The Emerging Role of uORF-Encoded uPeptides and HLA uLigands in Cellular and Tumor Biology
Abstract
:Simple Summary
Abstract
1. Introduction
2. Classification of Non-Canonical Peptides and State-of-the Art Proteogenomic Technology
2.1. Ribosome Profiling
2.2. Mass Spectrometry-Based Identification of Polypeptides
Technique | Benefit | |
---|---|---|
Ribosome profiling | Global translation initiation sequencing (GTI-seq) [5] | Treatment with lactimidomycin or harringtonine prior to ribosome profiling leads to improved detection of ribosomal initiation sites. |
Quantitative translation initiation sequencing (QTI-seq) [41] | Combined treatment with lactimidomycin and puromycin prior to ribosome profiling allows to distinguish between elongating and initiating ribosomes. | |
Poly-ribo-seq [37] | Isolation of polysomes; determination of the sequence bound by each ribosome reduces the number of false-positives. | |
Translation complex profiling (TCP-seq) [38] | Detection of complete translation cycles; captures differences in translation initiation in carcinogenesis. | |
Ribosome nascent-chain complex-bound RNA sequencing (RNC-seq) [36] | Ribosome profiling of mRNAs bound to the ribosomal complex enables analysis of ORFs that are translated at the moment. | |
Mass spectrometry | Liquid chromatography [46] | Liquid chromatography is used to separate mixtures with multiple components mostly followed by mass spectrometry providing spectral information that may help to identify each separated component or confirm the suspected identity of them. |
MHC-based MS [56] | MHC complexes non-covalently bind peptide ligands, protecting them from degradation; enhances the detection sensitivity of non-canonical peptides. | |
Experimental validation | Endogenous peptide tagging [58] | Genomic tagging of peptides using CRISPR/Cas9-mediated HDR visualizes natural expression pattern. |
Split protein tags [59,60] | Self-complementing proteins can be split between the 10th and 11th ß-helix and fused to the peptide, reducing potential side effects of larger tags. | |
Co-immunoprecipitation (co-IP) [6] | Detection of peptide–protein interaction by immunoprecipitation of the tagged peptide and bound interactors. | |
Pooled CRISPR screen [6,61] | High-throughput screening for functional peptides based on detectable changes in relevant signaling pathways upon CRISPR/Cas9-mediated peptide knockout. | |
Perturb-Seq [62,63] | Combination of CRISPR/Cas9-mediated peptide knockout with single-cell RNA sequencing detects changes in RNA-sequencing profiles caused by specific peptide losses. |
2.3. Individual Detection and Functional Characterization of Non-Canonical Peptides
3. Functional Implications of uORF-Encoded uPeptides and HLA uLigands
3.1. Translational Regulation and Transcript Stability
3.2. Novel uPeptides May Serve as Immunogenic Antigens
3.3. Individual Modes of uPeptide Function
4. Conclusions and Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Gallaher, S.D.; Craig, R.J.; Ganesan, I.; Purvine, S.O.; McCorkle, S.R.; Grimwood, J.; Strenkert, D.; Davidi, L.; Roth, M.S.; Jeffers, T.L.; et al. Widespread polycistronic gene expression in green algae. Proc. Natl. Acad. Sci. USA 2021, 118, e2017714118. [Google Scholar] [CrossRef] [PubMed]
- Karginov, T.A.; Pastor, D.P.H.; Semler, B.L.; Gomez, C.M. Mammalian polycistronic mRNAs and disease. Physiol. Behav. 2017, 33, 129–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pi, H.; Lee, L.W.; Lo, S.J. New insights into polycistronic transcripts in eukaryotes. Chang Gung Med. J. 2009, 32, 494–498. [Google Scholar] [PubMed]
- Harrow, J.; Frankish, A.; Gonzalez, J.M.; Tapanari, E.; Diekhans, M.; Kokocinski, F.; Aken, B.L.; Barrell, D.; Zadissa, A.; Searle, S.; et al. GENCODE: The reference human genome annotation for The ENCODE Project. Genome Res. 2012, 22, 1760–1774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.; Liu, B.; Lee, S.; Huang, S.X.; Shen, B.; Qian, S.B. Global mapping of translation initiation sites in mammalian cells at single-nucleotide resolution. Proc. Natl. Acad. Sci. USA 2012, 109, E2424–E2432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Brunner, A.D.; Cogan, J.Z.; Nuñez, J.K.; Fields, A.P.; Adamson, B.; Itzhak, D.N.; Li, J.Y.; Mann, M.; Leonetti, M.D.; et al. Pervasive functional translation of noncanonical human open reading frames. Science 2020, 367, 1140–1146. [Google Scholar] [CrossRef]
- Lander, E.S.; Linton, L.M.; Birren, B.; Nusbaum, C.; Zody, M.C.; Baldwin, J.; Devon, K.; Dewar, K.; Doyle, M.; Fitzhugh, W.; et al. Erratum: Initial sequencing and analysis of the human genome: International Human Genome Sequencing Consortium (Nature (2001) 409 (860–921)). Nature 2001, 412, 565–566. [Google Scholar]
- Adhikari, S.; Nice, E.C.; Deutsch, E.W.; Lane, L.; Omenn, G.S.; Pennington, S.R.; Paik, Y.K.; Overall, C.M.; Corrales, F.J.; Cristea, I.M.; et al. A high-stringency blueprint of the human proteome. Nat. Commun. 2020, 11, 5301. [Google Scholar] [CrossRef]
- Zhang, Q.; Wu, E.; Tang, Y.; Cai, T.; Zhang, L.; Wang, J.; Hao, Y.; Zhang, B.; Zhou, Y.; Guo, X.; et al. Deeply Mining a Universe of Peptides Encoded by Long Noncoding RNAs. Mol. Cell. Proteom. 2021, 20, 100109. [Google Scholar] [CrossRef]
- Brunet, M.A.; Lucier, J.-F.; Levesque, M.; Leblanc, S.; Jacques, J.-F.; Al-Saedi, H.R.H.; Guilloy, N.; Grenier, F.; Avino, M.; Fournier, I.; et al. OpenProt 2021: Deeper functional annotation of the coding potential of eukaryotic genomes. Nucleic Acids Res. 2021, 49, D380–D388. [Google Scholar] [CrossRef]
- Wu, Q.; Wright, M.; Gogol, M.M.; Bradford, W.D.; Zhang, N.; Bazzini, A.A. Translation of small downstream ORFs enhances translation of canonical main open reading frames. EMBO J. 2020, 39, e104763. [Google Scholar] [CrossRef] [PubMed]
- Orr, M.W.; Mao, Y.; Storz, G.; Qian, S.-B. Alternative ORFs and small ORFs: Shedding light on the dark proteome. Nucleic Acids Res. 2020, 48, 1029–1042. [Google Scholar] [CrossRef] [PubMed]
- Perdigão, N.; Heinrich, J.; Stolte, C.; Sabir, K.S.; Buckley, M.J.; Tabor, B.; Signal, B.; Gloss, B.S.; Hammang, C.J.; Rost, B.; et al. Unexpected features of the dark proteome. Proc. Natl. Acad. Sci. USA 2015, 112, 15898–15903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Apostolopoulos, V.; Bojarska, J.; Chai, T.-T.; Elnagdy, S.; Kaczmarek, K.; Matsoukas, J.; New, R.; Parang, K.; Lopez, O.P.; Parhiz, H.; et al. A Global Review on Short Peptides: Frontiers and Perspectives. Molecules 2021, 26, 430. [Google Scholar] [CrossRef]
- Steinberg, R.; Koch, H.-G. The largely unexplored biology of small proteins in pro- and eukaryotes. FEBS J. 2021, 288, 7002–7024. [Google Scholar] [CrossRef]
- Saghatelian, A.; Couso, J.P. Discovery and characterization of smORF-encoded bioactive polypeptides. Nat. Chem. Biol. 2015, 11, 909–916. [Google Scholar] [CrossRef] [Green Version]
- Nelde, A.; Flötotto, L.; Jürgens, L.; Szymik, L.; Hubert, E.; Bauer, J.; Schliemann, C.; Kessler, T.; Lenz, G.; Rammensee, H.G.; et al. Upstream open reading frames regulate translation of cancer-associated transcripts and encode HLA-presented immunogenic tumor antigens. Cell. Mol. Life Sci. 2022, 79, 171. [Google Scholar] [CrossRef]
- Erhard, F.; Dölken, L.; Schilling, B.; Schlosser, A. Identification of the cryptic HLA-I immunopeptidome. Cancer Immunol. Res. 2020, 8, 1018–1026. [Google Scholar] [CrossRef]
- Prasad, A.; Sharma, N.; Prasad, M. Noncoding but Coding: Pri-miRNA into the Action. Trends Plant Sci. 2021, 26, 204–206. [Google Scholar] [CrossRef]
- Ma, J.; Ward, C.C.; Jungreis, I.; Slavoff, S.A.; Schwaid, A.G.; Neveu, J.; Budnik, B.A.; Kellis, M.; Saghatelian, A. Discovery of human sORF-encoded polypeptides (SEPs) in cell lines and tissue. J. Proteome Res. 2014, 13, 1757–1765. [Google Scholar] [CrossRef] [Green Version]
- Ruiz Cuevas, V.M.; Hardy, M.; Hollý, J.; Bonneil, É.; Durette, C.; Courcelles, M.; Lanoix, J.; Côté, C.; Staudt, L.M.; Lemieux, S.; et al. Most non-canonical proteins uniquely populate the proteome or immunopeptidome. Cell Rep. 2021, 34, 108815. [Google Scholar] [CrossRef] [PubMed]
- Peabody, D.S. Translation initiation at non-AUG triplets in mammalian cells. J. Biol. Chem. 1989, 264, 5031–5035. [Google Scholar] [CrossRef] [PubMed]
- Andreev, D.E.; Loughran, G.; Fedorova, A.D.; Mikhaylova, M.S.; Shatsky, I.N.; Baranov, P. V Non-AUG translation initiation in mammals. Genome Biol. 2022, 23, 111. [Google Scholar] [CrossRef]
- Cao, X.; Slavoff, S.A. Non-AUG start codons: Expanding and regulating the small and alternative ORFeome. Exp. Cell Res. 2020, 391, 111973. [Google Scholar] [CrossRef] [PubMed]
- McGillivray, P.; Ault, R.; Pawashe, M.; Kitchen, R.; Balasubramanian, S.; Gerstein, M. A comprehensive catalog of predicted functional upstream open reading frames in humans. Nucleic Acids Res. 2018, 46, 3326–3338. [Google Scholar] [CrossRef] [PubMed]
- Johnstone, T.G.; Bazzini, A.A.; Giraldez, A.J. Upstream ORF s are prevalent translational repressors in vertebrates. EMBO J. 2016, 35, 706–723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Wang, Y.; Wu, X.; Tang, X.; Wu, C.; Lu, J. Determinants of genome-wide distribution and evolution of uORFs in eukaryotes. Nat. Commun. 2021, 12, 1076. [Google Scholar] [CrossRef] [PubMed]
- Rombel, I.T.; Sykes, K.F.; Rayner, S.; Johnston, S.A. ORF-FINDER: A vector for high-throughput gene identification. Gene 2002, 282, 33–41. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, H.; Chen, X.; Zheng, Y.; Kang, Q.; Hao, D.; Zhang, L.; Song, T.; Luo, H.; Hao, Y.; et al. SmProt: A Reliable Repository with Comprehensive Annotation of Small Proteins Identified from Ribosome Profiling. Genom. Proteom. Bioinform. 2021, 19, 602–610. [Google Scholar] [CrossRef]
- Manske, F.; Ogoniak, L.; Jürgens, L.; Grundmann, N.; Makałowski, W.; Wethmar, K. The new uORFdb: Integrating literature, sequence, and variation data in a central hub for uORF research. Nucleic Acids Res. 2022. [Google Scholar] [CrossRef]
- Ingolia, N.T.; Ghaemmaghami, S.; Newman, J.R.S.; Weissman, J.S. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 2009, 324, 218–223. [Google Scholar] [CrossRef] [PubMed]
- Ingolia, N.T. Ribosome Footpring Profiling of Translation throughout the Genome. Physiol. Behav. 2017, 165, 22–33. [Google Scholar]
- Na, C.H.; Barbhuiya, M.A.; Kim, M.-S.; Verbruggen, S.; Eacker, S.M.; Pletnikova, O.; Troncoso, J.C.; Halushka, M.K.; Menschaert, G.; Overall, C.M.; et al. Discovery of noncanonical translation initiation sites through mass spectrometric analysis of protein N termini. Genome Res. 2018, 28, 25–36. [Google Scholar] [CrossRef] [Green Version]
- Eisenberg, A.R.; Higdon, A.L.; Hollerer, I.; Fields, A.P.; Jungreis, I.; Diamond, P.D.; Kellis, M.; Jovanovic, M.; Brar, G.A. Translation Initiation Site Profiling Reveals Widespread Synthesis of Non-AUG-Initiated Protein Isoforms in Yeast. Cell Syst. 2020, 11, 145–160.e5. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Wan, J.; Liu, B.; Ma, M.; Shen, B.; Qian, S.B. Quantitative profiling of initiating ribosomes in vivo. Nat. Methods 2015, 12, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Cui, Y.; Jin, J.; Guo, J.; Wang, G.; Yin, X.; He, Q.-Y.; Zhang, G. Translating mRNAs strongly correlate to proteins in a multivariate manner and their translation ratios are phenotype specific. Nucleic Acids Res. 2013, 41, 4743–4754. [Google Scholar] [CrossRef] [PubMed]
- Aspden, J.L.; Eyre-Walker, Y.C.; Phillips, R.J.; Amin, U.; Mumtaz, M.A.S.; Brocard, M.; Couso, J.-P. Extensive translation of small Open Reading Frames revealed by Poly-Ribo-Seq. Elife 2014, 3, e03528. [Google Scholar] [CrossRef]
- Neumann, T.; Tuller, T. Modeling the ribosomal small subunit dynamic in Saccharomyces cerevisiae based on TCP-seq data. Nucleic Acids Res. 2022, 50, 1297–1316. [Google Scholar] [CrossRef]
- Patraquim, P.; Mumtaz, M.A.S.; Pueyo, J.I.; Aspden, J.L.; Couso, J.-P. Developmental regulation of canonical and small ORF translation from mRNAs. Genome Biol. 2020, 21, 128. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, H.; Lu, J. Recent advances in ribosome profiling for deciphering translational regulation. Methods 2020, 176, 46–54. [Google Scholar] [CrossRef]
- Fritsch, C.; Herrmann, A.; Nothnagel, M.; Szafranski, K.; Huse, K.; Schumann, F.; Schreiber, S.; Platzer, M.; Krawczak, M.; Hampe, J.; et al. Genome-wide search for novel human uORFs and N-terminal protein extensions using ribosomal footprinting. Genome Res. 2012, 22, 2208–2218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calviello, L.; Ohler, U. Beyond Read-Counts: Ribo-seq Data Analysis to Understand the Functions of the Transcriptome. Trends Genet. 2017, 33, 728–744. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Ning, W.; Wu, S.; Wang, X.; Zhu, K.; Li, A.; Li, Y.; Cheng, S.; Song, B. Three-nucleotide periodicity of nucleotide diversity in a population enables the identification of open reading frames. Brief. Bioinform. 2022, 23, bbac210. [Google Scholar] [CrossRef]
- Ma, J.; Diedrich, J.K.; Jungreis, I.; Donaldson, C.; Vaughan, J.; Kellis, M.; Yates, J.R.; Saghatelian, A. Improved Identification and Analysis of Small Open Reading Frame Encoded Polypeptides. Anal. Chem. 2016, 88, 3967–3975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, S.; Ju, S.; Lee, J.; Na, S.; Lee, C.; Paek, E. Proteogenomic Approach to UTR Peptide Identification. J. Proteome Res. 2020, 19, 212–220. [Google Scholar] [CrossRef] [PubMed]
- Rauh, M. LC-MS/MS for protein and peptide quantification in clinical chemistry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2012, 883–884, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Bell, A.W.; Bergeron, J.J.M.; Yanofsky, C.M.; Carrillo, B.; Beaudrie, C.E.H.; Kearney, R.E. Methods for peptide identification by spectral comparison. Proteome Sci. 2007, 5, 3. [Google Scholar] [CrossRef] [Green Version]
- Pan, N.; Wang, Z.; Wang, B.; Wan, J.; Wan, C. Mapping Microproteins and ncRNA-Encoded Polypeptides in Different Mouse Tissues. Front. Cell Dev. Biol. 2021, 9, 687748. [Google Scholar] [CrossRef]
- Ouspenskaia, T.; Law, T.; Clauser, K.R.; Klaeger, S.; Sarkizova, S.; Aguet, F.; Li, B.; Christian, E.; Knisbacher, B.A.; Le, P.M.; et al. Unannotated proteins expand the MHC-I-restricted immunopeptidome in cancer. Nat. Biotechnol. 2021, 40, 209–217. [Google Scholar] [CrossRef]
- Oyama, M.; Itagaki, C.; Hata, H.; Suzuki, Y.; Izumi, T.; Natsume, T.; Isobe, T.; Sugano, S. Analysis of small human proteins reveals the translation of upstream open reading frames of mRNAs. Genome Res. 2004, 14, 2048–2052. [Google Scholar] [CrossRef] [Green Version]
- Slavoff, S.A.; Mitchell, A.J.; Schwaid, A.G.; Cabili, M.N.; Ma, J.; Levin, J.Z.; Karger, A.D.; Budnik, B.A.; Rinn, J.L.; Saghatelian, A. Peptidomic discovery of short open reading frame-encoded peptides in human cells. Nat. Chem. Biol. 2013, 9, 59–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hunt, D.F.; Henderson, R.A.; Shabanowitz, J.; Sakaguchi, K.; Michel, H.; Sevilir, N.; Cox, A.L.; Appella, E.; Engelhard, V.H. Characterization of peptides bound to the class I MHC molecule HLA-A2.1 by mass spectrometry. Science 1992, 255, 1261–1263. [Google Scholar] [CrossRef] [PubMed]
- Caron, E.; Kowalewski, D.J.; Chiek Koh, C.; Sturm, T.; Schuster, H.; Aebersold, R. Analysis of Major Histocompatibility Complex (MHC) Immunopeptidomes Using Mass Spectrometry. Mol. Cell. Proteom. 2015, 14, 3105–3117. [Google Scholar] [CrossRef]
- Bassani-Sternberg, M.; Bräunlein, E.; Klar, R.; Engleitner, T.; Sinitcyn, P.; Audehm, S.; Straub, M.; Weber, J.; Slotta-Huspenina, J.; Specht, K.; et al. Direct identification of clinically relevant neoepitopes presented on native human melanoma tissue by mass spectrometry. Nat. Commun. 2016, 7, 13404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Svensson, M.; Sköld, K.; Svennigsson, P.; Andren, P.E. Peptidomics-based discovery of novel neuropeptides. J. Proteome Res. 2003, 2, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Chong, C.; Müller, M.; Pak, H.; Harnett, D.; Huber, F.; Grun, D.; Leleu, M.; Auger, A.; Arnaud, M.; Stevenson, B.J.; et al. Integrated proteogenomic deep sequencing and analytics accurately identify non-canonical peptides in tumor immunopeptidomes. Nat. Commun. 2020, 11, 1293. [Google Scholar] [CrossRef] [Green Version]
- Marcu, A.; Bichmann, L.; Kuchenbecker, L.; Kowalewski, D.J.; Freudenmann, L.K.; Backert, L.; Mühlenbruch, L.; Szolek, A.; Lübke, M.; Wagner, P.; et al. HLA Ligand Atlas: A benign reference of HLA-presented peptides to improve T-cell-based cancer immunotherapy. J. Immunother. Cancer 2021, 9, e002071. [Google Scholar] [CrossRef]
- Zhang, F.; Wen, Y.; Guo, X. CRISPR/Cas9 for genome editing: Progress, implications and challenges. Hum. Mol. Genet. 2014, 23, R40–R46. [Google Scholar] [CrossRef] [Green Version]
- Tamura, R.; Jiang, F.; Xie, J.; Kamiyama, D. Multiplexed labeling of cellular proteins with split fluorescent protein tags. Commun. Biol. 2021, 4, 257. [Google Scholar] [CrossRef]
- Mie, M.; Naoki, T.; Uchida, K.; Kobatake, E. Development of a split SNAP-tag protein complementation assay for visualization of protein-protein interactions in living cells. Analyst 2012, 137, 4760–4765. [Google Scholar] [CrossRef]
- Presner, J.R.; Enache, O.M.; Luria, V.; Krug, K.; Clauser, K.R.; Dempster, J.M.; Karger, A.; Wang, L.; Stumbraite, K.; Wang, V.M.; et al. Noncanonical open reading frames encode functional proteins essential for cancer cell survival. Nat. Biotechnol. 2021, 39, 697–704. [Google Scholar] [CrossRef] [PubMed]
- Datlinger, P.; Rendeiro, A.F.; Schmidl, C.; Krausgruber, T.; Traxler, P.; Klughammer, J.; Schuster, L.C.; Kuchler, A.; Alpar, D.; Bock, C. Pooled CRISPR screening with single-cell transcriptome readout. Nat. Methods 2017, 14, 297–301. [Google Scholar] [CrossRef] [PubMed]
- Adamson, B.; Norman, T.M.; Jost, M.; Cho, M.Y.; Nuñez, J.K.; Chen, Y.; Villalta, J.E.; Gilbert, L.A.; Horlbeck, M.A.; Hein, M.Y.; et al. A Multiplexed Single-Cell CRISPR Screening Platform Enables Systematic Dissection of the Unfolded Protein Response. Cell 2016, 167, 1867–1882.e21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maruyama, T.; Dougan, S.K.; Truttmann, M.C.; Bilate, A.M.; Ingram, J.R.; Ploegh, H.L. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat. Biotechnol. 2015, 33, 538–542. [Google Scholar] [CrossRef] [PubMed]
- Ran, F.A.; Hsu, P.D.; Wright, J.; Agarwata, V.; Scott, D.A.; Zhang, F. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 2013, 8, 2281–2308. [Google Scholar] [CrossRef] [Green Version]
- Makarewich, C.A.; Olson, E.N. Mining for Micropeptides. Trends Cell Biol. 2017, 27, 685–696. [Google Scholar] [CrossRef]
- Zordan, R.E.; Beliveau, B.J.; Trow, J.A.; Craig, N.L.; Cormack, B.P. Avoiding the ends: Internal epitope tagging of proteins using transposon Tn7. Genetics 2015, 200, 47–58. [Google Scholar] [CrossRef] [Green Version]
- Calvo, S.E.; Pagliarini, D.J.; Mootha, V.K. Upstream open reading frames cause widespread reduction of protein expression and are polymorphic among humans. Proc. Natl. Acad. Sci. USA 2009, 106, 7507–7512. [Google Scholar] [CrossRef] [Green Version]
- Ivanov, I.P.; Firth, A.E.; Michel, A.M.; Atkins, J.F.; Baranov, P.V. Identification of evolutionarily conserved non-AUG-initiated N-terminal extensions in human coding sequences. Nucleic Acids Res. 2011, 39, 4220–4234. [Google Scholar] [CrossRef]
- Baird, T.D.; Palam, L.R.; Fusakio, M.E.; Willy, J.A.; Davis, C.M.; McClintick, J.N.; Anthony, T.G.; Wek, R.C. Selective mRNA translation during eIF2 phosphorylation induces expression of IBTKα. Mol. Biol. Cell 2014, 25, 1666–1675. [Google Scholar] [CrossRef]
- Young, S.K.; Wek, R.C. Upstream open reading frames differentially regulate genespecific translation in the integrated stress response. J. Biol. Chem. 2016, 291, 16927–16935. [Google Scholar] [CrossRef] [Green Version]
- Jackson, R.J.; Hellen, C.U.T.; Pestova, T.V. The Mechanism of eukaryotic translation initiation and principle of its Regulation. Annu. Rev. Biochem. 2010, 11, 113–127. [Google Scholar] [CrossRef]
- May, G.E.; McManus, C.J. Multiplexed Analysis of Human uORF Regulatory Functions During the ISR Using PoLib-Seq. Methods Mol. Biol. 2022, 2428, 41–62. [Google Scholar] [PubMed]
- Wu, H.W.; Fajiculay, E.; Wu, J.F.; Yan, C.C.S.; Hsu, C.P.; Wu, S.H. Noise reduction by upstream open reading frames. Nat. Plants 2022, 8, 474–480. [Google Scholar] [CrossRef] [PubMed]
- Castelo-Szekely, V.; De Matos, M.; Tusup, M.; Pascolo, S.; Ule, J.; Gatfield, D. Charting DENR-dependent translation reinitiation uncovers predictive uORF features and links to circadian timekeeping via Clock. Nucleic Acids Res. 2019, 47, 5193–5209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phan, T.P.; Boatwright, C.A.; Drown, C.G.; Skinner, M.W.; Strong, M.A.; Jordan, P.W.; Holland, A.J. Upstream open reading frames control PLK4 translation and centriole duplication in primordial germ cells. Genes Dev. 2022, 36, 718–736. [Google Scholar] [CrossRef]
- Silva, J.; Fernandes, R.; Romão, L. Translational Regulation by Upstream Open Reading Frames and Human Diseases. In The mRNA Metabolism in Human Disease; Romão, L., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 99–116. ISBN 978-3-030-19966-1. [Google Scholar]
- Whiffin, N.; Karczewski, K.J.; Zhang, X.; Chothani, S.; Smith, M.J.; Evans, D.G.; Roberts, A.M.; Quaife, N.M.; Schafer, S.; Rackham, O.; et al. Characterising the loss-of-function impact of 5′ untranslated region variants in 15,708 individuals. Nat. Commun. 2020, 11, 2523. [Google Scholar] [CrossRef]
- Schulz, J.; Mah, N.; Neuenschwander, M.; Kischka, T.; Ratei, R.; Schlag, P.M.; Castaños-Vélez, E.; Fichtner, I.; Tunn, P.U.; Denkert, C.; et al. Loss-of-function uORF mutations in human malignancies. Sci. Rep. 2018, 8, 2395. [Google Scholar] [CrossRef] [Green Version]
- Wen, Y.; Liu, Y.; Xu, Y.; Zhao, Y.; Hua, R.; Wang, K.; Sun, M.; Li, Y.; Yang, S.; Zhang, X.J.; et al. Loss-of-function mutations of an inhibitory upstream ORF in the human hairless transcript cause Marie Unna hereditary hypotrichosis. Nat. Genet. 2009, 41, 228–233. [Google Scholar] [CrossRef]
- Wiestner, A.; Schlemper, R.J.; van der Maas, A.P.; Skoda, R.C. An activating splice donor mutation in the thrombopoietin gene causes hereditary thrombocythaemia. Nat. Genet. 1998, 18, 49–52. [Google Scholar] [CrossRef]
- Condé, L.; Allatif, O.; Ohlmann, T.; de Breyne, S. Translation of SARS-CoV-2 gRNA Is Extremely Efficient and Competitive despite a High Degree of Secondary Structures and the Presence of an uORF. Viruses 2022, 14, 1505. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.; Martinez, M.G.; Lin, J.; Gregory, J.; Nguyen, T.U.; Abdelaal, R.; Kang, K.; Brennand, K.; Grünweller, A.; Ouyang, Z.; et al. Transcriptional and Translational Dynamics of Zika and Dengue Virus Infection. Viruses 2022, 14, 1418. [Google Scholar] [CrossRef] [PubMed]
- Dever, T.E.; Ivanov, I.P.; Sachs, M.S. Conserved Upstream Open Reading Frame Nascent Peptides That Control Translation. Annu. Rev. Genet. 2020, 54, 237–264. [Google Scholar] [CrossRef] [PubMed]
- Andrews, S.J.; Rothnagel, J.A. Emerging evidence for functional peptides encoded by short open reading frames. Nat. Rev. Genet. 2014, 15, 193–204. [Google Scholar] [CrossRef]
- Wethmar, K. The regulatory potential of upstream open reading frames in eukaryotic gene expression. Wiley Interdiscip. Rev. RNA 2014, 5, 765–778. [Google Scholar] [CrossRef]
- Nakamura, M.; Kaneko, S.; Dickson, D.W.; Kusaka, H. Aberrant Accumulation of BRCA1 in Alzheimer Disease and Other Tauopathies. J. Neuropathol. Exp. Neurol. 2020, 79, 22–33. [Google Scholar] [CrossRef]
- Li, Z.; Wang, C.; Wang, Z.; Zhu, C.; Li, J.; Sha, T.; Ma, L.; Gao, C.; Yang, Y.; Sun, Y.; et al. Allele-selective lowering of mutant HTT protein by HTT-LC3 linker compounds. Nature 2019, 575, 203–209. [Google Scholar] [CrossRef]
- Balchin, D.; Hayer-Hartl, M.; Hartl, F.U. In vivo aspects of protein folding and quality control. Science 2016, 353, aac4354. [Google Scholar] [CrossRef]
- Chandrasekaran, V.; Juszkiewicz, S.; Choi, J.; Puglisi, J.D.; Brown, A.; Shao, S.; Ramakrishnan, V.; Hegde, R.S. Mechanism of ribosome stalling during translation of a poly(A) tail. Nat. Struct. Mol. Biol. 2019, 26, 1132–1140. [Google Scholar] [CrossRef]
- Roy, B.; Jacobson, A. The intimate relationships of mRNA decay and translation. Trends Genet. 2013, 29, 691–699. [Google Scholar] [CrossRef] [Green Version]
- Inada, T. Quality control systems for aberrant mRNAs induced by aberrant translation elongation and termination. Biochim. Biophys. Acta 2013, 1829, 634–642. [Google Scholar] [CrossRef]
- Shoemaker, C.J.; Green, R. Translation drives mRNA quality control. Nat. Struct. Mol. Biol. 2012, 19, 594–601. [Google Scholar] [CrossRef] [PubMed]
- Doma, M.K.; Parker, R. Endonucleolytic cleavage of eukaryotic mRNAs with stalls in translation elongation. Nature 2006, 440, 561–564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Letzring, D.P.; Wolf, A.S.; Brule, C.E.; Grayhack, E.J. Translation of CGA codon repeats in yeast involves quality control components and ribosomal protein L1. RNA 2013, 19, 1208–1217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shao, S.; von der Malsburg, K.; Hegde, R.S. Listerin-dependent nascent protein ubiquitination relies on ribosome subunit dissociation. Mol. Cell 2013, 50, 637–648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsuboi, T.; Kuroha, K.; Kudo, K.; Makino, S.; Inoue, E.; Kashima, I.; Inada, T. Dom34:hbs1 plays a general role in quality-control systems by dissociation of a stalled ribosome at the 3′ end of aberrant mRNA. Mol. Cell 2012, 46, 518–529. [Google Scholar] [CrossRef] [Green Version]
- Juszkiewicz, S.; Hegde, R.S. Initiation of Quality Control during Poly(A) Translation Requires Site-Specific Ribosome Ubiquitination. Mol. Cell 2017, 65, 743–750.e4. [Google Scholar] [CrossRef] [Green Version]
- Sundaramoorthy, E.; Leonard, M.; Mak, R.; Liao, J.; Fulzele, A.; Bennett, E.J. ZNF598 and RACK1 Regulate Mammalian Ribosome-Associated Quality Control Function by Mediating Regulatory 40S Ribosomal Ubiquitylation. Mol. Cell 2017, 65, 751–760.e4. [Google Scholar] [CrossRef] [Green Version]
- Arthur, L.L.; Pavlovic-Djuranovic, S.; Koutmou, K.S.; Green, R.; Szczesny, P.; Djuranovic, S. Translational control by lysine-encoding A-rich sequences. Sci. Adv. 2015, 1, e1500154. [Google Scholar] [CrossRef] [Green Version]
- Buskirk, A.R.; Green, R. Ribosome pausing, arrest and rescue in bacteria and eukaryotes. Philos. Trans. R. Soc. B Biol. Sci. 2017, 372, 20160183. [Google Scholar] [CrossRef] [Green Version]
- Rubio, A.; Ghosh, S.; Mülleder, M.; Ralser, M.; Mata, J. Ribosome profiling reveals ribosome stalling on tryptophan codons and ribosome queuing upon oxidative stress in fission yeast. Nucleic Acids Res. 2021, 49, 383–399. [Google Scholar] [CrossRef] [PubMed]
- Bengtson, M.H.; Joazeiro, C.A.P. Role of a ribosome-associated E3 ubiquitin ligase in protein quality control. Nature 2010, 467, 470–473. [Google Scholar] [CrossRef] [PubMed]
- Brandman, O.; Stewart-Ornstein, J.; Wong, D.; Larson, A.; Williams, C.C.; Li, G.-W.; Zhou, S.; King, D.; Shen, P.S.; Weibezahn, J.; et al. A ribosome-bound quality control complex triggers degradation of nascent peptides and signals translation stress. Cell 2012, 151, 1042–1054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shoemaker, C.J.; Eyler, D.E.; Green, R. Dom34:Hbs1 promotes subunit dissociation and peptidyl-tRNA drop-off to initiate no-go decay. Science 2010, 330, 369–372. [Google Scholar] [CrossRef] [Green Version]
- Pisareva, V.P.; Skabkin, M.A.; Hellen, C.U.T.; Pestova, T.V.; Pisarev, A. V Dissociation by Pelota, Hbs1 and ABCE1 of mammalian vacant 80S ribosomes and stalled elongation complexes. EMBO J. 2011, 30, 1804–1817. [Google Scholar] [CrossRef] [Green Version]
- Choe, Y.-J.; Park, S.-H.; Hassemer, T.; Körner, R.; Vincenz-Donnelly, L.; Hayer-Hartl, M.; Hartl, F.U. Failure of RQC machinery causes protein aggregation and proteotoxic stress. Nature 2016, 531, 191–195. [Google Scholar] [CrossRef] [Green Version]
- Nickless, A.; Bailis, J.M.; You, Z. Control of gene expression through the nonsense-mediated RNA decay pathway. Cell Biosci. 2017, 7, 1–26. [Google Scholar] [CrossRef] [Green Version]
- van Hoof, A.; Frischmeyer, P.A.; Dietz, H.C.; Parker, R. Exosome-mediated recognition and degradation of mRNAs lacking a termination codon. Science 2002, 295, 2262–2264. [Google Scholar] [CrossRef] [Green Version]
- Frischmeyer, P.A.; van Hoof, A.; O’Donnell, K.; Guerrerio, A.L.; Parker, R.; Dietz, H.C. An mRNA surveillance mechanism that eliminates transcripts lacking termination codons. Science 2002, 295, 2258–2261. [Google Scholar] [CrossRef] [Green Version]
- Russell, P.J.; Slivka, J.A.; Boyle, E.P.; Burghes, A.H.M.; Kearse, M.G. Small uORFs favor translation re-initiation but do not protect mRNAs from nonsense-mediated decay. bioRxiv 2022. [Google Scholar] [CrossRef]
- Maekawa, S.; Imamachi, N.; Irie, T.; Tani, H.; Matsumoto, K.; Mizutani, R.; Imamura, K.; Kakeda, M.; Yada, T.; Sugano, S.; et al. Analysis of RNA decay factor mediated RNA stability contributions on RNA abundance. BMC Genom. 2015, 16, 154. [Google Scholar] [CrossRef] [Green Version]
- Tani, H.; Mizutani, R.; Salam, K.A.; Tano, K.; Ijiri, K.; Wakamatsu, A.; Isogai, T.; Suzuki, Y.; Akimitsu, N. Genome-wide determination of RNA stability reveals hundreds of short-lived noncoding transcripts in mammals. Genome Res. 2012, 22, 947–956. [Google Scholar] [CrossRef]
- Lee, D.S.M.; Park, J.; Kromer, A.; Baras, A.; Rader, D.J.; Ritchie, M.D.; Ghanem, L.R.; Barash, Y. Disrupting upstream translation in mRNAs is associated with human disease. Nat. Commun. 2021, 12, 1515. [Google Scholar] [CrossRef] [PubMed]
- Cenik, C.; Cenik, E.S.; Byeon, G.W.; Grubert, F.; Candille, S.I.; Spacek, D.; Alsallakh, B.; Tilgner, H.; Araya, C.L.; Tang, H.; et al. Integrative analysis of RNA, translation, and protein levels reveals distinct regulatory variation across humans. Genome Res. 2015, 25, 1610–1621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roy, G.; Antoine, R.; Schwartz, A.; Slupek, S.; Rivera-millot, A.; Boudvillain, M.; Jacob-dubuisson, F. Posttranscriptional Regulation by Copper with a New Upstream. MBio 2022, 13, e00912-22. [Google Scholar] [CrossRef] [PubMed]
- Parola, A.L.; Kobilka, B.K. The peptide product of a 5′ leader cistron in the beta 2 adrenergic receptor mRNA inhibits receptor synthesis. J. Biol. Chem. 1994, 269, 4497–4505. [Google Scholar] [CrossRef] [PubMed]
- Cloutier, P.; Poitras, C.; Faubert, D.; Bouchard, A.; Blanchette, M.; Gauthier, M.S.; Coulombe, B. Upstream ORF-Encoded ASDURF Is a Novel Prefoldin-like Subunit of the PAQosome. J. Proteome Res. 2020, 19, 18–27. [Google Scholar] [CrossRef]
- Pendleton, L.C.; Goodwin, B.L.; Solomonson, L.P.; Eichler, D.C. Regulation of endothelial argininosuccinate synthase expression and NO production by an upstream open reading frame. J. Biol. Chem. 2005, 280, 24252–24260. [Google Scholar] [CrossRef] [Green Version]
- Delbecq, P.; Calvo, O.; Filipkowski, R.K.; Piérard, A.; Messenguy, F. Functional analysis of the leader peptide of the yeast gene CPA1 and heterologous regulation by other fungal peptides. Curr. Genet. 2000, 38, 105–112. [Google Scholar] [CrossRef]
- Nguyen, H.L.; Yang, X.; Omiecinski, C.J. Expression of a novel mRNA transcript for human microsomal epoxide hydrolase (EPHX1) is regulated by short open reading frames within its 5′-untranslated region. RNA 2013, 19, 752–766. [Google Scholar] [CrossRef] [Green Version]
- Delcourt, V.; Brunelle, M.; Roy, A.V.; Jacques, J.F.; Salzet, M.; Fournier, I.; Roucou, X. The protein coded by a short open reading frame, not by the annotated coding sequence, is the main gene product of the dual-coding gene MIEF1. Mol. Cell. Proteom. 2018, 17, 2402–2411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palmer, C.S.; Osellame, L.D.; Laine, D.; Koutsopoulos, O.S.; Frazier, A.E.; Ryan, M.T. MiD49 and MiD51, new components of the mitochondrial fission machinery. EMBO Rep. 2011, 12, 565–573. [Google Scholar] [CrossRef] [PubMed]
- Akimoto, C.; Sakashita, E.; Kasashima, K.; Kuroiwa, K.; Tominaga, K.; Hamamoto, T.; Endo, H. Translational repression of the McKusick-Kaufman syndrome transcript by unique upstream open reading frames encoding mitochondrial proteins with alternative polyadenylation sites. Biochim. Biophys. Acta 2013, 1830, 2728–2738. [Google Scholar] [CrossRef] [PubMed]
- Jayaram, D.R.; Frost, S.; Argov, C.; Liju, V.B.; Anto, N.P.; Muraleedharan, A.; Ben-Ari, A.; Sinay, R.; Smoly, I.; Novoplansky, O.; et al. Unraveling the hidden role of a uORF-encoded peptide as a kinase inhibitor of PKCs. Proc. Natl. Acad. Sci. USA 2021, 118, e2018899118. [Google Scholar] [CrossRef] [PubMed]
- Hanfrey, C.; Franceschetti, M.; Mayer, M.J.; Illingworth, C.; Elliott, K.; Collier, M.; Thompson, B.; Perry, B.; Michael, A.J. Translational regulation of the plant S-adenosylmethionine decarboxylase. Biochem. Soc. Trans. 2003, 31, 424–427. [Google Scholar] [CrossRef] [PubMed]
- Ivanov, I.P.; Atkins, J.F.; Michael, A.J. A profusion of upstream open reading frame mechanisms in polyamine-responsive translational regulation. Nucleic Acids Res. 2010, 38, 353–359. [Google Scholar] [CrossRef] [Green Version]
- Neefjes, J.; Jongsma, M.L.M.; Paul, P.; Bakke, O. Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat. Rev. Immunol. 2011, 11, 823–836. [Google Scholar] [CrossRef]
- Blum, J.S.; Wearsch, P.A.; Cresswell, P. Pathways of antigen processing. Annu. Rev. Immunol. 2013, 31, 443–473. [Google Scholar] [CrossRef] [Green Version]
- Occhi, G.; Regazzo, D.; Trivellin, G.; Boaretto, F.; Ciato, D.; Bobisse, S.; Ferasin, S.; Cetani, F.; Pardi, E.; Korbonits, M.; et al. A Novel Mutation in the Upstream Open Reading Frame of the CDKN1B Gene Causes a MEN4 Phenotype. PLoS Genet. 2013, 9, e1003350. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Dilworth, D.; Gao, L.; Monzon, J.; Summers, A.; Lassam, N.; Hogg, D. Mutation of the CDKN2A 5′ UTR creates an aberrant initiation codon and predisposes to melanoma. Nat. Genet. 1999, 21, 128–132. [Google Scholar] [CrossRef]
- Chen, H.H.; Tarn, W.Y. uORF-mediated translational control: Recently elucidated mechanisms and implications in cancer. RNA Biol. 2019, 16, 1327–1338. [Google Scholar] [CrossRef]
- Licari, E.; Sánchez-Del-Campo, L.; Falletta, P. The two faces of the Integrated Stress Response in cancer progression and therapeutic strategies. Int. J. Biochem. Cell Biol. 2021, 139, 106059. [Google Scholar] [CrossRef]
- Xiao, W.; Sun, Y.; Xu, J.; Zhang, N.; Dong, L. uORF-Mediated Translational Regulation of ATF4 Serves as an Evolutionarily Conserved Mechanism Contributing to Non-Small-Cell Lung Cancer (NSCLC) and Stress Response. J. Mol. Evol. 2022, 90, 375–388. [Google Scholar] [CrossRef]
- Zeng, P.; Sun, S.; Li, R.; Xiao, Z.-X.; Chen, H. HER2 Upregulates ATF4 to Promote Cell Migration via Activation of ZEB1 and Downregulation of E-Cadherin. Int. J. Mol. Sci. 2019, 20, 2223. [Google Scholar] [CrossRef] [Green Version]
- Sendoel, A.; Dunn, J.G.; Rodriguez, E.H.; Naik, S.; Gomez, N.C.; Hurwitz, B.; Levorse, J.; Dill, B.D.; Schramek, D.; Molina, H.; et al. Translation from unconventional 5′ start sites drives tumour initiation. Nature 2017, 541, 494–499. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.; Rio, D.C. Mechanisms and Regulation of Alternative Pre-mRNA Splicing. Annu. Rev. Biochem. 2015, 84, 291–323. [Google Scholar] [CrossRef] [Green Version]
- Kahles, A.; Lehmann, K.-V.; Toussaint, N.C.; Hüser, M.; Stark, S.G.; Sachsenberg, T.; Stegle, O.; Kohlbacher, O.; Sander, C.; Rätsch, G. Comprehensive Analysis of Alternative Splicing Across Tumors from 8705 Patients. Cancer Cell 2018, 34, 211–224.e6. [Google Scholar] [CrossRef] [Green Version]
- Bonnal, S.C.; López-Oreja, I.; Valcárcel, J. Roles and mechanisms of alternative splicing in cancer—Implications for care. Nat. Rev. Clin. Oncol. 2020, 17, 457–474. [Google Scholar] [CrossRef]
- Seiler, M.; Peng, S.; Agrawal, A.A.; Palacino, J.; Teng, T.; Zhu, P.; Smith, P.G.; Buonamici, S.; Yu, L. Somatic Mutational Landscape of Splicing Factor Genes and Their Functional Consequences across 33 Cancer Types. Cell Rep. 2018, 23, 282–296.e4. [Google Scholar] [CrossRef] [Green Version]
- Leidner, R.; Sanjuan Silva, N.; Huang, H.; Sprott, D.; Zheng, C.; Shih, Y.-P.; Leung, A.; Payne, R.; Sutcliffe, K.; Cramer, J.; et al. Neoantigen T-Cell Receptor Gene Therapy in Pancreatic Cancer. N. Engl. J. Med. 2022, 386, 2112–2119. [Google Scholar] [CrossRef]
- Frankiw, L.; Baltimore, D.; Li, G. Alternative mRNA splicing in cancer immunotherapy. Nat. Rev. Immunol. 2019, 19, 675–687. [Google Scholar] [CrossRef]
- Jürgens, L.; Manske, F.; Hubert, E.; Kischka, T.; Flötotto, L.; Klaas, O.; Shabardina, V.; Schliemann, C.; Makalowski, W.; Wethmar, K. Somatic functional deletions of upstream open reading frame-associated initiation and termination codons in human cancer. Biomedicines 2021, 9, 618. [Google Scholar] [CrossRef]
- Blaha, D.T.; Anderson, S.D.; Yoakum, D.M.; Hager, M.V.; Zha, Y.; Gajewski, T.F.; Kranz, D.M. High-Throughput Stability Screening of Neoantigen/HLA Complexes Improves Immunogenicity Predictions. Cancer Immunol. Res. 2019, 7, 50–61. [Google Scholar] [CrossRef]
- Holm, J.S.; Funt, S.A.; Borch, A.; Munk, K.K.; Bjerregaard, A.-M.; Reading, J.L.; Maher, C.; Regazzi, A.; Wong, P.; Al-Ahmadie, H.; et al. Neoantigen-specific CD8 T cell responses in the peripheral blood following PD-L1 blockade might predict therapy outcome in metastatic urothelial carcinoma. Nat. Commun. 2022, 13, 1935. [Google Scholar] [CrossRef]
- Sim, M.J.W.; Sun, P.D. T Cell Recognition of Tumor Neoantigens and Insights Into T Cell Immunotherapy. Front. Immunol. 2022, 13, 833017. [Google Scholar] [CrossRef]
- Thambu, K.; Glomb, V.; Hernandez Trapero, R.; Facelli, J.C. Microproteins: A 3D protein structure prediction analysis. J. Biomol. Struct. Dyn. 2021, 1–9. [Google Scholar] [CrossRef]
- Cunha-Ferreira, I.; Chazeau, A.; Buijs, R.R.; Stucchi, R.; Will, L.; Pan, X.; Adolfs, Y.; van der Meer, C.; Wolthuis, J.C.; Kahn, O.I.; et al. The HAUS Complex Is a Key Regulator of Non-centrosomal Microtubule Organization during Neuronal Development. Cell Rep. 2018, 24, 791–800. [Google Scholar] [CrossRef]
- Houry, W.A.; Bertrand, E.; Coulombe, B. The PAQosome, an R2TP-Based Chaperone for Quaternary Structure Formation. Trends Biochem. Sci. 2018, 43, 4–9. [Google Scholar] [CrossRef]
- Basu, A. The Enigmatic Protein Kinase C-eta. Cancers 2019, 11, 214. [Google Scholar] [CrossRef] [Green Version]
- Pal, D.; Basu, A. The unique protein kinase Cη: Implications for breast cancer (review). Int. J. Oncol. 2014, 45, 493–498. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Zeng, S.; Wu, M. Novel insights into noncanonical open reading frames in cancer. Biochim. Biophys. Acta Rev. Cancer 2022, 1877, 188755. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Wang, W.; Han, C.; Huang, W.; Sun, Y.; Fang, K.; Zeng, Z.; Yang, Q.; Pan, Q.; Chen, T.; et al. The oncomicropeptide APPLE promotes hematopoietic malignancy by enhancing translation initiation. Mol. Cell 2021, 81, 4493–4508.e9. [Google Scholar] [CrossRef] [PubMed]
- Meng, N.; Chen, M.; Chen, D.; Chen, X.-H.; Wang, J.-Z.; Zhu, S.; He, Y.-T.; Zhang, X.-L.; Lu, R.-X.; Yan, G.-R. Small Protein Hidden in lncRNA LOC90024 Promotes “Cancerous” RNA Splicing and Tumorigenesis. Adv. Sci. 2020, 7, 1903233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milone, M.C.; Xu, J.; Chen, S.-J.; Collins, M.A.; Zhou, J.; Powell, D.J.J.; Melenhorst, J.J. Engineering enhanced CAR T-cells for improved cancer therapy. Nat. Cancer 2021, 2, 780–793. [Google Scholar] [CrossRef]
- Karami Fath, M.; Babakhaniyan, K.; Zokaei, M.; Yaghoubian, A.; Akbari, S.; Khorsandi, M.; Soofi, A.; Nabi-Afjadi, M.; Zalpoor, H.; Jalalifar, F.; et al. Anti-cancer peptide-based therapeutic strategies in solid tumors. Cell. Mol. Biol. Lett. 2022, 27, 33. [Google Scholar] [CrossRef]
- Kozlowski, M.R.; Kozlowski, R.E. A novel, small peptide with activity against human pancreatic cancer. Am. J. Cancer Res. 2020, 10, 1356–1365. [Google Scholar] [PubMed]
- Yavari, B.; Mahjub, R.; Saidijam, M.; Raigani, M.; Soleimani, M. The Potential Use of Peptides in Cancer Treatment. Curr. Protein Pept. Sci. 2018, 19, 759–770. [Google Scholar] [CrossRef]
Classification | Definition | Site of Initiation |
---|---|---|
short peptides [14] | Peptide-chain with a length of 2–45 amino acids | smORFs, altORFs, uORFs, dORFs, lncRNAs, circRNAs |
small proteins; SEPs [15,16] | Proteins of less than 100 amino acids in eukaryotes | smORFs, sORFs, altORFs, uORFs, dORFs, lncRNAs, circRNAs |
uPeptides [17] | Peptides encoded by ORFs in the TLS of main proteins | upstream ORFs |
3′ UTR peptides [20] | Peptide encoded by ORFs from the 3′ UTR | downstream ORFs |
cryptic peptides [18] | MHC presented epitopes from non-coding regions | 5′ TLS, 3′ UTR, non-coding RNAs, intronic, intergenic and off-frame regions |
miPeps [19] | Peptides encoded by micro RNAs | miRNAs, pri-miRNAs |
uPeptide Designation | Genomic Position in hg38 | Size | Class | Known Function | Sample Origin |
---|---|---|---|---|---|
ADRB2 [117] | chr5: 148826730– 148826790 | 19 aa | individual uPeptide function | The uPeptide acts as an inhibitor of the hormone receptor Beta-2 adrenergic receptor. | COS-7 cells |
ARAF [49] | chrX: 47561218– 47561248 | 9 aa | HLA uLigand | The uPeptide is directly presented by MHC-I complex, does not need protease degradation or processing. | B721.221, A375, HCT116 cells CLL, GBM, Mel samples |
ARL5A [6] | chr2: 151828232– 151828403 | 56 aa | HLA uLigand | Detected as an HLA uLigand, shows distinct localization from main CDS. | HEK293T, iPSCs, K562 cells |
ASDURF [17,118] | chr2: 189663925– 189666058 | 40 aa | tumor-enriched HLA uLigand; part of protein complex | Takes part in the PAQosome, a chaperone complex. HLA uLigands encoded from ASDURF are predominantly detected on leukemic cells. | HEK293T cells AML, CLL samples |
ASS1 [119] | n.d. | n.d. | individual uPeptide function | The uPeptide regulates expression of ASS1 in a trans-suppressive manner. | BAEC cells |
ATF5 uAUG.2 [17] | chr19: 49929395– 49930906 | 59 aa | tumor-associated HLA uLigand | Detected as tumor-associated HLA uLigand. | HEK293T cells CLL samples |
CPA1 [120] | n.d. | 24 aa | nascent peptide | The uPeptide is responsible for translational repression of CPA1 in presence of arginine. | Yeast strains |
DDIT3 [6] | chr12: 57517711–57520480 | 34 aa | HLA uLigand; part of protein complex | Detected as an HLA uLigand, forms stable complexes with the main protein involved in transcriptional regulation. | HEK293T, iPSCs, K562 cells |
EPHX1 uORF1 [121] | chr1: 225810536–225828726 | 26 aa | individual uPeptide function | Expression of EPHX1 is inhibited by trans-acting uPeptides through interactions with the translation machinery. | HEK293A, HEK293T, HepG2, HepG2-C3A, A549 cells |
EPHX1 uORF2 [121] | chr1: 225810576–225828739 | 17 aa | individual uPeptide function | Expression of EPHX1 is inhibited by trans-acting uPeptides through interactions with the translation machinery. | HEK293A, HEK293T, HepG2, HepG2-C3A, A549 cells |
FBXO9 [6] | chr6: 53065478– 53065673 | 64aa | HLA uLigand; part of protein complex | Detected as an HLA uLigand, forms stable complexes with the main protein involved in ubiquitination and proteasomal degradation. | HEK293T, iPSCs, K562 cells |
HAUS6 [6] | chr9: 19102714–19102762 | 15 aa | HLA uLigand; individual uPeptide function | The uPeptide is part of the HAUS6 complex and is involved in microtubule formation. | HEK293T, iPSCs, K562 cells |
HMGA2 [6] | chr12: 65824916–65825123 | 68 aa | HLA uLigand | Forms a complex with the downstream canonical protein encoded on a shared mRNA. | HEK293T, iPSCs, K562 cells |
LUZP1 uORF1 [49] | chr1: 23094263–23094296 | 10 aa | HLA uLigand | Ubiquitous expression of the HLA uLigand in 29 primary healthy and cancer samples and cell lines. | B721.221, A375, HCT116 cells CLL, GBM, Mel samples |
LUZP1 uORF2 [49] | chr1: 23094325– 23094376 | 16 aa | HLA uLigand | Tissue-specific expression in multiple samples of chronic lymphocytic leukemia. | B721.221, A375, HCT116 cells CLL, GBM, Mel samples |
MAPK1 uCUG.1 [17] | chr22: 21807834–21867642 | 110 aa | tumor-associated HLA uLigand | HLA uLigands encoded by the uPeptide were identified on primary malignant samples and show specific intranuclear localization. | HEK293T cells Mel samples |
MIEF1 [122,123] | chr22: 39504230–39504443 | 70 aa | part of protein complex | The uPeptide localizes in mitochondria, involved in transcription of mitochondrial fission and fusion proteins. | HEK293T, iPSCs, K562 cells |
MKKS [124] | chr10: 10420545–10420737 | 63 aa | individual uPeptide function | The uPeptide localizes to the mitochondrial membrane and is predicted to function independently of the main protein. | HeLa, HepG2, U2-OS, HT1080 cells |
PKC-η uAUG.2 [125] | chr14: 61321953–61322034 | 26 aa | individual uPeptide function | The uPeptide binds and inhibits the catalytic activity of novel PKCs; overexpression was shown to reduce cancer cell growth and survival. | MCF-7, MCF-10A, MDA-MB-231, U251 MG cells |
SAMDC [126,127] | chr6: 110874795–110874816 | 6 aa | nascent peptide | Expression of the CDS is regulated by polyamines binding to the nascent uPeptide; orthologous to A. thaliana SAMDC. | CHO cells |
SOCS1 iORF [49] | n.d. | n.d. | HLA uLigand | The internal out-of-frame uORF (iORF) encoded peptide is expressed from the SOCS1 gene, a key modulator of interferon and JAK-STAT signaling. | B721.221, A375, HCT116 cells CLL, GBM, Mel samples |
SOCS1 ouORF [49] | n.d. | n.d. | HLA uLigand | The overlapping uORF (ouORF) encoded peptide is expressed from the SOCS1 gene, a key modulator of interferon and JAK-STAT signaling. | B721.221, A375, HCT116 cells CLL, GBM, Mel samples |
TBPL1 [6] | chr6: 133953303–133980088 | 42 aa | HLA uLigand | Detected as an HLA uLigand, shows distinct cellular localization from the main protein. | HEK293T, iPSCs, K562 cells |
TMEM203 uAUG.1 [17] | chr9: 137205244–137205640 | 131 aa | tumor-associated HLA uLigand | HLA uLigands encoded by the uPeptide were detected. The uPeptide shows individual cellular localization. | HEK293T cells AML, CLL, MEL, OvCa samples |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jürgens, L.; Wethmar, K. The Emerging Role of uORF-Encoded uPeptides and HLA uLigands in Cellular and Tumor Biology. Cancers 2022, 14, 6031. https://doi.org/10.3390/cancers14246031
Jürgens L, Wethmar K. The Emerging Role of uORF-Encoded uPeptides and HLA uLigands in Cellular and Tumor Biology. Cancers. 2022; 14(24):6031. https://doi.org/10.3390/cancers14246031
Chicago/Turabian StyleJürgens, Lara, and Klaus Wethmar. 2022. "The Emerging Role of uORF-Encoded uPeptides and HLA uLigands in Cellular and Tumor Biology" Cancers 14, no. 24: 6031. https://doi.org/10.3390/cancers14246031
APA StyleJürgens, L., & Wethmar, K. (2022). The Emerging Role of uORF-Encoded uPeptides and HLA uLigands in Cellular and Tumor Biology. Cancers, 14(24), 6031. https://doi.org/10.3390/cancers14246031