Image-Guided Proton Therapy: A Comprehensive Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Imaging for Simulation
2.1. CT-Based Simulation
2.2. MRI-Based Simulation
Method | Advantages | Disadvantages |
---|---|---|
Photon CT | Widespread availability and familiarity of CT simulation for therapists and physicians Dual-energy CT provides additional clarification of soft tissue density | Risk of Contrast-induced Nephropathy Uncertainty with the conversion from HU to proton-stopping power |
MRI | Superior soft tissue contrast to Photon CT Possibility of acquiring sequences that provide additional information about tumor biology Registration of diagnostic MRI to simulation CT is not needed | Initial unfamiliarity with performing MRI simulation Older pacemakers may not be MRI-compatible [10] Requires generation of pseudo-CT for patient setup and dose calculation |
Proton CT | Direct visualization of proton-stopping power | Current lack of proton CT scanners ready for clinical use Lower-quality anatomic visualization |
3. Imaging for Pretreatment Positioning
3.1. 2D Kilovoltage Imaging
3.1.1. Anatomical Structure
3.1.2. Fiducial Markers
3.1.3. Fluoroscopy
3.2. 3D CT Imaging
3.2.1. CT on Rails
3.2.2. Cone-Beam CT
3.3. Visual Image Guidance
3.3.1. Marker-Based
3.3.2. Surface-Based
3.4. MRI Guidance
4. Real-Time Imaging and Dose-Guided RT
4.1. PET
4.2. Prompt Gamma
4.3. Ionoacoustics
5. Image Guidance for Upright Treatment
6. FLASH RT
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Slater, J.M.; Archambeau, J.O.; Miller, D.W.; Notarus, M.I.; Preston, W.; Slater, J.D. The proton treatment center at loma linda university medical center: Rationale for and description of its development. Int. J. Radiat. Oncol. Biol. Phys. 1992, 22, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Paganetti, H. Range uncertainties in proton therapy and the role of monte carlo simulations. Phys. Med. Biol. 2012, 57, R99–R117. [Google Scholar] [CrossRef] [PubMed]
- Wohlfahrt, P.; Möhler, C.; Hietschold, V.; Menkel, S.; Greilich, S.; Krause, M.; Baumann, M.; Enghardt, W.; Richter, C. Clinical implementation of dual-energy ct for proton treatment planning on pseudo-monoenergetic CT scans. Int. J. Radiat. Oncol. 2017, 97, 427–434. [Google Scholar] [CrossRef] [PubMed]
- McCollough, C.H.; Leng, S.; Yu, L.; Fletcher, J.G. Dual- and multi-energy CT: Principles, technical approaches, and clinical applications. Radiology 2015, 276, 637–653. [Google Scholar] [CrossRef] [PubMed]
- MacKay, R.I. Image guidance for proton therapy. Clin. Oncol. R. Coll. Radiol. G. B 2018, 30, 293–298. [Google Scholar] [CrossRef]
- Algranati, C.; Strigari, L. Imaging strategies in proton therapy for thoracic tumors: A mini review. Front. Oncol. 2022, 12, 833364. [Google Scholar] [CrossRef]
- Dedes, G.; Dickmann, J.; Giacometti, V.; Rit, S.; Krah, N.; Meyer, S.; Bashkirov, V.; Schulte, R.; Johnson, R.P.; Parodi, K.; et al. The role of monte Carlo simulation in understanding the performance of proton computed tomography. Z. Für Med. Phys. 2022, 32, 23–38. [Google Scholar] [CrossRef]
- DeJongh, D.F.; DeJongh, E.A.; Rykalin, V.; DeFillippo, G.; Pankuch, M.; Best, A.W.; Coutrakon, G.; Duffin, K.L.; Karonis, N.T.; Ordoñez, C.E.; et al. A comparison of proton stopping power measured with proton CT and X-ray CT in fresh post-mortem porcine structures. Med. Phys. 2021, 48, 7998–8009. [Google Scholar] [CrossRef]
- Dedes, G.; Dickmann, J.; Niepel, K.; Wesp, P.; Johnson, R.P.; Pankuch, M.; Bashkirov, V.; Rit, S.; Volz, L.; Schulte, R.W.; et al. Experimental comparison of proton ct and dual energy X-ray CT for relative stopping power estimation in proton therapy. Phys. Med. Biol. 2019, 64, 165002. [Google Scholar] [CrossRef]
- Yang, B.; Yuan, J.; Cheung, K.Y.; Huang, C.-Y.; Poon, D.M.C.; Yu, S.K. Magnetic resonance-guided radiation therapy of patients with cardiovascular implantable electronic device on a 1.5 T magnetic resonance-linac. Pract. Radiat. Oncol. 2022, 12, e56–e61. [Google Scholar] [CrossRef]
- Schmidt, M.A.; Payne, G.S. Radiotherapy planning using MRI. Phys. Med. Biol. 2015, 60, R323. [Google Scholar] [CrossRef]
- Stanescu, T.; Jans, H.-S.; Pervez, N.; Stavrev, P.; Fallone, B.G. A study on the magnetic resonance imaging (MRI)-Based radiation treatment planning of intracranial lesions. Phys. Med. Biol. 2008, 53, 3579. [Google Scholar] [CrossRef]
- Lenkowicz, J.; Votta, C.; Nardini, M.; Quaranta, F.; Catucci, F.; Boldrini, L.; Vagni, M.; Menna, S.; Placidi, L.; Romano, A.; et al. A deep learning approach to generate synthetic CT in low field MR-guided radiotherapy for lung cases. Radiother. Oncol. 2022, 176, 31–38. [Google Scholar] [CrossRef]
- Guerreiro, F.; Burgos, N.; Dunlop, A.; Wong, K.; Petkar, I.; Nutting, C.; Harrington, K.; Bhide, S.; Newbold, K.; Dearnaley, D.; et al. Evaluation of a multi-atlas CT synthesis approach for MRI-Only radiotherapy treatment planning. Phys. Med. 2017, 35, 7–17. [Google Scholar] [CrossRef]
- Guerreiro, F.; Koivula, L.; Seravalli, E.; Janssens, G.O.; Maduro, J.H.; Brouwer, C.L.; Korevaar, E.W.; Knopf, A.C.; Korhonen, J.; Raaymakers, B.W. Feasibility of MRI-Only photon and proton dose calculations for pediatric patients with abdominal tumors. Phys. Med. Biol. 2019, 64, 055010. [Google Scholar] [CrossRef]
- Wang, T.; Manohar, N.; Lei, Y.; Dhabaan, A.; Shu, H.-K.; Liu, T.; Curran, W.J.; Yang, X. MRI-Based treatment planning for brain stereotactic radiosurgery: Dosimetric validation of a learning-Based pseudo-CT generation method. Med. Dosim. 2019, 44, 199–204. [Google Scholar] [CrossRef]
- Takagi, M.; Demizu, Y.; Fujii, O.; Terashima, K.; Niwa, Y.; Daimon, T.; Tokumaru, S.; Fuwa, N.; Hareyama, M.; Okimoto, T. Proton therapy for localized prostate cancer: Long-term results from a single-center experience. Int. J. Radiat. Oncol. Biol. Phys. 2021, 109, 964–974. [Google Scholar] [CrossRef]
- Forsthoefel, M.K.; Ballew, E.; Unger, K.R.; Ahn, P.H.; Rudra, S.; Pang, D.; Collins, S.P.; Dritschilo, A.; Harter, W.; Paudel, N.; et al. Early experience of the first single-room gantry mounted active scanning proton therapy system at an integrated cancer center. Front. Oncol. 2020, 10, 861. [Google Scholar] [CrossRef]
- Schulte, R.W. Strategies for image-guided proton therapy of cancer. Oncol. Hematol. Rev. US 2007, 1, 75. [Google Scholar] [CrossRef]
- Wang, N.; Ghebremedhin, A.; Patyal, B. Commissioning of a proton gantry equipped with dual X-ray imagers and a robotic patient positioner, and evaluation of the accuracy of single-beam image registration for this system. Med. Phys. 2015, 42, 2979–2991. [Google Scholar] [CrossRef]
- Paganetti, H. Proton Therapy Physics, Second Edition; Series in Medical Physics and Biomedical Engineering; CRC Press: Boca Raton, FL, USA, 2018; ISBN 978-1-351-85575-4. [Google Scholar]
- Landry, G.; Hua, C.-H. Current state and future applications of radiological image guidance for particle therapy. Med. Phys. 2018, 45, e1086–e1095. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zou, W.; Teo, B.-K.K. Image guidance in proton therapy for lung cancer. Transl. Lung Cancer Res. 2018, 7, 160–170. [Google Scholar] [CrossRef] [PubMed]
- Mendenhall, N.P.; Hoppe, B.S.; Nichols, R.C.; Mendenhall, W.M.; Morris, C.G.; Li, Z.; Su, Z.; Williams, C.R.; Costa, J.; Henderson, R.H. Five-year outcomes from 3 prospective trials of image-guided proton therapy for prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 2014, 88, 596–602. [Google Scholar] [CrossRef] [PubMed]
- Kubeš, J.; Haas, A.; Vondráček, V.; Andrlík, M.; Navrátil, M.; Sláviková, S.; Vítek, P.; Dědečková, K.; Prausová, J.; Ondrová, B.; et al. Ultrahypofractionated proton radiation therapy in the treatment of low and intermediate-risk prostate cancer-5-year outcomes. Int. J. Radiat. Oncol. Biol. Phys. 2021, 110, 1090–1097. [Google Scholar] [CrossRef]
- Fuss, M.; Loredo, L.N.; Blacharski, P.A.; Grove, R.I.; Slater, J.D. Proton radiation therapy for medium and large choroidal melanoma: Preservation of the eye and its functionality. Int. J. Radiat. Oncol. Biol. Phys. 2001, 49, 1053–1059. [Google Scholar] [CrossRef]
- Wroe, A.J.; Bush, D.A.; Schulte, R.W.; Slater, J.D. Clinical immobilization techniques for proton therapy. Technol. Cancer Res. Treat. 2015, 14, 71–79. [Google Scholar] [CrossRef]
- Zhang, M.; Reyhan, M.; Kim, L.H. Depth dose perturbation by a hydrogel fiducial marker in a proton beam. J. Appl. Clin. Med. Phys. 2015, 16, 5090. [Google Scholar] [CrossRef]
- Tanaka, S.; Miyamoto, N.; Matsuo, Y.; Yoshimura, T.; Takao, S.; Matsuura, T. First experimental results of gated proton imaging using X-ray fluoroscopy to detect a fiducial marker. Phys. Med. Biol. 2021, 66, 18NT03. [Google Scholar] [CrossRef]
- Li, H.; Dong, L.; Bert, C.; Chang, J.; Flampouri, S.; Jee, K.-W.; Lin, L.; Moyers, M.; Mori, S.; Rottmann, J.; et al. AAPM task group report 290: Respiratory motion management for particle therapy. Med. Phys. 2022, 49, e50–e81. [Google Scholar] [CrossRef]
- Beddok, A.; Vela, A.; Calugaru, V.; Tessonnier, T.; Kubes, J.; Dutheil, P.; Gerard, A.; Vidal, M.; Goudjil, F.; Florescu, C.; et al. Proton therapy for head and neck squamous cell carcinomas: A review of the physical and clinical challenges. Radiother. Oncol. 2020, 147, 30–39. [Google Scholar] [CrossRef]
- Bolsi, A.; Lomax, A.J.; Pedroni, E.; Goitein, G.; Hug, E. Experiences at the paul scherrer institute with a remote patient positioning procedure for high-throughput proton radiation therapy. Int. J. Radiat. Oncol. 2008, 71, 1581–1590. [Google Scholar] [CrossRef]
- Almén, A. ICRP publication 129 radiological protection in cone beam computed tomography (CBCT). Radiat. Prot. Dosim. 2016, 171, 418–420. [Google Scholar] [CrossRef]
- Alcorn, S.R.; Zhou, X.C.; Bojechko, C.; Rubo, R.A.; Chen, M.J.; Dieckmann, K.; Ermoian, R.P.; Ford, E.C.; Kobyzeva, D.; MacDonald, S.M.; et al. Low-dose image-guided pediatric CNS radiation therapy: Final analysis from a prospective low-dose cone-beam CT protocol from a multinational pediatrics consortium. Technol. Cancer Res. Treat. 2020, 19, 1533033820920650. [Google Scholar] [CrossRef]
- Hess, C.B.; Thompson, H.M.; Benedict, S.H.; Seibert, J.A.; Wong, K.; Vaughan, A.T.; Chen, A.M. Exposure risks among children undergoing radiation therapy: Considerations in the era of image guided radiation therapy. Int. J. Radiat. Oncol. 2016, 94, 978–992. [Google Scholar] [CrossRef]
- Olch, A.J.; Alaei, P. How Low Can You Go? A CBCT dose reduction study. J. Appl. Clin. Med. Phys. 2021, 22, 85–89. [Google Scholar] [CrossRef]
- Li, H.; Hrinivich, W.T.; Chen, H.; Sheikh, K.; Ho, M.W.; Ger, R.; Liu, D.; Hales, R.K.; Voong, K.R.; Halthore, A.; et al. Evaluating proton dose and associated range uncertainty using daily cone-beam CT. Front. Oncol. 2022, 12, 830981. [Google Scholar] [CrossRef]
- Thummerer, A.; Seller Oria, C.; Zaffino, P.; Meijers, A.; Guterres Marmitt, G.; Wijsman, R.; Seco, J.; Langendijk, J.A.; Knopf, A.-C.; Spadea, M.F.; et al. Clinical suitability of deep learning based synthetic CTs for adaptive proton therapy of lung cancer. Med. Phys. 2021, 48, 7673–7684. [Google Scholar] [CrossRef]
- Fattori, G.; Saito, N.; Seregni, M.; Kaderka, R.; Pella, A.; Constantinescu, A.; Riboldi, M.; Steidl, P.; Cerveri, P.; Bert, C.; et al. Commissioning of an integrated platform for time-resolved treatment delivery in scanned ion beam therapy by means of optical motion monitoring. Technol. Cancer Res. Treat. 2014, 13, 517–528. [Google Scholar] [CrossRef]
- Depauw, N.; Batin, E.; Daartz, J.; Rosenfeld, A.; Adams, J.; Kooy, H.; MacDonald, S.; Lu, H.-M. A novel approach to postmastectomy radiation therapy using scanned proton beams. Int. J. Radiat. Oncol. Biol. Phys. 2015, 91, 427–434. [Google Scholar] [CrossRef]
- Freislederer, P.; Kügele, M.; Öllers, M.; Swinnen, A.; Sauer, T.-O.; Bert, C.; Giantsoudi, D.; Corradini, S.; Batista, V. Recent advanced in surface guided radiation Therapy. Radiat. Oncol. Lond. Engl. 2020, 15, 187. [Google Scholar] [CrossRef]
- Kishan, A.U.; Ma, T.M.; Lamb, J.M.; Casado, M.; Wilhalme, H.; Low, D.A.; Sheng, K.; Sharma, S.; Nickols, N.G.; Pham, J.; et al. Magnetic resonance imaging–guided vs computed tomography–guided stereotactic body radiotherapy for prostate cancer: The MIRAGE randomized clinical trial. JAMA Oncol. 2023, 9, 365–373. [Google Scholar] [CrossRef] [PubMed]
- Nien, H.-H.; Wang, L.-Y.; Liao, L.-J.; Lin, P.-Y.; Wu, C.-Y.; Shueng, P.-W.; Chung, C.-S.; Lo, W.-C.; Lin, S.-C.; Hsieh, C.-H. Advances in image-guided radiotherapy in the treatment of oral cavity cancer. Cancers 2022, 14, 4630. [Google Scholar] [CrossRef] [PubMed]
- Oborn, B.M.; Dowdell, S.; Metcalfe, P.E.; Crozier, S.; Mohan, R.; Keall, P.J. Future of medical physics: Real-time MRI-guided proton therapy. Med. Phys. 2017, 44, e77–e90. [Google Scholar] [CrossRef] [PubMed]
- Acharya, S.; Wang, C.; Quesada, S.; Gargone, M.A.; Ates, O.; Uh, J.; Krasin, M.J.; Merchant, T.E.; Hua, C. Adaptive proton therapy for pediatric patients: Improving the quality of the delivered plan with on-treatment MRI. Int. J. Radiat. Oncol. 2021, 109, 242–251. [Google Scholar] [CrossRef]
- Burigo, L.N.; Oborn, B.M. Integrated MRI-guided proton therapy planning: Accounting for the Full MRI field in a perpendicular system. Med. Phys. 2022, 49, 1853–1873. [Google Scholar] [CrossRef]
- Parodi, K.; Polf, J.C. In vivo range verification in particle therapy. Med. Phys. 2018, 45, e1036–e1050. [Google Scholar] [CrossRef]
- Parodi, K.; Yamaya, T.; Moskal, P. Experience and new prospects of PET imaging for ion beam therapy monitoring. Z. Med. Phys. 2023, 33, 22–34. [Google Scholar] [CrossRef]
- Moglioni, M.; Kraan, A.C.; Baroni, G.; Battistoni, G.; Belcari, N.; Berti, A.; Carra, P.; Cerello, P.; Ciocca, M.; De Gregorio, A.; et al. In-vivo range verification analysis with in-beam PET data for patients treated with proton therapy at CNAO. Front. Oncol. 2022, 12, 929949. [Google Scholar] [CrossRef]
- Moskal, P.; Jasińska, B.; Stępień, E.Ł.; Bass, S.D. Positronium in medicine and biology. Nat. Rev. Phys. 2019, 1, 527–529. [Google Scholar] [CrossRef]
- Rucinski, A.; Baran, J.; Garbacz, M.; Pawlik-Niedzwiecka, M.; Moskal, P. Plastic Scintillator Based PET Detector Technique for Proton Therapy Range Monitoring: A Monte Carlo Study. In Proceedings of the 2018 IEEE Nuclear Science Symposium and Medical Imaging Conference Proceedings (NSS/MIC), Sydney, NSW, Australia, 10–17 November 2018; IEEE: Sydney, NSW, Australia, 2018; pp. 1–4. [Google Scholar]
- Moskal, P.; Kisielewska, D.; Curceanu, C.; Czerwiński, E.; Dulski, K.; Gajos, A.; Gorgol, M.; Hiesmayr, B.; Jasińska, B.; Kacprzak, K.; et al. Feasibility study of the positronium imaging with the J-PET tomograph. Phys. Med. Biol. 2019, 64, 055017. [Google Scholar] [CrossRef]
- Wrońska, A.; for the SiFi-CC Group. Prompt Gamma Imaging in Proton Therapy—Status, Challenges and Developments. J. Phys. Conf. Ser. 2020, 1561, 012021. [Google Scholar] [CrossRef]
- Berthold, J.; Khamfongkhruea, C.; Petzoldt, J.; Thiele, J.; Hölscher, T.; Wohlfahrt, P.; Peters, N.; Jost, A.; Hofmann, C.; Janssens, G.; et al. First-in-human validation of CT-based proton range prediction using prompt gamma imaging in prostate cancer treatments. Int. J. Radiat. Oncol. 2021, 111, 1033–1043. [Google Scholar] [CrossRef]
- Mast, T.D.; Johnstone, D.A.; Dumoulin, C.L.; Lamba, M.A.; Patch, S.K. Reconstruction of thermoacoustic emission sources induced by proton irradiation using numerical time reversal. Phys. Med. Biol. 2023, 68, 025003. [Google Scholar] [CrossRef]
- Yan, S.; Lu, H.-M.; Flanz, J.; Adams, J.; Trofimov, A.; Bortfeld, T. Reassessment of the necessity of the proton gantry: Analysis of beam orientations from 4332 treatments at the massachusetts general hospital proton center over the past 10 years. Int. J. Radiat. Oncol. Biol. Phys. 2016, 95, 224–233. [Google Scholar] [CrossRef]
- Unique Partnership with Hampton University Proton Therapy Institution Is Set to Deliver Advances in Proton Arc Therapy Research. Available online: https://www.leocancercare.com/blog/unique-partnership-with-hampton-university-proton-therapy-institution-is-set-to-deliver-advances-in-proton-arc-therapy-research (accessed on 28 March 2023).
- Sun, J.; Kong, L.; Chen, Z.; You, D.; Mao, J.; Guan, X.; Wu, X.; Sheng, Y. Clinical implementation of a 6D treatment chair for fixed ion beam lines. Front. Oncol. 2021, 11, 694749. [Google Scholar] [CrossRef]
- Sheng, Y.; Sun, J.; Wang, W.; Stuart, B.; Kong, L.; Gao, J.; You, D.; Wu, X. Performance of a 6D treatment chair for patient positioning in an upright posture for fixed ion beam lines. Front. Oncol. 2020, 10, 122. [Google Scholar] [CrossRef]
- Volz, L.; Sheng, Y.; Durante, M.; Graeff, C. Considerations for upright particle therapy patient positioning and associated image guidance. Front. Oncol. 2022, 12, 930850. [Google Scholar] [CrossRef]
- Hughes, J.R.; Parsons, J.L. FLASH radiotherapy: Current knowledge and future insights using proton-beam therapy. Int. J. Mol. Sci. 2020, 21, 6492. [Google Scholar] [CrossRef]
- Bourhis, J.; Sozzi, W.J.; Jorge, P.G.; Gaide, O.; Bailat, C.; Duclos, F.; Patin, D.; Ozsahin, M.; Bochud, F.; Germond, J.-F.; et al. Treatment of a first patient with FLASH-radiotherapy. Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol. 2019, 139, 18–22. [Google Scholar] [CrossRef]
- Van Marlen, P.; Dahele, M.; Folkerts, M.; Abel, E.; Slotman, B.J.; Verbakel, W.F.A.R. Bringing FLASH to the clinic: Treatment planning considerations for ultrahigh dose-rate proton beams. Int. J. Radiat. Oncol. Biol. Phys. 2020, 106, 621–629. [Google Scholar] [CrossRef]
- Mascia, A.E.; Daugherty, E.C.; Zhang, Y.; Lee, E.; Xiao, Z.; Sertorio, M.; Woo, J.; Backus, L.R.; McDonald, J.M.; McCann, C.; et al. Proton FLASH radiotherapy for the treatment of symptomatic bone metastases: The FAST-01 nonrandomized trial. JAMA Oncol. 2023, 9, 62–69. [Google Scholar] [CrossRef] [PubMed]
- El Naqa, I.; Pogue, B.W.; Zhang, R.; Oraiqat, I.; Parodi, K. Image guidance for FLASH radiotherapy. Med. Phys. 2022, 49, 4109–4122. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.; Wei, S.; Choi, J.I.; Lin, H.; Simone, C.B. A universal range shifter and range compensator can enable proton pencil beam scanning single-energy bragg peak FLASH-RT treatment using current commercially available proton systems. Int. J. Radiat. Oncol. 2022, 113, 203–213. [Google Scholar] [CrossRef] [PubMed]
- PTCOG—Facilities in Planning Stage. Available online: https://www.ptcog.ch/index.php/facilities-in-planning-stage (accessed on 22 March 2023).
Type | Method | Advantages | Disadvantages |
---|---|---|---|
kV planar XR | kV X-rays are taken from the nozzle and compared to DRRs acquired at time of simulation or fiducial markers | Simple Able to visualize bony anatomy or radio-opaque visual markers | Inferior soft tissue contrast May not allow for direct visualization of the target Limited information on changes in tissue proximal to target |
CT on Rails | Patients are imaged at a separate CT scanner before being moved on rails to the gantry couch, which has been registered to the CT scanner couch | Avoidance of imaging artifacts associated with CBCT Preferred in treatment rooms that cannot fit the CBCT system Reduces time that gantry is used for imaging | Additional ionizing radiation Possible additional movement if moving patient from CT scanner to gantry Additional time to move couch from CT to gantry No possibility of real-time guidance |
CBCT | CBCT is placed on a gantry, nozzle, or robotic C-arm which rotates around the patient on the gantry couch | Additional soft tissue visualization compared to planar kV XR Allows for adaptive planning | Additional ionizing radiation Imaging artifacts No possibility of real-time guidance |
MRI | Patient lies in a specially constructed MRI scanner which allows for proton beam delivery either in-line or perpendicular to magnetic field | No additional ionizing radiation Superior soft tissue contrast Possibility of real-time guidance | Not currently available clinically Complex deflections of proton beam and dose due to magnetic field Older pacemakers may not be MRI-compatible |
Surface Tracking | Systems of visual cameras are installed in the gantry rooms and monitor moves in markers placed on the patient’s surface or the patient’s skin. | No additional ionizing radiation Real-time monitoring Pre- and intrafraction patient monitoring Can be complementary to CBCT Verification of nozzle setup | Surface movement does not always correspond to target movement Decreased accuracy in area of flat patient surface |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lane, S.A.; Slater, J.M.; Yang, G.Y. Image-Guided Proton Therapy: A Comprehensive Review. Cancers 2023, 15, 2555. https://doi.org/10.3390/cancers15092555
Lane SA, Slater JM, Yang GY. Image-Guided Proton Therapy: A Comprehensive Review. Cancers. 2023; 15(9):2555. https://doi.org/10.3390/cancers15092555
Chicago/Turabian StyleLane, Shelby A., Jason M. Slater, and Gary Y. Yang. 2023. "Image-Guided Proton Therapy: A Comprehensive Review" Cancers 15, no. 9: 2555. https://doi.org/10.3390/cancers15092555
APA StyleLane, S. A., Slater, J. M., & Yang, G. Y. (2023). Image-Guided Proton Therapy: A Comprehensive Review. Cancers, 15(9), 2555. https://doi.org/10.3390/cancers15092555