (0.6) | N/A | 0.0118 |
LAG3 | 0.9 (0.5) | 2.4 (0.5) | 1.5 (0.6) | N/A | 0.0259 |
OX40 | 0.5 (0.3) | 1.8 (0.3) | 1.3 (0.5) | N/A | 0.0100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tayshetye, P.; Friday, A.J.; Omstead, A.N.; Verma, T.; Miller, S.; Zheng, P.; Jani, P.; Zaidi, A.; Finley, G. Tumor Microenvironment before and after Chemoradiation in Locally Advanced Rectal Cancer: Beyond PD-L1. Cancers 2023, 15, 276. https://doi.org/10.3390/cancers15010276
Tayshetye P, Friday AJ, Omstead AN, Verma T, Miller S, Zheng P, Jani P, Zaidi A, Finley G. Tumor Microenvironment before and after Chemoradiation in Locally Advanced Rectal Cancer: Beyond PD-L1. Cancers. 2023; 15(1):276. https://doi.org/10.3390/cancers15010276
Chicago/Turabian StyleTayshetye, Pritam, Andrew J. Friday, Ashten N. Omstead, Tanvi Verma, Stacey Miller, Ping Zheng, Prashant Jani, Ali Zaidi, and Gene Finley. 2023. "Tumor Microenvironment before and after Chemoradiation in Locally Advanced Rectal Cancer: Beyond PD-L1" Cancers 15, no. 1: 276. https://doi.org/10.3390/cancers15010276
APA StyleTayshetye, P., Friday, A. J., Omstead, A. N., Verma, T., Miller, S., Zheng, P., Jani, P., Zaidi, A., & Finley, G. (2023). Tumor Microenvironment before and after Chemoradiation in Locally Advanced Rectal Cancer: Beyond PD-L1. Cancers, 15(1), 276. https://doi.org/10.3390/cancers15010276