Activin B and Activin C Have Opposing Effects on Prostate Cancer Progression and Cell Growth
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Immunohistochemistry
2.2. Online Analysis of Activin mRNA Expression
2.3. Recombinant INHBC Expression and Purification
2.4. Prostate Cell Lines
2.5. Stable Transfection of Prostate Cell Lines with INHBB and INHBC
2.6. Western Blot Quantitation of Activins in Prostate Cell Lines
2.7. Cell Growth Assays
2.8. Migration Assays
2.9. Statistical Analysis
3. Results
3.1. Immuno-Reactive Scores in Relation to Gleason Score
3.2. INHBB and INHBC RNA Expression in Prostate Tissue
3.3. Prostate Cell Lines Express Different Levels of INHBA, INHBB and INHBC
3.4. Recombinant INHBC
3.5. Effect of Recombinant Activins on Prostate Cell Growth
3.6. Overexpression of INHBB or INHBC Alters Growth and Migration of PCa Cell Lines
3.7. Response to Pathway Inhibitors Varies between Prostate Cell Lines
3.8. Summary of Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, L.; Lu, B.; He, M.; Wang, Y.; Wang, Z.; Du, L. Prostate Cancer Incidence and Mortality: Global Status and Temporal Trends in 89 Countries From 2000 to 2019. Front. Public Health 2022, 10, 811044. [Google Scholar] [CrossRef] [PubMed]
- Leyh-Bannurah, S.R.; Abou-Haidar, H.; Dell’Oglio, P.; Schiffmann, J.; Tian, Z.; Heinzer, H.; Karakiewicz, P.I. Primary Gleason pattern upgrading in contemporary patients with D’Amico low-risk prostate cancer: Implications for future biomarkers and imaging modalities. BJU Int. 2017, 119, 692–699. [Google Scholar] [CrossRef] [PubMed]
- Thaxton, C.S.; Loeb, S.; Roehl, K.A.; Kan, D.; Catalona, W.J. Treatment outcomes of radical prostatectomy in potential candidates for 3 published active surveillance protocols. Urology 2010, 75, 414–418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sowalsky, A.G.; Ye, H.; Bubley, G.J.; Balk, S.P. Clonal progression of prostate cancers from Gleason grade 3 to grade 4. Cancer Res. 2013, 73, 1050–1055. [Google Scholar] [CrossRef] [Green Version]
- Boyd, L.K.; Mao, X.; Lu, Y.J. The complexity of prostate cancer: Genomic alterations and heterogeneity. Nat. Rev. Urol. 2012, 9, 652–664. [Google Scholar] [CrossRef]
- Shipitsin, M.; Small, C.; Choudhury, S.; Giladi, E.; Friedlander, S.; Nardone, J.; Blume-Jensen, P. Identification of proteomic biomarkers predicting prostate cancer aggressiveness and lethality despite biopsy-sampling error. Br. J. Cancer 2014, 111, 1201–1212. [Google Scholar] [CrossRef]
- Ross, A.E.; D’Amico, A.V.; Freedland, S.J. Which, when and why? Rational use of tissue-based molecular testing in localized prostate cancer. Prostate Cancer Prostatic Dis. 2016, 19, 1–6. [Google Scholar] [CrossRef]
- Loomans, H.A.; Andl, C.D. Intertwining of Activin A and TGFbeta Signaling: Dual Roles in Cancer Progression and Cancer Cell Invasion. Cancers 2014, 7, 70–91. [Google Scholar] [CrossRef] [Green Version]
- Croxford, K.P.; Reader, K.L.; Nicholson, H.D. The potential role of transforming growth factor beta family ligand interactions in prostate cancer. AIMS Mol. Sci. 2017, 4, 41–61. [Google Scholar] [CrossRef]
- Jung, B.; Staudacher, J.J.; Beauchamp, D. Transforming Growth Factor Beta Super Family Signaling in Development of Colorectal Cancer. Gastroenterology 2016, 152, 36–52. [Google Scholar] [CrossRef]
- Lodberg, A. Principles of the activin receptor signaling pathway and its inhibition. Cytokine Growth Factor Rev. 2021, 60, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Namwanje, M.; Brown, C.W. Activins and Inhibins: Roles in Development, Physiology, and Disease. Cold Spring Harb. Perspect Biol. 2016, 8, a021881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gold, E.; Jetly, N.; O’Bryan, M.K.; Meachem, S.; Srinivasan, D.; Behuria, S.; Risbridger, G. Activin C antagonizes activin A in vitro and overexpression leads to pathologies in vivo. Am. J. Pathol. 2009, 174, 184–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gold, E.; Marino, F.E.; Harrison, C.; Makanji, Y.; Risbridger, G. Activin-beta(c) reduces reproductive tumour progression and abolishes cancer-associated cachexia in inhibin-deficient mice. J. Pathol. 2013, 229, 599–607. [Google Scholar] [CrossRef]
- Chen, L.; De Menna, M.; Groenewoud, A.; Thalmann, G.N.; Kruithof-de Julio, M.; Snaar-Jagalska, B.E. A NF-ĸB-Activin A signaling axis enhances prostate cancer metastasis. Oncogene 2020, 39, 1634–1651. [Google Scholar] [CrossRef]
- Ottley, E.C.; Reader, K.L.; Lee, K.; Marino, F.E.; Nicholson, H.D.; Risbridger, G.P.; Gold, E. Over-Expression of Activin-betaC Is Associated with Murine and Human Prostate Disease. Horm Cancer 2017, 8, 100–107. [Google Scholar] [CrossRef]
- Marino, F.E.; Risbridger, G.; Gold, E. Activin-beta C modulates gonadal, but not adrenal tumorigenesis in the inhibin deficient mice. Mol. Cell Endocrinol. 2015, 409, 41–50. [Google Scholar] [CrossRef]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Cardona, A. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [Green Version]
- Helps, S.C.; Thornton, E.; Kleinig, T.J.; Manavis, J.; Vink, R. Automatic nonsubjective estimation of antigen content visualized by immunohistochemistry using color deconvolution. Appl. Immunohistochem. Mol. Morphol. 2012, 20, 82–90. [Google Scholar] [CrossRef]
- Fuhrich, D.G.; Lessey, B.A.; Savaris, R.F. Comparison of HSCORE assessment of endometrial beta3 integrin subunit expression with digital HSCORE using computerized image analysis (ImageJ). Anal. Quant Cytopathol. Histpathol. 2013, 35, 210–216. [Google Scholar]
- Ruifrok, A.C.; Johnston, D.A. Quantification of histochemical staining by color deconvolution. Anal. Quant Cytol. Histol. 2001, 23, 291–299. [Google Scholar] [PubMed]
- Marino, F.E.; Risbridger, G.; Gold, E. The inhibin/activin signalling pathway in human gonadal and adrenal cancers. Mol. Hum. Hum. Reprod. 2014, 20, 1223–1237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hobbs, S.; Jitrapakdee, S.; Wallace, J.C. Development of a bicistronic vector driven by the human polypeptide chain elongation factor 1alpha promoter for creation of stable mammalian cell lines that express very high levels of recombinant proteins. Biochem. Biophys. Res. Commun. 1998, 252, 368–372. [Google Scholar] [CrossRef] [PubMed]
- Mottershead, D.G.; Sugimura, S.; Al-Musawi, S.L.; Li, J.J.; Richani, D.; White, M.A.; Gilchrist, R.B. Cumulin, an Oocyte-secreted Heterodimer of the Transforming Growth Factor-beta Family, Is a Potent Activator of Granulosa Cells and Improves Oocyte Quality. J. Biol. Chem. 2015, 290, 24007–24020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cussenot, O.; Berthon, P.; Berger, R.; Mowszowicz, I.; Faille, A.; Hojman, F.; Calvo, F. Immortalization of human adult normal prostatic epithelial cells by liposomes containing large T-SV40 gene. J. Urol. 1991, 146, 881–886. [Google Scholar] [CrossRef]
- Sambrook, J.; Russell, D.W. The inoue method for preparation and transformation of competent e. Coli: “Ultra-competent” cells. CSH Protoc. 2006, 1, 10–1101. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing. 2020. Available online: https://www.R-project.org/ (accessed on 17 August 2022).
- Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S, 4th ed.; Springer: New York, NY, USA, 2002. [Google Scholar]
- Pinheiro, J.; Bates, D.; Debroy, S.; Sarkar, D. Nlme: Linear and Nonlinear Mixed Effects Models. 2022. Available online: https://CRAN.R-project.org/package=nlme (accessed on 17 August 2022).
- Length, R.V. Emmeans: Estimated Marginal Means, aka Least-Squares Means. 2022. Available online: https://CRAN.R-project.org/package=emmeans (accessed on 17 August 2022).
- Yu, Y.P.; Landsittel, D.; Jing, L.; Nelson, J.; Ren, B.; Liu, L.; Luo, J.H. Gene expression alterations in prostate cancer predicting tumor aggression and preceding development of malignancy. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2004, 22, 2790–2799. [Google Scholar] [CrossRef]
- Luo, J.; Duggan, D.J.; Chen, Y.; Sauvageot, J.; Ewing, C.M.; Bittner, M.L.; Isaacs, W.B. Human prostate cancer and benign prostatic hyperplasia: Molecular dissection by gene expression profiling. Cancer Res. 2001, 61, 4683–4688. [Google Scholar]
- Tomlins, S.A.; Mehra, R.; Rhodes, D.R.; Cao, X.; Wang, L.; Dhanasekaran, S.M.; Chinnaiyan, A.M. Integrative molecular concept modeling of prostate cancer progression. Nat. Genet. 2007, 39, 41–51. [Google Scholar] [CrossRef]
- Liu, P.; Ramachandran, S.; Ali Seyed, M.; Scharer, C.D.; Laycock, N.; Dalton, W.B.; Moreno, C.S. Sex-determining region Y box 4 is a transforming oncogene in human prostate cancer cells. Cancer Res. 2006, 66, 4011–4019. [Google Scholar] [CrossRef] [Green Version]
- Epstein, J.I.; Zelefsky, M.J.; Sjoberg, D.D.; Nelson, J.B.; Egevad, L.; Magi-Galluzzi, C.; Klein, E.A. A Contemporary Prostate Cancer Grading System: A Validated Alternative to the Gleason Score. Eur. Urol. 2016, 69, 428–435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mason, M. Getting better at treating prostate cancer: What clinicians should want from scientists. J. Cancer Metastasis Treat. 2017, 3, 271–277. [Google Scholar] [CrossRef]
- Sangkop, F.; Singh, G.; Rodrigues, E.; Gold, E.; Bahn, A. Uric acid: A modulator of prostate cells and activin sensitivity. Mol. Cell Biochem. 2016, 414, 187–199. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.Y.; Huang, H.Y.; Hsieh, C.Y.; Li, C.F.; Shyr, C.R.; Tsai, M.Y.; Huang, K.E. Activin A enhances prostate cancer cell migration through activation of androgen receptor and is overexpressed in metastatic prostate cancer. J. Bone Miner Res. 2009, 24, 1180–1193. [Google Scholar] [CrossRef] [PubMed]
- Balanathan, P.; Williams, E.D.; Wang, H.; Pedersen, J.S.; Horvath, L.G.; Achen, M.G.; Risbridger, G.P. Elevated level of inhibin-alpha subunit is pro-tumourigenic and pro-metastatic and associated with extracapsular spread in advanced prostate cancer. Br. J. Cancer 2009, 100, 1784–1793. [Google Scholar] [CrossRef] [Green Version]
- Lu, S.; Lee, J.; Revelo, M.; Wang, X.; Lu, S.; Dong, Z. Smad3 is overexpressed in advanced human prostate cancer and necessary for progressive growth of prostate cancer cells in nude mice. Clin Cancer Res. 2007, 13, 5692–5702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walton, K.L.; Makanji, Y.; Harrison, C.A. New insights into the mechanisms of activin action and inhibition. Mol. Cell Endocrinol. 2012, 359, 2–12. [Google Scholar] [CrossRef]
- Gyftopoulos, K.; Sotiropoulou, G.; Varakis, I.; Barbalias, G.A. Cellular distribution of retinoic acid receptor-alpha in benign hyperplastic and malignant human prostates: Comparison with androgen, estrogen and progesterone receptor status. Eur. Urol. 2000, 38, 323–330. [Google Scholar] [CrossRef]
- Leach, D.A.; Need, E.F.; Toivanen, R.; Trotta, A.P.; Palenthorpe, H.M.; Tamblyn, D.J.; Buchanan, G. Stromal androgen receptor regulates the composition of the microenvironment to influence prostate cancer outcome. Oncotarget 2015, 6, 16135–16150. [Google Scholar] [CrossRef] [Green Version]
- Filipovski, V.; Kubelka-Sabit, K.; Jasar, D.; Janevska, V. Androgen Receptor Expression in Epithelial and Stromal Cells of Prostatic Carcinoma and Benign Prostatic Hyperplasia. Open Access Maced. J. Med. Sci. 2017, 5, 608–612. [Google Scholar] [CrossRef] [Green Version]
- Schlomm, T.; Iwers, L.; Kirstein, P.; Jessen, B.; Köllermann, J.; Minner, S.; Erbersdobler, A. Clinical significance of p53 alterations in surgically treated prostate cancers. Mod. Pathol. 2008, 21, 1371–1378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kazantseva, M.; Mehta, S.; Eiholzer, R.A.; Gimenez, G.; Bowie, S.; Campbell, H.; Braithwaite, A.W. The Δ133p53β isoform promotes an immunosuppressive environment leading to aggressive prostate cancer. Cell Death Dis. 2019, 10, 631. [Google Scholar] [CrossRef] [PubMed]
- McPherson, S.J.; Thomas, T.Z.; Wang, H.; Gurusinghe, C.J.; Risbridger, G.P. Growth inhibitory response to activin A and B by human prostate tumour cell lines, LNCaP and DU145. J. Endocrinol. 1997, 154, 535–545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McPherson, S.J.; Mellor, S.L.; Wang, H.; Evans, L.W.; Groome, N.P.; Risbridger, G.P. Expression of activin A and follistatin core proteins by human prostate tumor cell lines. Endocrinology 1999, 140, 5303–5309. [Google Scholar] [CrossRef] [PubMed]
- Simon, D.P.; Vadakkadath Meethal, S.; Wilson, A.C.; Gallego, M.J.; Weinecke, S.L.; Bruce, E.; Lyons, P.F.; Haasl, R.J.; Bowen, R.L.; Atwood, C.S.; et al. Activin receptor signaling regulates prostatic epithelial cell adhesion and viability. Neoplasia 2009, 11, 365–376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ao, M.; Williams, K.; Bhowmick, N.A.; Hayward, S.W. Transforming growth factor-beta promotes invasion in tumorigenic but not in nontumorigenic human prostatic epithelial cells. Cancer Res. 2006, 66, 8007–8016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dalkin, A.C.; Gilrain, J.T.; Bradshaw, D.; Myers, C.E. Activin inhibition of prostate cancer cell growth: Selective actions on androgen-responsive LNCaP cells. Endocrinology 1996, 137, 5230–5235. [Google Scholar] [CrossRef] [PubMed]
- McIntosh, C.J.; Lun, S.; Lawrence, S.; Western, A.H.; McNatty, K.P.; Juengel, J.L. The proregion of mouse BMP15 regulates the cooperative interactions of BMP15 and GDF9. Biol. Reprod. 2008, 79, 889–896. [Google Scholar] [CrossRef]
- McIntosh, C.J.; Lawrence, S.; Smith, P.; Juengel, J.L.; McNatty, K.P. Active immunization against the proregions of GDF9 or BMP15 alters ovulation rate and litter size in mice. Reproduction 2012, 143, 195–201. [Google Scholar] [CrossRef]
- Goebel, E.J.; Ongaro, L.; Kappes, E.C.; Vestal, K.; Belcheva, E.; Castonguay, R.; Thompson, T.B. The orphan ligand, activin C, signals through activin receptor-like kinase 7. Elife 2022, 11, e78197. [Google Scholar] [CrossRef]
- Mellor, S.L.; Ball, E.M.; O’Connor, A.E.; Ethier, J.F.; Cranfield, M.; Schmitt, J.F.; Risbridger, G.P. Activin betaC-subunit heterodimers provide a new mechanism of regulating activin levels in the prostate. Endocrinology 2003, 144, 4410–4419. [Google Scholar] [CrossRef] [PubMed]
Antibody | Supplier | Cat. No | µg/mL or Dilution | Species & Clonality |
---|---|---|---|---|
INHBA | Abcam | ab56057 | 20 | Rabbit polyclonal |
INHBB | R & D Systems | MAB659 | 2.5 | Mouse monoclonal |
INHBC | Abcam | ab73904 | 1 | Mouse monoclonal |
INHA | Abcam | ab81234 | 0.2 | Rabbit polyclonal |
ACVR2A | Abcam | ab10595 | 5 | Goat polyclonal |
ACVR2B | Abcam | ab76940 | 12.5 | Mouse monoclonal |
SMAD2 | Abcam | ab47083 | 5 | Rabbit polyclonal |
SMAD3 | Abcam | ab40854 | 14 | Rabbit monoclonal |
FST | Abcam | ab157471 | 8 | Rabbit monoclonal |
BMP4 | Abcam | ab39973 | 1 | Rabbit polyclonal |
AR | Abcam | ab3509 | 1:300 | Rabbit polyclonal |
MKI67 | Abcam | ab66155 | 2.5 | Rabbit polyclonal |
MYC | Abcam | ab32 | 2.5 | Mouse monoclonal |
TP53 | Abcam | ab26 | 5 | Mouse monoclonal |
BCL2 | Abcam | ab7973 | 0.6 | Rabbit polyclonal |
Negative mouse | DAKO | X0931 | 12.5 | Mouse monoclonal |
Normal goat | Santa Cruz | Sc-2028 | 5 | Goat IgG |
Antibody | Supplier | Catalogue No | Dilution | Species & Clonality |
---|---|---|---|---|
INHBA (pro-region) | Abcam | ab128958 | 1:1000 | Rabbit Monoclonal IgG1 |
INHBB (mature) | Abcam | ab128944 | 1:2000 | Rabbit polyclonal IgG |
INHBC (mature) | Abcam | ab73904 | 1:1000 | Mouse monoclonal IgG1 |
GAPDH | Abcam | ab9484 | 1:6000 | Mouse monoclonal IgG2b |
GAPDH | Abcam | ab181602 | 1:6000 | Rabbit monoclonal |
Anti-rabbit | LI-COR | C20322-01 | 1:10,000 | 800 CW |
Anti-rabbit | LI-COR | C10628-01 | 1:25,000 | 680 LT |
Anti-mouse | LI-COR | 926-32350 | 1:10,000 | IgG1 800 CW |
Anti-mouse | LI-COR | 926-68052 | 1:25,000 | IgG2b 680 LT |
Prostate Tissue or Cell Line | Activin Expression | Exogenous Treatment | Overexpression | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Growth | Growth | Migration | ||||||||
A | B | C-Mat | A | B | C | B | C | B | C | |
Normal | mod | mod | mod | |||||||
Gleason 4 & 5 | mod | ↑ | ↓ | |||||||
PNT1A | low | low | low | ↓ | ↓ | = | ↓ | ↑ | - | = |
LNCaP | ↑ | ↑ | low | ↓ | ↓ | = | - | - | - | - |
PC3 | ↑ | ↑↑ | ↑ | ↓ | = | = | ↑ | ↓ | ↑ | ↑ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reader, K.L.; John-McHaffie, S.; Zellhuber-McMillan, S.; Jowett, T.; Mottershead, D.G.; Cunliffe, H.E.; Gold, E.J. Activin B and Activin C Have Opposing Effects on Prostate Cancer Progression and Cell Growth. Cancers 2023, 15, 147. https://doi.org/10.3390/cancers15010147
Reader KL, John-McHaffie S, Zellhuber-McMillan S, Jowett T, Mottershead DG, Cunliffe HE, Gold EJ. Activin B and Activin C Have Opposing Effects on Prostate Cancer Progression and Cell Growth. Cancers. 2023; 15(1):147. https://doi.org/10.3390/cancers15010147
Chicago/Turabian StyleReader, Karen L., Simon John-McHaffie, Sylvia Zellhuber-McMillan, Tim Jowett, David G. Mottershead, Heather E. Cunliffe, and Elspeth J. Gold. 2023. "Activin B and Activin C Have Opposing Effects on Prostate Cancer Progression and Cell Growth" Cancers 15, no. 1: 147. https://doi.org/10.3390/cancers15010147
APA StyleReader, K. L., John-McHaffie, S., Zellhuber-McMillan, S., Jowett, T., Mottershead, D. G., Cunliffe, H. E., & Gold, E. J. (2023). Activin B and Activin C Have Opposing Effects on Prostate Cancer Progression and Cell Growth. Cancers, 15(1), 147. https://doi.org/10.3390/cancers15010147