Dosimetric Benefit of Adaptive Magnetic Resonance-Guided Stereotactic Body Radiotherapy of Liver Metastases
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Treatment Characteristics
2.2. Endpoints, Statistical Methods and Ethics
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Goodman, B.D.; Mannina, E.M.; Althouse, S.K.; Maluccio, M.A.; Cárdenes, H.R. Long-term safety and efficacy of stereotactic body radiation therapy for hepatic oligometastases. Pract. Radiat. Oncol. 2016, 6, 86–95. [Google Scholar] [CrossRef] [PubMed]
- Andratschke, N.; Alheid, H.; Allgäuer, M.; Becker, G.; Blanck, O.; Boda-Heggemann, J.; Brunner, T.; Duma, M.; Gerum, S.; Guckenberger, M.; et al. The SBRT database initiative of the German Society for Radiation Oncology (DEGRO): Patterns of care and outcome analysis of stereotactic body radiotherapy (SBRT) for liver oligo metastases in 474 patients with 623 metastases. BMC Cancer 2018, 18, 283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joo, J.H.; Park, J.-H.; Kim, J.C.; Yu, C.S.; Lim, S.-B.; Park, I.J.; Kim, T.W.; Hong, Y.S.; Kim, K.-P.; Yoon, S.M.; et al. Local Control Outcomes Using Stereotactic Body Radiation Therapy for Liver Metastases from Colorectal Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2017, 99, 876–883. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Z.-C.; Fan, J.; Tang, Z.-Y.; Zhou, J.; Qin, L.-X.; Wang, J.-H.; Sun, H.-C.; Wang, B.-L.; Zhang, J.-Y.; Jiang, G.-L.; et al. A comparison of treatment combinations with and without radiotherapy for hepatocellular carcinoma with portal vein and/or inferior vena cava tumor thrombus. Int. J. Radiat. Oncol. Biol. Phys. 2005, 61, 432–443. [Google Scholar] [CrossRef] [PubMed]
- Noel, C.E.; Parikh, P.J.; Spencer, C.R.; Green, O.L.; Hu, Y.; Mutic, S.; Olsen, J.R. Comparison of onboard low-field magnetic resonance imaging versus onboard computed tomography for anatomy visualization in radiotherapy. Acta Oncol. 2015, 54, 1474–1482. [Google Scholar] [CrossRef]
- Doi, H.; Shiomi, H.; Masai, N.; Tatsumi, D.; Igura, T.; Imai, Y.; Oh, R.J. Threshold doses and prediction of visually apparent liver dysfunction after stereotactic body radiation therapy in cirrhotic and normal livers using magnetic resonance imaging. J. Radiat. Res. 2016, 57, 294–300. [Google Scholar] [CrossRef] [Green Version]
- Kavanagh, B.D.; Pan, C.C.; Dawson, L.A.; Das, S.K.; Li, X.A.; Haken, R.T.; Miften, M. Radiation dose-volume effects in the stomach and small bowel. Int. J. Radiat. Oncol. Biol. Phys. 2010, 76 (Suppl. S3), S101–S107. [Google Scholar] [CrossRef]
- Miften, M.; Vinogradskiy, Y.; Moiseenko, V.; Grimm, J.; Yorke, E.; Jackson, A.; Tomé, W.A.; Ten Haken, R.K.; Ohri, N.; Méndez Romero, A.; et al. Radiation Dose-Volume Effects for Liver SBRT. Int. J. Radiat. Oncol. Biol. Phys. 2018, 110, 196–205. [Google Scholar] [CrossRef]
- Bae, S.H.; Kim, M.-S.; Cho, C.K.; Kang, J.-K.; Lee, S.Y.; Lee, K.-N.; Lee, D.H.; Han, C.J.; Yang, K.Y.; Kim, S.B. Predictor of Severe Gastroduodenal Toxicity After Stereotactic Body Radiotherapy for Abdominopelvic Malignancies. Int. J. Radiat. Oncol. Biol. Phys. 2012, 84, e469–e474. [Google Scholar] [CrossRef]
- Van den Begin, R.; Engels, B.; Gevaert, T.; Duchateau, M.; Tournel, K.; Verellen, D.; Storme, G.; De Ridder, M. Impact of inadequate respiratory motion management in SBRT for oligometastatic colorectal cancer. Radiother. Oncol. 2014, 113, 235–239. [Google Scholar] [CrossRef]
- Bertholet, J.; Worm, E.S.; Fledelius, W.; Hoyer, M.; Poulsen, P.R. Time-Resolved Intrafraction Target Translations and Rotations during Stereotactic Liver Radiation Therapy: Implications for Marker-based Localization Accuracy. Int. J. Radiat. Oncol. Biol. Phys. 2016, 95, 802–809. [Google Scholar] [CrossRef] [PubMed]
- Poulsen, P.R.; Worm, E.S.; Petersen, J.B.; Grau, C.; Fledelius, W.; Hoyer, M. Kilovoltage intrafraction motion monitoring and target dose reconstruction for stereotactic volumetric modulated arc therapy of tumors in the liver. Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol. 2014, 111, 424–430. [Google Scholar] [CrossRef] [PubMed]
- Worm, E.S.; Hoyer, M.; Fledelius, W.; Hansen, A.T.; Poulsen, P.R. Variations in magnitude and directionality of respiratory target motion throughout full treatment courses of stereotactic body radiotherapy for tumors in the liver. Acta Oncol. 2013, 52, 1437–1444. [Google Scholar] [CrossRef]
- Lanciano, R.; Lamond, J.; Yang, J.; Feng, J.; Arrigo, S.; Good, M.; Brady, L. Stereotactic body radiation therapy for patients with heavily pretreated liver metastases and liver tumors. Front. Oncol. 2012, 2, 23. [Google Scholar] [CrossRef] [Green Version]
- Boda-Heggemann, J.; Knopf, A.-C.; Simeonova-Chergou, A.; Wertz, H.; Stieler, F.; Jahnke, A.; Jahnke, L.; Fleckenstein, J.; Vogel, L.; Arns, A.; et al. Deep Inspiration Breath Hold-Based Radiation Therapy: A Clinical Review. Int. J. Radiat. Oncol. Biol. Phys. 2016, 94, 478–492. [Google Scholar] [CrossRef] [PubMed]
- Alderliesten, T.; Sonke, J.J.; Betgen, A.; van Vliet-Vroegindeweij, C.; Remeijer, P. 3D surface imaging for monitoring intrafraction motion in frameless stereotactic body radiotherapy of lung cancer. Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol. 2012, 105, 155–160. [Google Scholar] [CrossRef]
- Hughes, S.; McClelland, J.; Tarte, S.; Lawrence, D.; Ahmad, S.; Hawkes, D.; Landau, D. Assessment of two novel ventilatory surrogates for use in the delivery of gated/tracked radiotherapy for non-small cell lung cancer. Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol. 2009, 91, 336–341. [Google Scholar] [CrossRef]
- Freislederer, P.; Kügele, M.; Öllers, M.; Swinnen, A.; Sauer, T.O.; Bert, C.; Giantsoudi, D.; Corradini, S.; Batista, V. Recent advances in Surface Guided Radiation Therapy. Radiat. Oncol. 2020, 15, 187. [Google Scholar] [CrossRef]
- Stick, L.B.; Vogelius, I.R.; Risum, S.; Josipovic, M. Intrafractional fiducial marker position variations in stereotactic liver radiotherapy during voluntary deep inspiration breath-hold. Br. J. Radiol. 2020, 93, 20200859. [Google Scholar] [CrossRef]
- Brock, K.K.; Dawson, L.A. Adaptive management of liver cancer radiotherapy. Semin. Radiat. Oncol. 2010, 20, 107–115. [Google Scholar] [CrossRef]
- Ugurluer, G.; Mustafayev, T.Z.; Gungor, G.; Atalar, B.; Abacioglu, U.; Sengoz, M.; Agaoglu, F.; Demir, G.; Ozyar, E. Stereotactic MR-guided online adaptive radiation therapy (SMART) for the treatment of liver metastases in oligometastatic patients: Initial clinical experience. Radiat. Oncol. J. 2021, 39, 33. [Google Scholar] [CrossRef] [PubMed]
- Daamen, L.A.; de Mol van Otterloo, S.R.; van Goor, I.W.J.M.; Eijkelenkamp, H.; Erickson, B.A.; Hall, W.A.; Heerkens, H.D.; Meijer, G.J.; Molenaar, I.Q.; van Santvoort, H.C.; et al. Online adaptive MR-guided stereotactic radiotherapy for unresectable malignancies in the upper abdomen using a 1.5 T MR-linac. Acta Oncol. 2022, 61, 111–115. [Google Scholar] [CrossRef] [PubMed]
- Stanescu, T.; Shessel, A.; Carpino-Rocca, C.; Taylor, E.; Semeniuk, O.; Li, W.; Barry, A.; Lukovic, J.; Dawson, L.; Hosni, A. MRI-Guided Online Adaptive Stereotactic Body Radiation Therapy of Liver and Pancreas Tumors on an MR-Linac System. Cancers 2022, 14, 716. [Google Scholar] [CrossRef]
- van Sörnsen de Koste, J.R.; Palacios, M.A.; Bruynzeel, A.M.E.; Slotman, B.J.; Senan, S.; Lagerwaard, F.J. MR-guided Gated Stereotactic Radiation Therapy Delivery for Lung, Adrenal, and Pancreatic Tumors: A Geometric Analysis. Int. J. Radiat. Oncol. Biol. Phys. 2018, 102, 858–866. [Google Scholar] [CrossRef] [PubMed]
- Weykamp, F.; Hoegen, P.; Klüter, S.; Spindeldreier, C.K.; König, L.; Seidensaal, K.; Regnery, S.; Liermann, J.; Rippke, C.; Koerber, S.A.; et al. Magnetic Resonance-Guided Stereotactic Body Radiotherapy of Liver Tumors: Initial Clinical Experience and Patient-Reported Outcomes. Front. Oncol. 2021, 11, 2103. [Google Scholar] [CrossRef]
- Guckenberger, M.; Baus, W.W.; Blanck, O.; Combs, S.E.; Debus, J.; Engenhart-Cabillic, R.; Gauer, T.; Grosu, A.L.; Schmitt, D.; Tanadini-Lang, S.; et al. Definition and quality requirements for stereotactic radiotherapy: Consensus statement from the DEGRO/DGMP Working Group Stereotactic Radiotherapy and Radiosurgery. Strahlenther. Und Onkol. 2020, 196, 417–420. [Google Scholar] [CrossRef] [Green Version]
- Klüter, S.; Katayama, S.; Spindeldreier, C.K.; Koerber, S.A.; Major, G.; Alber, M.; Akbaba, S.; Debus, J.; Hörner-Rieber, J. First prospective clinical evaluation of feasibility and patient acceptance of magnetic resonance-guided radiotherapy in Germany. Strahlenther. Und Onkol. 2020, 196, 691–698. [Google Scholar] [CrossRef] [Green Version]
- Klüter, S. Technical design and concept of a 0.35 T MR-Linac. Clin. Transl. Radiat. Oncol. 2019, 18, 98–101. [Google Scholar] [CrossRef] [Green Version]
- Bohoudi, O.; Bruynzeel, A.; Senan, S.; Cuijpers, J.; Slotman, B.; Lagerwaard, F.; Palacios, M. Fast and robust online adaptive planning in stereotactic MR-guided adaptive radiation therapy (SMART) for pancreatic cancer. Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol. 2017, 125, 439–444. [Google Scholar] [CrossRef]
- Padgett, K.R.; Simpson, G.; Asher, D.; Portelance, L.; Bossart, E.; Dogan, N. Assessment of online adaptive MR-guided stereotactic body radiotherapy of liver cancers. Phys. Med. 2020, 77, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Mayinger, M.; Ludwig, R.; Christ, S.M.; Dal Bello, R.; Ryu, A.; Weitkamp, N.; Pavic, M.; Schüler, H.G.; Wilke, L.; Guckenberger, M.; et al. Benefit of replanning in MR-guided online adaptive radiation therapy in the treatment of liver metastasis. Radiat. Oncol. 2021, 16, 84. [Google Scholar] [CrossRef] [PubMed]
- Rogowski, P.; von Bestenbostel, R.; Walter, F.; Straub, K.; Nierer, L.; Kurz, C.; Landry, G.; Reiner, M.; Auernhammer, C.; Belka, C.; et al. Feasibility and Early Clinical Experience of Online Adaptive MR-Guided Radiotherapy of Liver Tumors. Cancers 2021, 13, 1523. [Google Scholar] [CrossRef]
- Nierer, L.; Eze, C.; Mendes, V.D.S.; Braun, J.; Thum, P.; von Bestenbostel, R.; Kurz, C.; Landry, G.; Reiner, M.; Niyazi, M.; et al. Dosimetric benefit of MR-guided online adaptive radiotherapy in different tumor entities: Liver, lung, abdominal lymph nodes, pancreas and prostate. Radiat. Oncol. 2022, 17, 53. [Google Scholar] [CrossRef] [PubMed]
- Kok, E.N.D.; Jansen, E.P.M.; Heeres, B.C.; Kok, N.F.M.; Janssen, T.; van Werkhoven, E.; Sanders, F.R.K.; Ruers, T.J.M.; Nowee, M.E.; Kuhlmann, K.F.D. High versus low dose Stereotactic Body Radiation Therapy for hepatic metastases. Clin. Transl. Radiat. Oncol. 2020, 20, 45–50. [Google Scholar] [CrossRef] [Green Version]
- Ohri, N.; Tomé, W.A.; Romero, A.M.; Miften, M.; Haken, R.K.T.; Dawson, L.A.; Grimm, J.; Yorke, E.; Jackson, A. Local Control After Stereotactic Body Radiation Therapy for Liver Tumors. Int. J. Radiat. Oncol. Biol. Phys. 2021, 110, 188–195. [Google Scholar] [CrossRef] [PubMed]
- Hoegen, P.; Zhang, K.S.; Tonndorf-Martini, E.; Weykamp, F.; Regnery, S.; Naumann, P.; Lang, K.; Ristau, J.; Körber, S.A.; Dreher, C.; et al. MR-guided adaptive versus ITV-based stereotactic body radiotherapy for hepatic metastases (MAESTRO): A randomized controlled phase II trial. Radiat. Oncol. 2022, 17, 1–12. [Google Scholar] [CrossRef]
- Leclerc, C.G.F. Adaptative MR-Guided Stereotactic Body Radiotherapy of Liver Tumors (RASTAF) ClinicalTrials.gov2020. Available online: https://clinicaltrials.gov/ct2/show/NCT04242342 (accessed on 17 November 2022).
- Boda-Heggemann, J.; Attenberger, U.; Budjan, J.; Jahnke, A.; Jahnke, L.; Vogel, L.; Simeonova-Chergou, A.O.; Herskind, C.; Wenz, F.; Lohr, F. MRI morphologic alterations after liver SBRT. Strahlenther. Und Onkol. 2016, 192, 641–648. [Google Scholar] [CrossRef] [PubMed]
- Boda-Heggemann, J.; Jahnke, A.; Chan, M.K.H.; Ardekani, L.S.G.; Hunold, P.; Schäfer, J.P.; Huttenlocher, S.; Wurster, S.; Rades, D.; Hildebrandt, G.; et al. Direct dose correlation of MRI morphologic alterations of healthy liver tissue after robotic liver SBRT. Strahlenther. Und Onkol. 2018, 194, 414–424. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.I.; Park, H.C.; Lim, D.H.; Choi, Y.; Jung, S.H.; Paik, S.W.; Kim, S.H.; Jeong, W.K.; Kim, Y.K. The role of diffusion-weighted magnetic resonance imaging in the treatment response evaluation of hepatocellular carcinoma patients treated with radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 2014, 89, 814–821. [Google Scholar] [CrossRef]
- Lambrecht, M.; Vandecaveye, V.; De Keyzer, F.; Roels, S.; Penninckx, F.; Van Cutsem, E.; Claus, F.; Haustermans, K. Value of diffusion-weighted magnetic resonance imaging for prediction and early assessment of response to neoadjuvant radiochemotherapy in rectal cancer: Preliminary results. Int. J. Radiat. Oncol. Biol. Phys. 2012, 82, 863–870. [Google Scholar] [CrossRef] [PubMed]
- Ajdari, A.; Xie, Y.; Richter, C.; Niyazi, M.; Duda, D.G.; Hong, T.S.; Bortfeld, T. Toward Personalized Radiation Therapy of Liver Metastasis: Importance of Serial Blood Biomarkers. JCO Clin. Cancer Inform. 2021, 5, 315–325. [Google Scholar] [CrossRef] [PubMed]
median age | 63 years | range 46–89 years |
median Karnofsky Score | 90% | range 70–100% |
female/male | 11/12 | 47.8%/52.2% |
Primary Tumor | ||
Colorectal Carcinoma | 6 | 26.1% |
Pancreatic Cancer | 6 | 26.1% |
Breast Cancer | 5 | 21.7% |
Esophageal Cancer | 3 | 13.0% |
Renal Cell Carcinoma | 1 | 4.3% |
Non Small Cell Lung Cancer | 1 | 4.3% |
Parotic Gland Cancer | 1 | 4.3% |
Total number of treatment series per patient (n = 23 patients) | ||
n = 1 | 18 | 78.3% |
n = 2 | 4 | 17.4% |
n = 4 | 1 | 4.3% |
Total number of liver metastases per treatment series (n = 30 treatment series) | ||
n = 1 | 24 | 80.0% |
n = 2 | 6 | 20.0% |
Fractionation (n = 30 treatment series) | ||
5 × 10 Gy | 14 | 46.6% |
10 × 5 Gy | 10 | 33.3% |
3 × 15 Gy | 3 | 10.0% |
8 × 7.5 Gy | 2 | 6.7% |
12 × 4 Gy | 1 | 3.3% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weykamp, F.; Katsigiannopulos, E.; Piskorski, L.; Regnery, S.; Hoegen, P.; Ristau, J.; Renkamp, C.K.; Liermann, J.; Forster, T.; Lang, K.; et al. Dosimetric Benefit of Adaptive Magnetic Resonance-Guided Stereotactic Body Radiotherapy of Liver Metastases. Cancers 2022, 14, 6041. https://doi.org/10.3390/cancers14246041
Weykamp F, Katsigiannopulos E, Piskorski L, Regnery S, Hoegen P, Ristau J, Renkamp CK, Liermann J, Forster T, Lang K, et al. Dosimetric Benefit of Adaptive Magnetic Resonance-Guided Stereotactic Body Radiotherapy of Liver Metastases. Cancers. 2022; 14(24):6041. https://doi.org/10.3390/cancers14246041
Chicago/Turabian StyleWeykamp, Fabian, Efthimios Katsigiannopulos, Lars Piskorski, Sebastian Regnery, Philipp Hoegen, Jonas Ristau, C. Katharina Renkamp, Jakob Liermann, Tobias Forster, Kristin Lang, and et al. 2022. "Dosimetric Benefit of Adaptive Magnetic Resonance-Guided Stereotactic Body Radiotherapy of Liver Metastases" Cancers 14, no. 24: 6041. https://doi.org/10.3390/cancers14246041
APA StyleWeykamp, F., Katsigiannopulos, E., Piskorski, L., Regnery, S., Hoegen, P., Ristau, J., Renkamp, C. K., Liermann, J., Forster, T., Lang, K., König, L., Rippke, C., Buchele, C., Debus, J., Klüter, S., & Hörner-Rieber, J. (2022). Dosimetric Benefit of Adaptive Magnetic Resonance-Guided Stereotactic Body Radiotherapy of Liver Metastases. Cancers, 14(24), 6041. https://doi.org/10.3390/cancers14246041