The Continuing Question of Adjuvant Therapy in Clear Cell Renal Cell Carcinoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. The Foundation for Adjuvant Therapy in RCC
Historical RCC Trials: Cytokine Era
3. VEGFR TKI Adjuvant Clinical Trials
3.1. Sunitinib or Sorafenib
3.2. Pazopanib
3.3. Axitinib
3.4. VEGFR-TKI Trials in the M1 Setting
3.5. Adjuvant mTOR Treatment
4. Immune Checkpoint Inhibitor Adjuvant Clinical Trials
4.1. Nivolumab
4.2. Pembrolizumab
4.3. Atezolizumab
5. Patient Selection for Adjuvant Therapy
6. Circulating Tumor DNA Testing in RCC
7. Discussion
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moch, H.; Amin, M.B.; Berney, D.M.; Compérat, E.M.; Gill, A.J.; Hartmann, A.; Menon, S.; Raspollini, M.R.; Rubin, M.A.; Srigley, J.R.; et al. The 2022 World Health Organization Classification of Tumours of the Urinary System and Male Genital Organs—Part A: Renal, Penile, and Testicular Tumours. Eur. Urol. 2022, 82, 458–468. [Google Scholar] [CrossRef] [PubMed]
- National Cancer Institute. Cancer Stat Facts: Kidney and Renal Pelvis Cancer. Available online: https://seer.cancer.gov/statfacts/html/kidrp.html (accessed on 18 July 2022).
- McKay, R.R.; Bossé, D.; Choueiri, T.K. Evolving Systemic Treatment Landscape for Patients with Advanced Renal Cell Carcinoma. J. Clin. Oncol. 2018, 36, 3615–3623. [Google Scholar] [CrossRef] [PubMed]
- Lam, J.S.; Shvarts, O.; Leppert, J.T.; Pantuck, A.J.; Figlin, R.A.; Belldegrun, A.S. Postoperative surveillance protocol for patients with localized and locally advanced renal cell carcinoma based on a validated prognostic nomogram and risk group stratification system. J. Urol. 2005, 174, 466–472. [Google Scholar] [CrossRef] [PubMed]
- Ravaud, A.; Motzer, R.J.; Pandha, H.S.; George, D.J.; Pantuck, A.J.; Patel, A.; Chang, Y.-H.; Escudier, B.; Donskov, F.; Magheli, A.; et al. Adjuvant Sunitinib in High-Risk Renal-Cell Carcinoma after Nephrectomy. N. Engl. J. Med. 2016, 375, 2246–2254. [Google Scholar] [CrossRef] [PubMed]
- Ryan, C.W.; Tangen, C.; Heath, E.I.; Stein, M.N.; Meng, M.; Alva, A.S.; Pal, S.K.; Puzanov, I.; Clark, J.I.; Choueiri, T.K.; et al. EVEREST: Everolimus for renal cancer ensuing surgical therapy—A phase III study (SWOG S0931). J. Clin. Oncol. 2022, 40, LBA4500. [Google Scholar] [CrossRef]
- Pal, S.K.; Uzzo, R.; Karam, J.A.; Master, V.A.; Donskov, F.; Suarez, C.; Albiges, L.; Rini, B.; Tomita, Y.; Kann, A.G.; et al. Adjuvant atezolizumab versus placebo for patients with renal cell carcinoma at increased risk of recurrence following resection (IMmotion010): A multicentre, randomised, double-blind, phase 3 trial. Lancet 2022, 400, 1103–1116. [Google Scholar] [CrossRef]
- Motzer, R.J.; Russo, P.; Gruenwald, V.; Tomita, Y.; Zurawski, B.; Parikh, O.; Buti, S.; Barthelemy, P.; Goh, J.; Ye, D.; et al. Adjuvant nivolumab plus ipilimumab (NIVO+IPI) vs. placebo (PBO) for localized renal cell carcinoma (RCC) at high risk of relapse after nephrectomy: Results from the randomized, phase III CheckMate 914 trial. Ann. Oncol. 2022, 33 (Suppl. 7), S808–S869. [Google Scholar] [CrossRef]
- Choueiri, T.K.; Tomczak, P.; Park, S.H.; Venugopal, B.; Ferguson, T.; Chang, Y.-H.; Hajek, J.; Symeonides, S.N.; Lee, J.L.; Sarwar, N.; et al. Adjuvant Pembrolizumab after Nephrectomy in Renal-Cell Carcinoma. N. Engl. J. Med. 2021, 385, 683–694. [Google Scholar] [CrossRef]
- Allaf, M.; Kim, S.; Harshman, L.; McDermott, D.; Master, V.; Signoretti, S.; Cole, S.; Moon, H.; Adra, N.; Singer, E.; et al. Phase III randomized study comparing perioperative nivolumab (nivo) versus observation in patients (Pts) with renal cell carcinoma (RCC) undergoing nephrectomy (PROSPER, ECOG-ACRIN EA8143), a National Clinical Trials Network Trial. Ann. Oncol. 2022, 33 (Suppl. 7), S808–S869. [Google Scholar] [CrossRef]
- Clark, J.I.; Atkins, M.B.; Urba, W.J.; Creech, S.; Figlin, R.A.; Dutcher, J.P.; Flaherty, L.; Sosman, J.A.; Logan, T.F.; White, R.; et al. Adjuvant High-Dose Bolus Interleukin-2 for Patients with High-Risk Renal Cell Carcinoma: A Cytokine Working Group Randomized Trial. J. Clin. Oncol. 2003, 21, 3133–3140. [Google Scholar] [CrossRef]
- Majhail, N.S.; Wood, L.; Elson, P.; Finke, J.; Olencki, T.; Bukowski, R.M. Adjuvant Subcutaneous Interleukin-2 in Patients with Resected Renal Cell Carcinoma: A Pilot Study. Clin. Genitourin. Cancer 2006, 5, 50–56. [Google Scholar] [CrossRef]
- Messing, E.M.; Manola, J.; Wilding, G.; Propert, K.; Fleischmann, J.; Crawford, E.D.; Pontes, J.E.; Hahn, R.; Trump, D. Phase III Study of Interferon Alfa-NL as Adjuvant Treatment for Resectable Renal Cell Carcinoma: An Eastern Cooperative Oncology Group/Intergroup Trial. J. Clin. Oncol. 2003, 21, 1214–1222. [Google Scholar] [CrossRef] [PubMed]
- Passalacqua, R.; Caminiti, C.; Buti, S.; Porta, C.; Camisa, R.; Braglia, L.; Tomasello, G.; Vaglio, A.; Labianca, R.; Rondini, E.; et al. Adjuvant Low-Dose Interleukin-2 (IL-2) Plus Interferon-α (IFN-α) in Operable Renal Cell Carcinoma (RCC). J. Immunother. 2014, 37, 440–447. [Google Scholar] [CrossRef] [PubMed]
- Aitchison, M.; Bray, C.; Van Poppel, H.; Sylvester, R.; Graham, J.; Innes, C.; McMahon, L.; Vasey, P. Adjuvant 5-flurouracil, alpha-interferon and interleukin-2 versus observation in patients at high risk of recurrence after nephrectomy for renal cell carcinoma: Results of a Phase III randomised European Organisation for Research and Treatment of Cancer (Genito-Urinary Cancers Group)/National Cancer Research Institute trial. Eur. J. Cancer 2013, 50, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.Y.; Kaelin, W.G. Role of VHL Gene Mutation in Human Cancer. J. Clin. Oncol. 2004, 22, 4991–5004. [Google Scholar] [CrossRef]
- National Comprehensive Cancer Network. Kidney Cancer (Version: 2.2023). Available online: https://www.nccn.org/professionals/physician_gls/pdf/kidney.pdf (accessed on 12 September 2022).
- Haas, N.B.; Manola, J.; Uzzo, R.G.; Flaherty, K.T.; Wood, C.G.; Kane, C.; Jewett, M.; Dutcher, J.P.; Atkins, M.B.; Pins, M.; et al. Adjuvant sunitinib or sorafenib for high-risk, non-metastatic renal-cell carcinoma (ECOG-ACRIN E2805): A double-blind, placebo-controlled, randomised, phase 3 trial. Lancet 2016, 387, 2008–2016. [Google Scholar] [CrossRef] [Green Version]
- Motzer, R.J.; Ravaud, A.; Patard, J.-J.; Pandha, H.S.; George, D.J.; Patel, A.; Chang, Y.-H.; Escudier, B.; Donskov, F.; Magheli, A.; et al. Adjuvant Sunitinib for High-risk Renal Cell Carcinoma After Nephrectomy: Subgroup Analyses and Updated Overall Survival Results. Eur. Urol. 2018, 73, 62–68. [Google Scholar] [CrossRef]
- United States Food and Drug Administration. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-sunitinib-malate-adjuvant-treatment-renal-cell-carcinoma (accessed on 13 October 2022).
- Haas, N.B.; Manola, J.; Dutcher, J.P.; Flaherty, K.T.; Uzzo, R.G.; Atkins, M.B.; DiPaola, R.S.; Choueiri, T.K. Adjuvant Treatment for High-Risk Clear Cell Renal Cancer. JAMA Oncol. 2017, 3, 1249–1252. [Google Scholar] [CrossRef] [Green Version]
- Leibovich, B.C.; Blute, M.L.; Cheville, J.C.; Lohse, C.M.; Frank, I.; Kwon, E.D.; Weaver, A.L.; Parker, A.S.; Zincke, H. Prediction of progression after radical nephrectomy for patients with clear cell renal cell carcinoma. Cancer 2003, 97, 1663–1671. [Google Scholar] [CrossRef]
- Eisen, T.; Frangou, E.; Oza, B.; Ritchie, A.W.; Smith, B.; Kaplan, R.; Davis, I.D.; Stockler, M.R.; Albiges, L.; Escudier, B.; et al. Adjuvant Sorafenib for Renal Cell Carcinoma at Intermediate or High Risk of Relapse: Results from the SORCE Randomized Phase III Intergroup Trial. J. Clin. Oncol. 2020, 38, 4064–4075. [Google Scholar] [CrossRef]
- Motzer, R.J.; Haas, N.B.; Donskov, F.; Gross-Goupil, M.; Varlamov, S.; Kopyltsov, E.; Lee, J.L.; Melichar, B.; Rini, B.I.; Choueiri, T.K.; et al. Randomized Phase III Trial of Adjuvant Pazopanib Versus Placebo after Nephrectomy in Patients with Localized or Locally Advanced Renal Cell Carcinoma. J. Clin. Oncol. 2017, 35, 3916–3923. [Google Scholar] [CrossRef] [PubMed]
- Motzer, R.J.; Hutson, T.E.; Cella, D.; Reeves, J.; Hawkins, R.; Guo, J.; Nathan, P.; Staehler, M.; De Souza, P.; Merchan, J.R.; et al. Pazopanib versus Sunitinib in Metastatic Renal-Cell Carcinoma. N. Engl. J. Med. 2013, 369, 722–731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Motzer, R.J.; Russo, P.; Haas, N.; Doehn, C.; Donskov, F.; Gross-Goupil, M.; Varlamov, S.; Kopyltsov, E.; Lee, J.L.; Lim, H.Y.; et al. Adjuvant Pazopanib Versus Placebo after Nephrectomy in Patients with Localized or Locally Advanced Renal Cell Carcinoma: Final Overall Survival Analysis of the Phase 3 PROTECT Trial. Eur. Urol. 2021, 79, 334–338. [Google Scholar] [CrossRef] [PubMed]
- Gross-Goupil, M.; Kwon, T.; Eto, M.; Ye, D.; Miyake, H.; Seo, S.; Byun, S.-S.; Lee, J.; Master, V.; Jin, J.; et al. Axitinib versus placebo as an adjuvant treatment of renal cell carcinoma: Results from the phase III, randomized ATLAS trial. Ann. Oncol. 2018, 29, 2371–2378. [Google Scholar] [CrossRef] [PubMed]
- Procopio, G.; Apollonio, G.; Cognetti, F.; Miceli, R.; Milella, M.; Mosca, A.; Chiuri, V.E.; Bearz, A.; Morelli, F.; Ortega, C.; et al. Sorafenib Versus Observation Following Radical Metastasectomy for Clear-cell Renal Cell Carcinoma: Results from the Phase 2 Randomized Open-label RESORT Study. Eur. Urol. Oncol. 2019, 2, 699–707. [Google Scholar] [CrossRef] [PubMed]
- Mennitto, A.; Verzoni, E.; Cognetti, F.; Miceli, R.; Milella, M.; Mosca, A.; Chiuri, V.E.; Bearz, A.; Morelli, F.; Ortega, C.; et al. Radical metastasectomy followed by sorafenib versus observation in patients withclear cell renal cell carcinoma: Extended follow -up of efficacy results from the randomized phase II RESORT trial. Expert Rev. Clin. Pharmacol. 2021, 14, 261–268. [Google Scholar] [CrossRef]
- Appleman, L.J.; Puligandla, M.; Pal, S.K.; Harris, W.; Agarwal, N.; Costello, B.A.; Ryan, C.W.; Pins, M.; Kolesar, J.; Vaena, D.A.; et al. Randomized, double-blind phase III study of pazopanib versus placebo in patients with metastatic renal cell carcinoma who have no evidence of disease following metastasectomy: A trial of the ECOG-ACRIN cancer research group (E2810). J. Clin. Oncol. 2019, 37, 4502. [Google Scholar] [CrossRef]
- Motzer, R.J.; Escudier, B.; McDermott, D.F.; George, S.; Hammers, H.J.; Srinivas, S.; Tykodi, S.S.; Sosman, J.A.; Procopio, G.; Plimack, E.R.; et al. Nivolumab versus Everolimus in Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2015, 373, 1803–1813. [Google Scholar] [CrossRef] [Green Version]
- Cella, D.; Grünwald, V.; Nathan, P.; Doan, J.; Dastani, H.; Taylor, F.; Bennett, B.; DeRosa, M.; Berry, S.; Broglio, K.; et al. Quality of life in patients with advanced renal cell carcinoma given nivolumab versus everolimus in CheckMate 025: A randomised, open-label, phase 3 trial. Lancet Oncol. 2016, 17, 994–1003. [Google Scholar] [CrossRef] [Green Version]
- Gorin, M.A.; Patel, H.D.; Rowe, S.P.; Hahn, N.M.; Hammers, H.J.; Pons, A.; Trock, B.J.; Pierorazio, P.M.; Nirschl, T.R.; Salles, D.C.; et al. Neoadjuvant Nivolumab in Patients with High-risk Nonmetastatic Renal Cell Carcinoma. Eur. Urol. Oncol. 2022, 5, 113–117. [Google Scholar] [CrossRef]
- Rini, B.I.; Plimack, E.R.; Stus, V.; Gafanov, R.; Hawkins, R.; Nosov, D.; Pouliot, F.; Alekseev, B.; Soulières, D.; Melichar, B.; et al. Pembrolizumab plus Axitinib versus Sunitinib for Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2019, 380, 1116–1127. [Google Scholar] [CrossRef] [PubMed]
- Motzer, R.; Alekseev, B.; Rha, S.-Y.; Porta, C.; Eto, M.; Powles, T.; Grünwald, V.; Hutson, T.E.; Kopyltsov, E.; Méndez-Vidal, M.J.; et al. Lenvatinib plus Pembrolizumab or Everolimus for Advanced Renal Cell Carcinoma. N. Engl. J. Med. 2021, 384, 1289–1300. [Google Scholar] [CrossRef]
- Powles, T.; Tomczak, P.; Park, S.H.; Venugopal, B.; Ferguson, T.; Symeonides, S.N.; Hajek, J.; Gurney, H.; Chang, Y.-H.; Lee, J.L.; et al. Pembrolizumab versus placebo as post-nephrectomy adjuvant therapy for clear cell renal cell carcinoma (KEYNOTE-564): 30-month follow-up analysis of a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2022, 23, 1133–1144. [Google Scholar] [CrossRef] [PubMed]
- Zisman, A.; Pantuck, A.J.; Wieder, J.; Chao, D.H.; Dorey, F.; Said, J.W.; Dekernion, J.B.; Figlin, R.A.; Belldegrun, A.S. Risk Group Assessment and Clinical Outcome Algorithm to Predict the Natural History of Patients with Surgically Resected Renal Cell Carcinoma. J. Clin. Oncol. 2002, 20, 4559–4566. [Google Scholar] [CrossRef] [PubMed]
- Sorbellini, M.; Kattan, M.; Snyder, M.E.; Reuter, V.; Motzer, R.; Goetzl, M.; McKiernan, J.; Russo, P. A postoperative prognostic nomogram predicting recurrence for patients with conventional clear cell renal cell carcinoma. J. Urol. 2005, 173, 48–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frank, I.; Blute, M.L.; Cheville, J.C.; Lohse, C.M.; Weaver, A.L.; Zincke, H. An outcome prediction model for patients with clear cell renal cell carcinoma treated with radical nephrectomy based on tumor stage, size, grade and necrosis: The SSIGN score. J. Urol. 2002, 168, 2395–2400. [Google Scholar] [CrossRef]
- Correa, A.F.; Jegede, O.A.; Haas, N.B.; Flaherty, K.T.; Pins, M.R.; Adeniran, A.; Messing, E.M.; Manola, J.; Wood, C.G.; Kane, C.J.; et al. Predicting Disease Recurrence, Early Progression, and Overall Survival Following Surgical Resection for High-risk Localized and Locally Advanced Renal Cell Carcinoma. Eur. Urol. 2021, 80, 20–31. [Google Scholar] [CrossRef] [PubMed]
- Motzer, R.J.; Banchereau, R.; Hamidi, H.; Powles, T.; McDermott, D.; Atkins, M.B.; Escudier, B.; Liu, L.-F.; Leng, N.; Abbas, A.R.; et al. Molecular Subsets in Renal Cancer Determine Outcome to Checkpoint and Angiogenesis Blockade. Cancer Cell 2020, 38, 803–817.e4. [Google Scholar] [CrossRef] [PubMed]
- McDermott, D.F.; Huseni, M.A.; Atkins, M.B.; Motzer, R.J.; Rini, B.I.; Escudier, B.; Fong, L.; Joseph, R.W.; Pal, S.K.; Reeves, J.A.; et al. Clinical activity and molecular correlates of response to atezolizumab alone or in combination with bevacizumab versus sunitinib in renal cell carcinoma. Nat. Med. 2018, 24, 749–757. [Google Scholar] [CrossRef]
- Lin, F.; Zhang, P.L.; Yang, X.J.; Shi, J.; Blasick, T.; Han, W.K.; Wang, H.L.; Shen, S.S.; Teh, B.T.; Bonventre, J.V. Human Kidney Injury Molecule-1 (hKIM-1): A Useful Immunohistochemical Marker for Diagnosing Renal Cell Carcinoma and Ovarian Clear Cell Carcinoma. Am. J. Surg. Pathol. 2007, 31, 371–381. [Google Scholar] [CrossRef]
- Zhang, P.L.; Mashni, J.W.; Sabbisetti, V.S.; Schworer, C.M.; Wilson, G.D.; Wolforth, S.C.; Kernen, K.M.; Seifman, B.D.; Amin, M.B.; Geddes, T.J.; et al. Urine kidney injury molecule-1: A potential non-invasive biomarker for patients with renal cell carcinoma. Int. Urol. Nephrol. 2014, 46, 379–388. [Google Scholar] [CrossRef] [Green Version]
- Scelo, G.; Muller, D.C.; Riboli, E.; Johansson, M.; Cross, A.J.; Vineis, P.; Tsilidis, K.K.; Brennan, P.; Boeing, H.; Peeters, P.H.; et al. KIM-1 as a Blood-Based Marker for Early Detection of Kidney Cancer: A Prospective Nested Case–Control Study. Clin. Cancer Res. 2018, 24, 5594–5601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, W.; Puligandla, M.; Halbert, B.; Haas, N.B.; Flaherty, K.T.; Uzzo, R.G.; Dutcher, J.P.; DiPaola, R.S.; Sabbisetti, V.; Bhatt, R.S. Plasma KIM-1 Is Associated with Recurrence Risk after Nephrectomy for Localized Renal Cell Carcinoma: A Trial of the ECOG-ACRIN Research Group (E2805). Clin. Cancer Res. 2021, 27, 3397–3403. [Google Scholar] [CrossRef] [PubMed]
- Powles, T.; Assaf, Z.J.; Davarpanah, N.; Banchereau, R.; Szabados, B.E.; Yuen, K.C.; Grivas, P.; Hussain, M.; Oudard, S.; Gschwend, J.E.; et al. ctDNA guiding adjuvant immunotherapy in urothelial carcinoma. Nature 2021, 595, 432–437. [Google Scholar] [CrossRef]
- Bronkhorst, A.J.; Wentzel, J.F.; Aucamp, J.; van Dyk, E.; du Plessis, L.; Pretorius, P.J. Characterization of the cell-free DNA released by cultured cancer cells. Biochim. Biophys. Acta 2016, 1863, 157–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Green, E.A.; Li, R.; Albiges, L.; Choueiri, T.K.; Freedman, M.; Pal, S.; Dyrskjøt, L.; Kamat, A.M. Clinical Utility of Cell-free and Circulating Tumor DNA in Kidney and Bladder Cancer: A Critical Review of Current Literature. Eur. Urol. Oncol. 2021, 4, 893–903. [Google Scholar] [CrossRef]
- Geertsen, L.; Koldby, K.M.; Thomassen, M.; Kruse, T.; Lund, L. Circulating Tumor DNA in Patients with Renal Cell Carcinoma. A Systematic Review of the Literature. Eur. Urol. Open Sci. 2022, 37, 27–35. [Google Scholar] [CrossRef]
- Pal, S.K.; Sonpavde, G.; Agarwal, N.; Vogelzang, N.J.; Srinivas, S.; Haas, N.B.; Signoretti, S.; McGregor, B.A.; Jones, J.; Lanman, R.B.; et al. Evolution of Circulating Tumor DNA Profile from First-line to Subsequent Therapy in Metastatic Renal Cell Carcinoma. Eur. Urol. 2017, 72, 557–564. [Google Scholar] [CrossRef]
- Lasseter, K.; Nassar, A.H.; Hamieh, L.; Berchuck, J.E.; Nuzzo, P.V.; Korthauer, K.; Shinagare, A.B.; Ogorek, B.; McKay, R.; Thorner, A.R.; et al. Plasma cell-free DNA variant analysis compared with methylated DNA analysis in renal cell carcinoma. Genet. Med. 2020, 22, 1366–1373. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Uemura, M.; Fujita, M.; Maejima, K.; Koh, Y.; Matsushita, M.; Nakano, K.; Hayashi, Y.; Wang, C.; Ishizuya, Y.; et al. Clinical significance of the mutational landscape and fragmentation of circulating tumor DNA in renal cell carcinoma. Cancer Sci. 2019, 110, 617–628. [Google Scholar] [CrossRef]
- Bacon, J.V.; Annala, M.; Soleimani, M.; Lavoie, J.-M.; So, A.; Gleave, M.E.; Fazli, L.; Wang, G.; Chi, K.N.; Kollmannsberger, C.K.; et al. Plasma Circulating Tumor DNA and Clonal Hematopoiesis in Metastatic Renal Cell Carcinoma. Clin. Genitourin. Cancer 2020, 18, 322–331.e2. [Google Scholar] [CrossRef] [PubMed]
- Correa, A.; Connolly, D.C.; Balcioglu, M.; Wu, H.-T.; Dashner, S.; Shchegrova, S.; Kalashnikova, E.; Pawar, H.; Uzzo, R.G.; Gong, Y.; et al. Presence of circulating tumor DNA in surgically resected renal cell carcinoma is associated with advanced disease and poor patient prognosis. Ann. Oncol. 2019, 30 (Suppl. 5), v25–v54. [Google Scholar] [CrossRef]
- Nuzzo, P.V.; Berchuck, J.E.; Korthauer, K.; Spisak, S.; Nassar, A.H.; Alaiwi, S.A.; Chakravarthy, A.; Shen, S.Y.; Bakouny, Z.; Boccardo, F.; et al. Detection of renal cell carcinoma using plasma and urine cell-free DNA methylomes. Nat. Med. 2020, 26, 1041–1043. [Google Scholar] [CrossRef] [PubMed]
- Bin Riaz, I.; Siddiqi, R.; Islam, M.; He, H.; Riaz, A.; Asghar, N.; Naqvi, S.A.A.; Warner, J.L.; Murad, M.H.; Kohli, M. Adjuvant Tyrosine Kinase Inhibitors in Renal Cell Carcinoma: A Concluded Living Systematic Review and Meta-Analysis. JCO Clin. Cancer Inform. 2021, 5, 588–599. [Google Scholar] [CrossRef] [PubMed]
- Laukhtina, E.; Quhal, F.; Mori, K.; Motlagh, R.S.; Pradere, B.; Schuettfort, V.M.; Mostafaei, H.; Katayama, S.; Grossmann, N.; Rajwa, P.; et al. Adjuvant therapy with tyrosine kinase inhibitors for localized and locally advanced renal cell carcinoma: An updated systematic review and meta-analysis. Urol. Oncol. Semin. Orig. Investig. 2021, 39, 764–773. [Google Scholar] [CrossRef]
- Choueiri, T.K.; Fishman, M.N.; Escudier, B.; McDermott, D.F.; Drake, C.G.; Kluger, H.; Stadler, W.M.; Perez-Gracia, J.L.; McNeel, D.G.; Curti, B.; et al. Immunomodulatory Activity of Nivolumab in Metastatic Renal Cell Carcinoma. Clin. Cancer Res. 2016, 22, 5461–5471. [Google Scholar] [CrossRef] [Green Version]
- McDermott, D.F.; Sosman, J.A.; Sznol, M.; Massard, C.; Gordon, M.S.; Hamid, O.; Powderly, J.D.; Infante, J.R.; Fassò, M.; Wang, Y.V.; et al. Atezolizumab, an Anti–Programmed Death-Ligand 1 Antibody, in Metastatic Renal Cell Carcinoma: Long-Term Safety, Clinical Activity, and Immune Correlates from a Phase Ia Study. J. Clin. Oncol. 2016, 34, 833–842. [Google Scholar] [CrossRef]
- Weber, E.M.; Titman, A.C. Quantifying the association between progression-free survival and overall survival in oncology trials using Kendall’s τ. Stat. Med. 2019, 38, 703–719. [Google Scholar] [CrossRef] [Green Version]
- Oza, B.; Frangou, E.; Smith, B.; Bryant, H.; Kaplan, R.; Choodari-Oskooei, B.; Powles, T.; Stewart, G.D.; Albiges, L.; Bex, A.; et al. RAMPART: A phase III multi-arm multi-stage trial of adjuvant checkpoint inhibitors in patients with resected primary renal cell carcinoma (RCC) at high or intermediate risk of relapse. Contemp. Clin. Trials 2021, 108, 106482. [Google Scholar] [CrossRef]
- Choueiri, T.K.; Bedke, J.; Karam, J.A.; McKay, R.R.; Motzer, R.J.; Pal, S.K.; Suárez, C.; Uzzo, R.; Liu, H.; Burgents, J.E.; et al. LITESPARK-022: A phase 3 study of pembrolizumab + belzutifan as adjuvant treatment of clear cell renal cell carcinoma (ccRCC). J. Clin. Oncol. 2022, 40. [Google Scholar] [CrossRef]
Trial Name (Year) | ASSURE (2016) | S-TRAC (2016) | PROTECT (2017) | ATLAS (2017) | SORCE (2020) |
---|---|---|---|---|---|
Agent Investigated | Sunitinib ǂ vs. Sorafenib ǂ vs. Placebo | Sunitinib ǂ vs. Placebo | Pazopanib ǂ vs. Placebo | Axitinib * vs. Placebo | Sor 3yr vs. Sor 2yr vs. Placebo (3/2yr) |
DFS HR (95% CI, p-value) | 1.02 (0.85–1.23, p = 0.80) | 0.76 (0.59–0.98, p = 0.03) | 0.86 (0.70–1.14, p = 0.17) | 0.87 (0.66–1.15, p = 0.32) | 1.01 (0.83–1.23, p = 0.95) |
OS HR (95% CI, p-value) | Sun: 1.06 (0.78–1.44) Sor: 0.80 (0.58–1.10) | 0.92 (0.66–1.28; p = 0.6) | 1.0 (0.80–1.26, p > 0.9) | 1.026 (0.60–1.756, p = 0.9246) | Sor 3yr 1.06 (0.82–1.38, p = 0.638) Sor 1yr 0.92 (0.71–1.20, p = 0.541) |
Treatment related AEs Grade 3–5 (%) | Sun: 63% Sor: 72% Pbo: 25% | Sun: 60.4% Pbo: 19.4% | Paz: 60% Pbo: 21% | Axi: 49% Pbo: 12% | Sor 3yr: 63.9% Sor 1yr: 58.6% Pbo: 29.2% |
Treatment discontinuation (%) | Sun: 44% Sor: 45% Pbo: 11% | Sun: 44% Pbo: 31% | Paz 600mg: 35% Paz 800mg: 39% Pbo: 5/6% | Axi 1yr: 67.9% Pbo 1yr: 72.4% Axi 3yr: 79.8% Pbo 3yr: 78.8% | Sor 3yr: 75% Sor 1yr: 67% Pbo: 45% |
Trial Name (Year) | IMmotion010 (2022) | Checkmate-914 * (2022) | PROSPER (2022) | KEYNOTE-564 (2019) |
---|---|---|---|---|
Investigational Agents | Atezolizumab vs. Placebo | Nivolumab + Ipilimumab vs. Placebo (Part A) | Perioperative + adjuvant nivolumab vs. observation | Pembrolizumab vs. Placebo |
RCC Inclusion Histology | Clear cell, sarcomatoid | Clear cell | Any | Clear Cell |
M1 NED population included (%) | 14.4% | 0 | 3% | 5.8% |
DFS HR (95% CI, p-value) | 0.93 (0.75–1.16, p = 0.50) | 0.92 (0.71–1.19, p = 0.5347) | 0.97 (0.74–1.28, p = 0.43) | 0.63 (0.50–0.80, p = n/a) |
Treatment related AEs, Grade 3–4 (%) | 14.1% | 28% | 15% | 18.6% |
Treatment discontinuation (%) | 11.5% | 29% | 13% | 18.2% |
UISS Model [37] | TNM Stage | -- | Fuhrman Grade | -- | -- | ECOG PS | 1–5 Year OS% |
---|---|---|---|---|---|---|---|
MSK postoperative nomogram [38] | Pathologic stage | Tumor size | Fuhrman grade | Vascular invasion | Clinical presentation | -- | 5 year RFS% |
SSIGN score [39]. | TNM stage | Tumor size | Nuclear grade | Tumor Necrosis | -- | -- | 5 year CSS % |
Leibovich score [22] | TNM stage | Tumor size | Nuclear grade | Tumor Necrosis | -- | -- | 1,5,10 year MFS % |
Trial Name (Enrollment Periods) | S-TRAC [5] (9/19/07-4/7/11) | KEYNOTE-564 [9] (6/30/17-9/20/19) |
---|---|---|
Investigational Agents | Sunitinib vs. Placebo | Pembrolizumab vs. Placebo |
Enrolled Patients | 615 | 994 |
Median Follow Up (Months) | 80 | 30 |
Median DFS-Investigator Review-HR (95% CI, p-value) | 0.81 (0.64–1.02, p = 0.08) | 0.63 (0.5–0.80, p <0.0001) |
Median DFS (Central review) HR (95% CI, p-value) | 0.76 (0.59–0.98, p = 0.03) | NR |
24-month DFS Rate (%) | 72% vs. 68% | 78.3% vs. 67.3% |
Median OS HR (95% CI, p-value) | NR vs. NR 0.92 (0.66–1.28, p = 0.60) | NR vs. NR * 0.52 (0.31–0.86, p = 0.0048) |
Grade 3 or 4 TRAEs (%) | 57.2 | 18.9 |
Treatment Discontinuation due to AEs (%) | 28 | 20.7 |
Trial Name (Sponsor) | NCT# | Investigational Agents | Planned Accrual | Inclusion Stage/Grade | Histology | Primary Endpoint |
---|---|---|---|---|---|---|
LITESPARK 6482-022 (MERCK) | 05239728 | Belzutifan + pembrolizumab vs. Placebo + pembrolizumab | 1600 | pT2, FG4 or scarcomatoid, >pT3, FG any N+, and M1 NED | Clear Cell (sarcomatoid allowed) | DFS (investigator) |
RAMPART (University College London) | 03288532 | Durvalumab + tremelimumab vs. Durvalumab vs. Active survillence | 1750 | Leibovoch Score 3–11 | Any | DFS and OS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berg, S.A.; McGregor, B.A. The Continuing Question of Adjuvant Therapy in Clear Cell Renal Cell Carcinoma. Cancers 2022, 14, 6018. https://doi.org/10.3390/cancers14246018
Berg SA, McGregor BA. The Continuing Question of Adjuvant Therapy in Clear Cell Renal Cell Carcinoma. Cancers. 2022; 14(24):6018. https://doi.org/10.3390/cancers14246018
Chicago/Turabian StyleBerg, Stephanie A., and Bradley A. McGregor. 2022. "The Continuing Question of Adjuvant Therapy in Clear Cell Renal Cell Carcinoma" Cancers 14, no. 24: 6018. https://doi.org/10.3390/cancers14246018
APA StyleBerg, S. A., & McGregor, B. A. (2022). The Continuing Question of Adjuvant Therapy in Clear Cell Renal Cell Carcinoma. Cancers, 14(24), 6018. https://doi.org/10.3390/cancers14246018