Intra-Tumoral Secondary Follicle-like Tertiary Lymphoid Structures Are Associated with a Superior Prognosis of Overall Survival of Perihilar Cholangiocarcinoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients and Samples
2.2. Immunohistochemistry (IHC) Staining
2.3. Multiplex Immunofluorescence Assay
2.4. Hematoxylin and Eosin (H&E) Staining
2.5. TLS Quantification
2.6. Statistical Analysis
3. Results
3.1. Clinicopathological Features of the Patients
3.2. TLSs in Human pCCA Tissue Specimens
3.3. Correlations between Clinicopathological Features and TLSs
3.4. TLSs Signify a Favorable Prognosis in pCCA
3.5. S-TLS Correlates with Low Incidence of Lymph Node Metastasis in pCCA
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Razumilava, N.; Gores, G.J. Cholangiocarcinoma. Lancet 2014, 383, 2168–2179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rizvi, S.; Gores, G.J. Emerging molecular therapeutic targets for cholangiocarcinoma. J. Hepatol. 2017, 67, 632–644. [Google Scholar] [CrossRef] [PubMed]
- Siriwardena, A.K. Klatskin Tumor. J. Clin. Oncol. 2017, 35, 4091–4092. [Google Scholar] [CrossRef] [PubMed]
- Banales, J.M.; Marin, J.J.G.; Lamarca, A.; Rodrigues, P.M.; Khan, S.A.; Roberts, L.R.; Cardinale, V.; Carpino, G.; Andersen, J.B.; Braconi, C.; et al. Cholangiocarcinoma 2020: The next horizon in mechanisms and management. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 557–588. [Google Scholar] [CrossRef] [PubMed]
- Rizvi, S.; Khan, S.A.; Hallemeier, C.L.; Kelley, R.K.; Gores, G.J. Cholangiocarcinoma—evolving concepts and therapeutic strategies. Nat. Rev. Clin. Oncol. 2018, 15, 95–111. [Google Scholar] [CrossRef] [Green Version]
- Groot Koerkamp, B.; Wiggers, J.K.; Allen, P.J.; Besselink, M.G.; Blumgart, L.H.; Busch, O.R.C.; Coelen, R.J.; D’Angelica, M.I.; Dematteo, R.P.; Gouma, D.J.; et al. Recurrence Rate and Pattern of Perihilar Cholangiocarcinoma after Curative Intent Resection. J. Am. Coll. Surg. 2015, 221, 1041–1049. [Google Scholar] [CrossRef] [Green Version]
- Lidsky, M.E.; Jarnagin, W.R. Surgical management of hilar cholangiocarcinoma at Memorial Sloan Kettering Cancer Center. Ann. Gastroenterol. Surg. 2018, 2, 304–312. [Google Scholar] [CrossRef]
- Soares, K.C.; Jarnagin, W.R. The Landmark Series: Hilar Cholangiocarcinoma. Ann. Surg. Oncol. 2021, 28, 4158–4170. [Google Scholar] [CrossRef]
- Paijens, S.T.; Vledder, A.; De Bruyn, M.; Nijman, H.W. Tumor-infiltrating lymphocytes in the immunotherapy era. Cell. Mol. Immunol. 2021, 18, 842–859. [Google Scholar] [CrossRef]
- Bagchi, S.; Yuan, R.; Engleman, E.G. Immune Checkpoint Inhibitors for the Treatment of Cancer: Clinical Impact and Mechanisms of Response and Resistance. Annu. Rev. Pathol. 2021, 16, 223–249. [Google Scholar] [CrossRef]
- Qian, W.; Zhao, M.; Wang, R.; Li, H. Fibrinogen-like protein 1 (FGL1): The next immune checkpoint target. J. Hematol. Oncol. 2021, 14, 147. [Google Scholar] [CrossRef] [PubMed]
- Jing, C.-Y.; Fu, Y.-P.; Yi, Y.; Zhang, M.-X.; Zheng, S.-S.; Huang, J.-L.; Gan, W.; Xu, X.; Lin, J.-J.; Zhang, J.; et al. HHLA2 in intrahepatic cholangiocarcinoma: An immune checkpoint with prognostic significance and wider expression compared with PD-L1. J. ImmunoTherapy Cancer 2019, 7, 77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oh, D.-Y.; He, A.R.; Qin, S.; Chen, L.-T.; Okusaka, T.; Vogel, A.; Kim, J.W.; Suksombooncharoen, T.; Lee, M.A.; Kitano, M.; et al. Durvalumab plus Gemcitabine and Cisplatin in Advanced Biliary Tract Cancer. NEJM Evid. 2022, 1, EVIDoa2200015. [Google Scholar] [CrossRef]
- Sharonov, G.V.; Serebrovskaya, E.O.; Yuzhakova, D.V.; Britanova, O.V.; Chudakov, D.M. B cells, plasma cells and antibody repertoires in the tumour microenvironment. Nat. Rev. Immunol. 2020, 20, 294–307. [Google Scholar] [CrossRef] [PubMed]
- Edwards, J.; Wilmott, J.S.; Madore, J.; Gide, T.N.; Quek, C.; Tasker, A.; Ferguson, A.; Chen, J.; Hewavisenti, R.; Hersey, P.; et al. CD103+ Tumor-Resident CD8+ T Cells Are Associated with Improved Survival in Immunotherapy-Naïve Melanoma Patients and Expand Significantly During Anti–PD-1 Treatment. Clin. Cancer Res. 2018, 24, 3036–3045. [Google Scholar] [CrossRef] [Green Version]
- Oh, D.Y.; Kwek, S.S.; Raju, S.S.; Li, T.; McCarthy, E.; Chow, E.; Aran, D.; Ilano, A.; Pai, C.-C.S.; Rancan, C.; et al. Intratumoral CD4+ T Cells Mediate Anti-tumor Cytotoxicity in Human Bladder Cancer. Cell 2020, 181, 1612–1625.e1613. [Google Scholar] [CrossRef]
- Sautès-Fridman, C.; Petitprez, F.; Calderaro, J.; Fridman, W.H. Tertiary lymphoid structures in the era of cancer immunotherapy. Nat. Rev. Cancer 2019, 19, 307–325. [Google Scholar] [CrossRef]
- Sautès-Fridman, C.; Lawand, M.; Giraldo, N.A.; Kaplon, H.; Germain, C.; Fridman, W.H.; Dieu-Nosjean, M.C. Tertiary Lymphoid Structures in Cancers: Prognostic Value, Regulation, and Manipulation for Therapeutic Intervention. Front. Immunol. 2016, 7, 407. [Google Scholar] [CrossRef] [Green Version]
- Dieu-Nosjean, M.C.; Goc, J.; Giraldo, N.A.; Sautès-Fridman, C.; Fridman, W.H. Tertiary lymphoid structures in cancer and beyond. Trends Immunol. 2014, 35, 571–580. [Google Scholar] [CrossRef]
- Van Hooren, L.; Vaccaro, A.; Ramachandran, M.; Vazaios, K.; Libard, S.; Van De Walle, T.; Georganaki, M.; Huang, H.; Pietilä, I.; Lau, J.; et al. Agonistic CD40 therapy induces tertiary lymphoid structures but impairs responses to checkpoint blockade in glioma. Nat. Commun. 2021, 12, 1–14. [Google Scholar] [CrossRef]
- Bruno, T.C. New predictors for immunotherapy responses sharpen our view of the tumour microenvironment. Nature 2020, 577, 474–476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fridman, W.H.; Zitvogel, L.; Sautès–Fridman, C.; Kroemer, G. The immune contexture in cancer prognosis and treatment. Nat. Rev. Clin. Oncol. 2017, 14, 717–734. [Google Scholar] [CrossRef] [PubMed]
- Sautès-Fridman, C.; Verneau, J.; Sun, C.M.; Moreira, M.; Chen, T.W.; Meylan, M.; Petitprez, F.; Fridman, W.H. Tertiary Lymphoid Structures and B cells: Clinical impact and therapeutic modulation in cancer. Semin. Immunol. 2020, 48, 101406. [Google Scholar] [CrossRef]
- Calderaro, J.; Petitprez, F.; Becht, E.; Laurent, A.; Hirsch, T.Z.; Rousseau, B.; Luciani, A.; Amaddeo, G.; Derman, J.; Charpy, C.; et al. Intra-tumoral tertiary lymphoid structures are associated with a low risk of early recurrence of hepatocellular carcinoma. J. Hepatol. 2019, 70, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wang, J.; Liu, H.; Lan, T.; Xu, L.; Wang, G.; Yuan, K.; Wu, H. Existence of intratumoral tertiary lymphoid structures is associated with immune cells infiltration and predicts better prognosis in early-stage hepatocellular carcinoma. Aging 2020, 12, 3451–3472. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Liu, X.; Wang, D.; Wang, Y.; Lu, H.; Wen, S.; Fang, J.; Cheng, B.; Wang, Z. Prognostic value of tertiary lymphoid structure and tumour infiltrating lymphocytes in oral squamous cell carcinoma. Int. J. Oral Sci. 2020, 12, 24. [Google Scholar] [CrossRef] [PubMed]
- Finkin, S.; Yuan, D.; Stein, I.; Taniguchi, K.; Weber, A.; Unger, K.; Browning, J.L.; Goossens, N.; Nakagawa, S.; Gunasekaran, G.; et al. Ectopic lymphoid structures function as microniches for tumor progenitor cells in hepatocellular carcinoma. Nat. Immunol. 2015, 16, 1235–1244. [Google Scholar] [CrossRef]
- Bento, D.C.; Jones, E.; Junaid, S.; Tull, J.; Williams, G.T.; Godkin, A.; Ager, A.; Gallimore, A. High endothelial venules are rare in colorectal cancers but accumulate in extra-tumoral areas with disease progression. OncoImmunology 2015, 4, e974374. [Google Scholar] [CrossRef]
- Figenschau, S.L.; Fismen, S.; Fenton, K.A.; Fenton, C.; Mortensen, E.S. Tertiary lymphoid structures are associated with higher tumor grade in primary operable breast cancer patients. BMC Cancer 2015, 15, 101. [Google Scholar] [CrossRef] [Green Version]
- Ding, G.-Y.; Ma, J.-Q.; Yun, J.-P.; Chen, X.; Ling, Y.; Zhang, S.; Shi, J.-Y.; Chang, Y.-Q.; Ji, Y.; Wang, X.-Y.; et al. Distribution and density of tertiary lymphoid structures predict clinical outcome in intrahepatic cholangiocarcinoma. J. Hepatol. 2021, 76, 608–618. [Google Scholar] [CrossRef]
- Je, B.; MKe, G.; Ce, W. TNM Classification of Malignant Tumours, 8th ed.; Wiley-Blackwell: New York, NY, USA, 2017. [Google Scholar]
- Kroeger, D.R.; Milne, K.; Nelson, B.H. Tumor-Infiltrating Plasma Cells Are Associated with Tertiary Lymphoid Structures, Cytolytic T-Cell Responses, and Superior Prognosis in Ovarian Cancer. Clin. Cancer Res. 2016, 22, 3005–3015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siliņa, K.; Soltermann, A.; Attar, F.M.; Casanova, R.; Uckeley, Z.M.; Thut, H.; Wandres, M.; Isajevs, S.; Cheng, P.; Curioni-Fontecedro, A.; et al. Germinal Centers Determine the Prognostic Relevance of Tertiary Lymphoid Structures and Are Impaired by Corticosteroids in Lung Squamous Cell Carcinoma. Cancer Res. 2018, 78, 1308–1320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Posch, F.; Silina, K.; Leibl, S.; Mündlein, A.; Moch, H.; Siebenhüner, A.; Samaras, P.; Riedl, J.; Stotz, M.; Szkandera, J.; et al. Maturation of tertiary lymphoid structures and recurrence of stage II and III colorectal cancer. OncoImmunology 2018, 7, e1378844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giuliante, F.; Ardito, F.; Guglielmi, A.; Aldrighetti, L.; Ferrero, A.; Calise, F.; Giulini, S.M.; Jovine, E.; Breccia, C.; De Rose, A.M.; et al. Association of Lymph Node Status With Survival in Patients After Liver Resection for Hilar Cholangiocarcinoma in an Italian Multicenter Analysis. JAMA Surg. 2016, 151, 916. [Google Scholar] [CrossRef]
- Nagino, M.; Ebata, T.; Yokoyama, Y.; Igami, T.; Sugawara, G.; Takahashi, Y.; Nimura, Y. Evolution of surgical treatment for perihilar cholangiocarcinoma: A single-center 34-year review of 574 consecutive resections. Ann. Surg. 2013, 258, 129–140. [Google Scholar] [CrossRef]
- Lurje, G.; Bednarsch, J.; Czigany, Z.; Lurje, I.; Schlebusch, I.K.; Boecker, J.; Meister, F.A.; Tacke, F.; Roderburg, C.; Den Dulk, M.; et al. The prognostic role of lymphovascular invasion and lymph node metastasis in perihilar and intrahepatic cholangiocarcinoma. Eur. J. Surg. Oncol. 2019, 45, 1468–1478. [Google Scholar] [CrossRef]
- Wang, J.; Ilyas, S. Targeting the tumor microenvironment in cholangiocarcinoma: Implications for therapy. Expert Opin. Investig. Drugs 2021, 30, 429–438. [Google Scholar] [CrossRef]
- Loeuillard, E.; Yang, J.; Buckarma, E.; Wang, J.; Liu, Y.; Conboy, C.; Pavelko, K.D.; Li, Y.; O’Brien, D.; Wang, C.; et al. Targeting tumor-associated macrophages and granulocytic myeloid-derived suppressor cells augments PD-1 blockade in cholangiocarcinoma. J. Clin. Investig. 2020, 130, 5380–5396. [Google Scholar] [CrossRef]
- Job, S.; Rapoud, D.; Dos Santos, A.; Gonzalez, P.; Desterke, C.; Pascal, G.; Elarouci, N.; Ayadi, M.; Adam, R.; Azoulay, D.; et al. Identification of Four Immune Subtypes Characterized by Distinct Composition and Functions of Tumor Microenvironment in Intrahepatic Cholangiocarcinoma. Hepatology 2020, 72, 965–981. [Google Scholar] [CrossRef] [Green Version]
- Zhou, G.; Sprengers, D.; Mancham, S.; Erkens, R.; Boor, P.P.C.; van Beek, A.A.; Doukas, M.; Noordam, L.; Campos Carrascosa, L.; de Ruiter, V.; et al. Reduction of immunosuppressive tumor microenvironment in cholangiocarcinoma by ex vivo targeting immune checkpoint molecules. J. Hepatol. 2019, 71, 753–762. [Google Scholar] [CrossRef]
- Kang, W.; Feng, Z.; Luo, J.; He, Z.; Liu, J.; Wu, J.; Rong, P. Tertiary Lymphoid Structures in Cancer: The Double-Edged Sword Role in Antitumor Immunity and Potential Therapeutic Induction Strategies. Front. Immunol. 2021, 12, 689270. [Google Scholar] [CrossRef] [PubMed]
- Heesters, B.A.; Chatterjee, P.; Kim, Y.-A.; Gonzalez, S.F.; Kuligowski, M.P.; Kirchhausen, T.; Carroll, M.C. Endocytosis and Recycling of Immune Complexes by Follicular Dendritic Cells Enhances B Cell Antigen Binding and Activation. Immunity 2013, 38, 1164–1175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garin, A.; Meyer-Hermann, M.; Contie, M.; Figge, M.T.; Buatois, V.; Gunzer, M.; Toellner, K.-M.; Elson, G.; Kosco-Vilbois, M.H. Toll-like Receptor 4 Signaling by Follicular Dendritic Cells Is Pivotal for Germinal Center Onset and Affinity Maturation. Immunity 2010, 33, 84–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez, A.B.; Engelhard, V.H. Insights into Tumor-Associated Tertiary Lymphoid Structures: Novel Targets for Antitumor Immunity and Cancer Immunotherapy. Cancer Immunol. Res. 2020, 8, 1338–1345. [Google Scholar] [CrossRef]
- Johansson-Percival, A.; He, B.; Li, Z.-J.; Kjellén, A.; Russell, K.; Li, J.; Larma, I.; Ganss, R. De novo induction of intratumoral lymphoid structures and vessel normalization enhances immunotherapy in resistant tumors. Nat. Immunol. 2017, 18, 1207–1217. [Google Scholar] [CrossRef]
- Zhu, G.; Nemoto, S.; Mailloux, A.W.; Perez-Villarroel, P.; Nakagawa, R.; Falahat, R.; Berglund, A.E.; Mulé, J.J. Induction of Tertiary Lymphoid Structures With Antitumor Function by a Lymph Node-Derived Stromal Cell Line. Front. Immunol. 2018, 9, 1609. [Google Scholar] [CrossRef] [Green Version]
- Gallotta, M.; Assi, H.; Degagné, É.; Kannan, S.K.; Coffman, R.L.; Guiducci, C. Inhaled TLR9 Agonist Renders Lung Tumors Permissive to PD-1 Blockade by Promoting Optimal CD4+ and CD8+ T-cell Interplay. Cancer Res. 2018, 78, 4943–4956. [Google Scholar] [CrossRef] [Green Version]
- Groeneveld, C.S.; Fontugne, J.; Cabel, L.; Bernard-Pierrot, I.; Radvanyi, F.; Allory, Y.; de Reyniès, A. Tertiary lymphoid structures marker CXCL13 is associated with better survival for patients with advanced-stage bladder cancer treated with immunotherapy. Eur. J. Cancer 2021, 148, 181–189. [Google Scholar] [CrossRef]
- Okada, H.; Uza, N.; Matsumori, T.; Matsumoto, S.; Muramoto, Y.; Ota, S.; Nakamura, T.; Yoshida, H.; Hirano, T.; Kuwada, T.; et al. A novel technique for mapping biopsy of bile duct cancer. Endoscopy 2021, 53, 647–651. [Google Scholar] [CrossRef]
Clinicopathological Variables | Available Data (n) | Percentage (n%) | TLS− pCCA n = 13 (14.0%) | TLS+ pCCA n = 80 (86.0%) | p-Value |
---|---|---|---|---|---|
Age, years | |||||
≤60 | 54 | 58.06 | 10 | 44 | 0.137 |
>60 | 39 | 41.94 | 3 | 36 | |
Sex | |||||
male | 53 | 56.99 | 5 | 48 | 0.146 |
female | 40 | 43.01 | 8 | 32 | |
Tumor size, cm | |||||
≤2.5 | 27 | 29.03 | 2 | 25 | 0.333 * |
>2.5 | 66 | 70.97 | 11 | 55 | |
Differentiation | |||||
moderate + good | 73 | 78.49 | 9 | 64 | 0.467 * |
poor | 20 | 21.51 | 4 | 16 | |
T stage | |||||
T1 + T2 | 62 | 66.67 | 4 | 58 | 0.008 * |
T3 + T4 | 31 | 33.33 | 9 | 22 | |
Lymph node metastasis | |||||
absence | 54 | 58.06 | 5 | 49 | 0.123 |
presence | 39 | 41.94 | 8 | 31 | |
M stage | |||||
M0 | 88 | 94.62 | 13 | 75 | 1 * |
M1 | 5 | 5.38 | 0 | 5 | |
TNM stage | |||||
I + II | 39 | 41.94 | 2 | 37 | 0.036 |
III + IV | 54 | 58.06 | 11 | 43 | |
CEA, ng/mL | |||||
≤4 | 53 | 56.99 | 6 | 47 | 0.395 |
>4 | 40 | 43.01 | 7 | 33 | |
CA19-9, U/mL | |||||
≤135 | 31 | 33.33 | 3 | 28 | 0.533 * |
>135 | 62 | 66.67 | 10 | 52 | |
HBsAg | |||||
absence | 75 | 80.65 | 9 | 66 | 0.270 * |
presence | 18 | 19.35 | 4 | 14 | |
Microscopic residual tumor | |||||
R0 | 69 | 74.19 | 9 | 60 | 0.735 * |
R1 | 24 | 25.81 | 4 | 20 |
Clinicopathological Variables | S-TLS− pCCA n = 32 (34.4%) | S-TLS+ pCCA n = 61 (65.6%) | p-Value |
---|---|---|---|
Age, years | |||
≤60 | 24 | 30 | 0.017 |
>60 | 8 | 31 | |
Sex | |||
male | 14 | 39 | 0.062 |
female | 18 | 22 | |
Tumor size, cm | |||
≤2.5 | 6 | 21 | 0.114 |
>2.5 | 26 | 40 | |
Differentiation | |||
moderate + good | 24 | 49 | 0.552 |
poor | 8 | 12 | |
T stage | |||
T1 + T2 | 17 | 45 | 0.045 |
T3 + T4 | 15 | 16 | |
Lymph node metastasis | |||
absence | 12 | 42 | 0.004 |
presence | 20 | 19 | |
M stage | |||
M0 | 31 | 57 | 0.657 * |
M1 | 1 | 4 | |
TNM stage | |||
I + II | 8 | 31 | 0.017 |
III + IV | 24 | 30 | |
CEA, ng/mL | |||
≤4 | 17 | 36 | 0.586 |
>4 | 15 | 25 | |
CA19-9, U/mL | |||
≤135 | 8 | 23 | 0.217 |
>135 | 24 | 38 | |
HBsAg | |||
absence | 25 | 50 | 0.656 |
presence | 7 | 11 | |
Microscopic residual tumor | |||
R0 | 24 | 45 | 0.898 |
R1 | 8 | 16 |
Variables | OS | |||||
---|---|---|---|---|---|---|
Univariate | Multivariate | |||||
HR | 95% CI | p-Value | HR | 95% CI | p-Value | |
Age, y (>60/≤60) | 1.535 | 0.943–2.498 | 0.085 | |||
Sex (male/female) | 0.645 | 0.397–1.049 | 0.077 | |||
Tumor size, cm (>2.5/≤2.5) | 1.396 | 0.810–2.404 | 0.229 | |||
Differentiation (poor/moderate + good) | 1.628 | 0.918–2.888 | 0.095 | |||
T stage (T3 + T4/T1 + T2) | 1.381 | 0.836–2.281 | 0.207 | |||
Lymph node metastasis (presence/absence) | 1.870 | 1.151–3.038 | 0.012 | 1.291 | 0.745–2.237 | 0.363 |
M stage (M1/M0) | 1.529 | 0.553–4.231 | 0.413 | |||
TNM stage (III + IV/I + II) | 1.585 | 0.956–2.626 | 0.074 | |||
CEA, ng/mL (>4/≤4) | 1.755 | 1.092–2.833 | 0.021 | 1.388 | 0.821–2.349 | 0.221 |
CA19-9, U/mL (>135/≤135) | 1.850 | 1.112–3.049 | 0.016 | 1.768 | 0.975–3.205 | 0.061 |
HBsAg (presence/absence) | 1.184 | 0.655–2.140 | 0.577 | |||
Microscopic residual tumor (R1/R0) | 1.141 | 0.674–1.932 | 0.623 | |||
S-TLS (presence/absence) | 0.472 | 0.284–0.784 | 0.004 | 0.570 | 0.330–0.985 | 0.044 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, F.-P.; Zhu, K.; Zhu, T.-F.; Liu, C.-Q.; Zhang, H.-H.; Xu, L.-B.; Xiao, G.; Liu, C. Intra-Tumoral Secondary Follicle-like Tertiary Lymphoid Structures Are Associated with a Superior Prognosis of Overall Survival of Perihilar Cholangiocarcinoma. Cancers 2022, 14, 6107. https://doi.org/10.3390/cancers14246107
Zhang F-P, Zhu K, Zhu T-F, Liu C-Q, Zhang H-H, Xu L-B, Xiao G, Liu C. Intra-Tumoral Secondary Follicle-like Tertiary Lymphoid Structures Are Associated with a Superior Prognosis of Overall Survival of Perihilar Cholangiocarcinoma. Cancers. 2022; 14(24):6107. https://doi.org/10.3390/cancers14246107
Chicago/Turabian StyleZhang, Fa-Peng, Ke Zhu, Tai-Feng Zhu, Chao-Qun Liu, Hong-Hua Zhang, Lei-Bo Xu, Gang Xiao, and Chao Liu. 2022. "Intra-Tumoral Secondary Follicle-like Tertiary Lymphoid Structures Are Associated with a Superior Prognosis of Overall Survival of Perihilar Cholangiocarcinoma" Cancers 14, no. 24: 6107. https://doi.org/10.3390/cancers14246107
APA StyleZhang, F. -P., Zhu, K., Zhu, T. -F., Liu, C. -Q., Zhang, H. -H., Xu, L. -B., Xiao, G., & Liu, C. (2022). Intra-Tumoral Secondary Follicle-like Tertiary Lymphoid Structures Are Associated with a Superior Prognosis of Overall Survival of Perihilar Cholangiocarcinoma. Cancers, 14(24), 6107. https://doi.org/10.3390/cancers14246107