Advances in Radiation Oncology for Pancreatic Cancer: An Updated Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Locally Advanced Pancreatic Cancer
3.1.1. Advances in Radiation Therapy Technique to Allow for Dose Escalation
3.1.2. Advances in Systemic Therapy for Improved Radiosensitization
3.2. Resectable and Borderline Resectable Pancreatic Cancer
Advances in Neoadjuvant Strategies Using Radiation
4. Limitations
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA. Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Tempero, M.; Malafa, M.; Al-Hawary, M. Pancreatic Adenocarcinoma. NCCN Guidel. 2022, 1. [Google Scholar] [CrossRef] [Green Version]
- Salamekh, S.; Gottumukkala, S.; Park, C.; Lin, M.; Sanford, N.N. Radiotherapy for Pancreatic Adenocarcinoma: Recent Developments and Advances on the Horizon. Hematol. Oncol. Clin. 2022, 36, 995–1009. [Google Scholar] [CrossRef] [PubMed]
- Kolbeinsson, H.M.; Chandana, S.; Wright, G.P.; Chung, M. Pancreatic Cancer: A Review of Current Treatment and Novel Therapies. J. Investig. Surg. 2022, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Wishart, G.; Gupta, P.; Schettino, G.; Nisbet, A.; Velliou, E. 3d tissue models as tools for radiotherapy screening for pancreatic cancer. Br. J. Radiol. 2021, 94, 20201397. [Google Scholar] [CrossRef] [PubMed]
- Hammel, P.; Huguet, F.; van Laethem, J.L.; Goldstein, D.; Glimelius, B.; Artru, P.; Borbath, I.; Bouché, O.; Shannon, J.; André, T.; et al. Effect of chemoradiotherapy vs chemotherapy on survival in patients with locally advanced pancreatic cancer controlled after 4 months of gemcitabine with or without erlotinib the LAP07 randomized clinical trial. JAMA 2016, 315, 1844–1853. [Google Scholar] [CrossRef]
- Wittel, U.A.; Jacobasch, L.; Fietkau, R.; Ghadimi, M.; Gr, R.; Croner, R.S.; Bechstein, W.O.; Neumann, U.P.; Waldschmidt, D.; Hubert, S.; et al. Oral Abstract Session Randomized phase III trial of induction chemotherapy followed by chemoradiotherapy or chemotherapy alone for nonresectable locally advanced pancreatic cancer: First results of the CONKO-007 trial. p. 4008. 2022. [Google Scholar]
- Reyngold, M.; Parikh, P.; Crane, C.H. Ablative radiation therapy for locally advanced pancreatic cancer: Techniques and results. Radiat. Oncol. 2019, 14, 95. [Google Scholar] [CrossRef] [Green Version]
- Krishnan, S.; Chadha, A.S.; Suh, Y.; Chen, H.C.; Rao, A.; Das, P.; Minsky, B.D.; Mahmood, U.; Delclos, M.E.; Sawakuchi, G.O.; et al. Focal radiation therapy dose escalation improves overall survival in locally advanced pancreatic cancer patients receiving induction chemotherapy and consolidative chemoradiation. Int. J. Radiat. Oncol. Biol. Phys. 2016, 94, 755–765. [Google Scholar] [CrossRef] [Green Version]
- Herman, J.M.; Chang, D.T.; Goodman, K.A.; Dholakia, A.S.; Raman, S.P.; Hacker-Prietz, A.; Iacobuzio-Donahue, C.A.; Griffith, M.E.; Pawlik, T.M.; Pai, J.S.; et al. Phase 2 multi-institutional trial evaluating gemcitabine and stereotactic body radiotherapy for patients with locally advanced unresectable pancreatic adenocarcinoma. Cancer 2015, 121, 1128–1137. [Google Scholar] [CrossRef]
- Park, J.J.; Hajj, C.; Reyngold, M.; Shi, W.; Zhang, Z.; Cuaron, J.J.; Crane, C.H.; O’Reilly, E.M.; Lowery, M.A.; Yu, K.H.; et al. Stereotactic body radiation vs. intensity-modulated radiation for unresectable pancreatic cancer. Acta Oncol. 2017, 56, 1746–1753. [Google Scholar] [CrossRef]
- Onishi, H.; Shirato, H.; Nagata, Y.; Hiraoka, M.; Fujino, M.; Gomi, K.; Niibe, Y.; Karasawa, K.; Hayakawa, K.; Takai, Y.; et al. Hypofractionated stereotactic radiotherapy (HypoFXSRT) for stage I non-small cell lung cancer: Updated results of 257 patients in a Japanese multi-institutional study. J. Thorac. Oncol. 2007, 2 (Suppl. S3), S94–S100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pontoriero, A.; Iatì, G.; Cacciola, A.; Conti, A.; Brogna, A.; Siragusa, C.; Ferini, G.; Davì, V.; Tamburella, C.; Molino, L.; et al. Stereotactic Body Radiation Therapy With Simultaneous Integrated Boost in Patients With Spinal Metastases. Technol. Cancer Res. Treat. 2020, 9, 1533033820904447. [Google Scholar] [CrossRef] [PubMed]
- Ferini, G.; Molino, L.; Bottalico, L.; de Lucia, P.; Garofalo, F. A small case series about safety and effectiveness of a hypofractionated electron beam radiotherapy schedule in five fractions for facial non melanoma skin cancer among frail and elderly patients. Rep. Pract. Oncol. Radiother. 2021, 26, 66–72. [Google Scholar] [CrossRef]
- Reyngold, M.; O’Reilly, E.M.; Varghese, A.M.; Fiasconaro, M.; Zinovoy, M.; Romesser, P.B.; Wu, A.; Hajj, C.; Cuaron, J.J.; Tuli, R.; et al. Association of ablative radiation therapy with survival among patients with inoperable pancreatic cancer. JAMA Oncol. 2021, 7, 735–738. [Google Scholar] [CrossRef] [PubMed]
- Colbert, L.E.; Moningi, S.; Chadha, A.; Amer, A.; Lee, Y.; Wolff, R.A.; Varadhachary, G.; Fleming, J.; Katz, M.; Das, P.; et al. Dose escalation with an IMRT technique in 15 to 28 fractions is better tolerated than standard doses of 3DCRT for LAPC. Adv. Radiat. Oncol. 2017, 2, 403–415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, X.; Ju, X.; Cao, Y.; Shen, Y.; Cao, F.; Qing, S.; Fang, F.; Jia, Z.; Zhang, H. Patterns of Local Failure after Stereotactic Body Radiation Therapy and Sequential Chemotherapy as Initial Treatment for Pancreatic Cancer: Implications of Target Volume Design. Int. J. Radiat. Oncol. Biol. Phys. 2019, 104, 101–110. [Google Scholar] [CrossRef]
- Kharofa, J.; Mierzwa, M.; Olowokure, O.; Sussman, J.; Latif, T.; Gupta, A.; Xie, C.; Patel, S.; Esslinger, H.; McGill, B.; et al. Pattern of Marginal Local Failure in a Phase II Trial of Neoadjuvant Chemotherapy and Stereotactic Body Radiation Therapy for Resectable and Borderline Resectable Pancreas Cancer. Am. J. Clin. Oncol. 2019, 42, 247–252. [Google Scholar] [CrossRef]
- Koay, E.J.; Hanania, A.N.; Hall, W.A.; Taniguchi, C.M.; Rebueno, N.; Myrehaug, S.; Aitken, K.L.; Dawson, L.A.; Crane, C.H.; Herman, J.M.; et al. Dose-Escalated Radiation Therapy for Pancreatic Cancer: A Simultaneous Integrated Boost Approach. Pract. Radiat. Oncol. 2020, 10, e495–e507. [Google Scholar] [CrossRef]
- Parisi, S.; Ferini, G.; Cacciola, A.; Lillo, S.; Tamburella, C.; Santacaterina, A.; Bottari, A.; Brogna, A.; Ferrantelli, G.; Pontoriero, A.; et al. A non-surgical COMBO-therapy approach for locally advanced unresectable pancreatic adenocarcinoma: Preliminary results of a prospective study. Radiol. Med. 2022, 127, 214–219. [Google Scholar] [CrossRef]
- Rudra, S.; Jiang, N.; Rosenberg, S.A.; Olsen, J.R.; Roach, M.C.; Wan, L.; Portelance, L.; Mellon, E.A.; Bruynzeel, A.; Lagerwaard, F.; et al. Using adaptive magnetic resonance image-guided radiation therapy for treatment of inoperable pancreatic cancer. Cancer Med. 2019, 8, 2123–2132. [Google Scholar] [CrossRef]
- Parikh, M.D.C.P.J.; Lee, P.; Low, D.; Kim, J.; Mittauer, K.E.; Bassetti, M.F.; Glide-Hurst, C.; Raldow, A.; Yang, Y.; Portelance, L.; et al. Stereotactic MR-Guided On-Table Adaptive Radiation Therapy (SMART) for Patients with Borderline or Locally Advanced Pancreatic Cancer: Primary Endpoint Outcomes of a Prospective Phase II Multi-Center International Trial. Int. J. Radiat. Oncol. Biol. Phys. 2022, 114, 1062–1063. [Google Scholar] [CrossRef]
- Hassanzadeh, C.; Rudra, S.; Bommireddy, A.; Hawkins, W.G.; Wang-Gillam, A.; Fields, R.C.; Cai, B.; Park, J.; Green, O.; Roach, M.; et al. Ablative Five-Fraction Stereotactic Body Radiation Therapy for Inoperable Pancreatic Cancer Using Online MR-Guided Adaptation. Adv. Radiat. Oncol. 2021, 6, 100506. [Google Scholar] [CrossRef]
- Chuong, M.D.; Bryant, J.; Mittauer, K.E.; Hall, M.; Kotecha, R.; Alvarez, D.; Romaguera, T.; Rubens, M.; Adamson, S.; Godley, A.; et al. Ablative 5-Fraction Stereotactic Magnetic Resonance-Guided Radiation Therapy With On-Table Adaptive Replanning and Elective Nodal Irradiation for Inoperable Pancreas Cancer. Pract. Radiat. Oncol. 2021, 11, 134–147. [Google Scholar] [CrossRef]
- Kim, H.; Olsen, J.R.; Green, O.L.; Chin, R.; Hawkins, W.G.; Fields, R.C.; Hammill, C.; Doyle, M.B.; Chapman, W.; Suresh, R.; et al. MR-guided radiation therapy with concurrent gemcitabine/nab-paclitaxel chemotherapy in inoperable pancreatic cancer: A TITE-CRM phase I trial. Int. J. Radiat. Oncol. Biol. Phys. 2022. [Google Scholar] [CrossRef] [PubMed]
- Parikh, P.; Low, D.; Green, O.L.; Lee, P.P. Stereotactic MR-guided on-table adaptive radiation therapy (SMART) for locally advanced pancreatic cancer. J. Clin. Oncol. 2020, 38 (Suppl. S4), TPS786. [Google Scholar] [CrossRef]
- Locally Advanced Pancreatic Cancer Treated with ABLAtivE Stereotactic MRI- guided Adaptive Radiation Therapy (LAP-ABLATE). Clinicaltrials.gov p. NCT05585554.
- Takatori, K.; Terashima, K.; Yoshida, R.; Horai, A.; Satake, S.; Ose, T.; Kitajima, N.; Kinoshita, Y.; Demizu, Y.; Fuwa, N. Upper gastrointestinal complications associated with gemcitabine-concurrent proton radiotherapy for inoperable pancreatic cancer. J. Gastroenterol. 2014, 49, 1074–1080. [Google Scholar] [CrossRef] [PubMed]
- Hiroshima, Y.; Fukumitsu, N.; Saito, T.; Numajiri, H.; Murofushi, K.N.; Ohnishi, K.; Nonaka, T.; Ishikawa, H.; Okumura, T.; Sakurai, H. Concurrent chemoradiotherapy using proton beams for unresectable locally advanced pancreatic cancer. Radiother. Oncol. 2019, 136, 37–43. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.H.; Lee, W.J.; Woo, S.M.; Oh, E.S.; Youn, S.H.; Jang, H.Y.; Han, S.S.; Park, S.J.; Suh, Y.G.; Moon, S.H.; et al. Efficacy and feasibility of proton beam radiotherapy using the simultaneous integrated boost technique for locally advanced pancreatic cancer. Sci. Rep. 2020, 10, 21712. [Google Scholar] [CrossRef]
- Kawashiro, S.; Yamada, S.; Okamoto, M.; Ohno, T.; Nakano, T.; Shinoto, M.; Shioyama, Y.; Nemoto, K.; Isozaki, Y.; Tsuji, H.; et al. Multi-institutional Study of Carbon-ion Radiotherapy for Locally Advanced Pancreatic Cancer: Japan Carbon-ion Radiation Oncology Study Group (J-CROS) Study 1403 Pancreas. Int. J. Radiat. Oncol. Biol. Phys. 2018, 101, 1212–1221. [Google Scholar] [CrossRef]
- Wolfe, A.R.; Williams, T.M. Altering the response to radiation: Radiosensitizers and targeted therapies in pancreatic ductal adenocarcinoma: Preclinical and emerging clinical evidence. Ann. Pancreat. Cancer 2020, 1, 26. [Google Scholar] [CrossRef]
- Wishart, G.; Gupta, P.; Nisbet, A.; Schettino, G.; Velliou, E. On the evaluation of a novel hypoxic 3d pancreatic cancer model as a tool for radiotherapy treatment screening. Cancers 2021, 13, 6080. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Mackley, H.B.; Kimchi, E.T.; Zhu, J.; Gusani, N.; Kaifi, J.; Staveley-O’Carroll, K.F.; Belani, C.P. Phase I dose escalation study of capecitabine and erlotinib concurrent with radiation in locally advanced pancreatic cancer. Cancer Chemother. Pharmacol. 2014, 74, 205–210. [Google Scholar] [CrossRef] [PubMed]
- Crane, C.H.; Varadhachary, G.R.; Yordy, J.S.; Staerkel, G.A.; Javle, M.M.; Safran, H.; Haque, W.; Hobbs, B.D.; Krishnan, S.; Fleming, J.B.; et al. Phase II trial of cetuximab, gemcitabine, and oxaliplatin followed by chemoradiation with cetuximab for locally advanced (T4) pancreatic adenocarcinoma: Correlation of Smad4(Dpc4) immunostaining with pattern of disease progression. J. Clin. Oncol. 2011, 29, 3037–3043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liermann, J.; Munter, M.; Naumann, P.; Abdollahi, A.; Krempien, R.; Debus, J. Cetuximab, gemcitabine and radiotherapy in locally advanced pancreatic cancer: Long-term results of the randomized controlled phase II PARC trial. Clin. Transl. Radiat. Oncol. 2022, 34, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Cuneo, K.C.; Morgan, M.A.; Sahai, V.; Schipper, M.J.; Parsels, L.A.; Parsels, J.D.; Devasia, T.; Al-Hawaray, M.; Cho, C.S.; Nathan, H.; et al. Dose escalation trial of the WEE1 inhibitor adavosertib (AZD1775) in combination with gemcitabine and radiation for patients with locally advanced pancreatic cancer. J. Clin. Oncol. 2019, 37, 2643–2650. [Google Scholar] [CrossRef]
- Tuli, R.; Shiao, S.L.; Nissen, N.; Tighiouart, M.; Kim, S.; Osipov, A.; Bryant, M.; Ristow, L.; Placencio-Hickok, V.; Hoffman, D.; et al. A phase 1 study of veliparib, a PARP-1/2 inhibitor, with gemcitabine and radiotherapy in locally advanced pancreatic cancer. EBioMedicine 2019, 40, 375–381. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.; Verma, V.; Ly, Q.P.; Lazenby, A.; Sasson, A.; Schwarz, J.K.; Meza, J.L.; Are, C.; Li, S.; Wang, S.; et al. Phase I trial of concurrent stereotactic body radiotherapy and nelfinavir for locally advanced borderline or unresectable pancreatic adenocarcinoma. Radiother. Oncol. 2019, 132, 55–62. [Google Scholar] [CrossRef]
- Hoffe, S.; Frakes, J.M.; Aguilera, T.A.; Czito, B.; Palta, M.; Brookes, M.; Schweizer, C.; Colbert, L.; Moningi, S.; Bhutani, M.S.; et al. Randomized, Double-Blinded, Placebo-controlled Multicenter Adaptive Phase 1-2 Trial of GC 4419, a Dismutase Mimetic, in Combination with High Dose Stereotactic Body Radiation Therapy (SBRT) in Locally Advanced Pancreatic Cancer (PC). Int. J. Radiat. Oncol. Biol. Phys. 2020, 108, 1399–1400. [Google Scholar] [CrossRef]
- Zhu, X.; Cao, Y.; Liu, W.; Ju, X.; Zhao, X.; Jiang, L.; Ye, Y.; Jin, G.; Zhang, H. Stereotactic body radiotherapy plus pembrolizumab and trametinib versus stereotactic body radiotherapy plus gemcitabine for locally recurrent pancreatic cancer after surgical resection: An open-label, randomised, controlled, phase 2 trial. Lancet Oncol. 2022, 23, e105–e115. [Google Scholar] [CrossRef]
- Zheng, L. Study With CY, Pembrolizumab, GVAX, and SBRT in Patients with Locally Advanced Pancreatic Cancer. ClinicalTrials.gov NCT02648282. Available online: https://clinicaltrials.gov/ct2/show/NCT02648282?term=NCT02648282&rank=1 (accessed on 1 July 2022).
- Bloomston, M. Neoadjuvant GMCI Plus mFOLFIRINOX and Chemoradiation for Non-Metastatic Pancreatic Adenocarcinoma. Clinicaltrials.Gov, p. NCT02446093. Available online: https://clinicaltrials.gov/show/NCT02446093 (accessed on 1 July 2022).
- Greten, T. Immune Checkpoint Inhibition in Combination with Radiation Therapy in Pancreatic Cancer or Biliary Tract Cancer Patients—Full Text View—ClinicalTrials.gov. Clinicaltrials.gov, p. NCT02311361. Available online: https://clinicaltrials.gov/ct2/show/NCT02866383?term=NCT02866383&draw=2&rank=1 (accessed on 1 July 2022).
- Versteijne, E.; Vogel, J.A.; Besselink, M.G.; Busch, O.R.C.; Wilmink, J.W.; Daams, J.G.; van Eijck, C.H.J.; Koerkamp, B.G.; Rasch, C.R.N.; van Tienhoven, G. Meta-analysis comparing upfront surgery with neoadjuvant treatment in patients with resectable or borderline resectable pancreatic cancer. Br. J. Surg. 2018, 105, 946–958. [Google Scholar] [CrossRef]
- Merkow, R.P.; Bilimoria, K.Y.; Tomlinson, J.S.; Paruch, J.L.; Fleming, J.B.; Talamonti, M.S.; Ko, C.Y.; Bentrem, D.J. Postoperative complications reduce adjuvant chemotherapy use in resectable pancreatic cancer. Ann. Surg. 2014, 260, 372–377. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.-Y.; Han, Y.; Lee, H.; Kim, S.-W.; Kwon, W.; Lee, K.-H.; Oh, D.-Y.; Chie, E.K.; Lee, J.M.; Heo, J.S.; et al. Oncological Benefits of Neoadjuvant Chemoradiation with Gemcitabine Versus Upfront Surgery in Patients With Borderline Resectable Pancreatic Cancer: A Prospective, Randomized, Open-label, Multicenter Phase 2/3 Trial. Ann. Surg. 2018, 268, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Versteijne, E.; Suker, M.; Groothuis, K.; Akkermans-Vogelaar, J.M.; Besselink, M.G.; Bonsing, B.A.; Buijsen, J.; Busch, O.R.; Creemers, G.J.M.; van Dam, R.M.; et al. Preoperative Chemoradiotherapy Versus Immediate Surgery for Resectable and Borderline Resectable Pancreatic Cancer: Results of the Dutch Randomized Phase III PREOPANC Trial. J. Clin. Oncol. 2020, 38, 1763–1773. [Google Scholar] [CrossRef] [PubMed]
- Pietrasz, D.; Turrini, O.; Vendrely, V.; Simon, J.M.; Hentic, O.; Coriat, R.; Portales, F.; le Roy, B.; Taieb, J.; Regenet, N.; et al. How Does Chemoradiotherapy Following Induction FOLFIRINOX Improve the Results in Resected Borderline or Locally Advanced Pancreatic Adenocarcinoma? An AGEO-FRENCH Multicentric Cohort. Ann. Surg. Oncol. 2019, 26, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Cloyd, J.M.; Heh, V.; Pawlik, T.M.; Ejaz, A.; Dillhoff, M.; Tsung, A.; Williams, T.; Abushahin, L.; Bridges, J.F.P.; Santry, H. Neoadjuvant Therapy for Resectable and Borderline Resectable Pancreatic Cancer: A Meta-Analysis of Randomized Controlled Trials. J. Clin. Med. 2020, 9, 1129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conroy, T.; Desseigne, F.; Ychou, M.; Bouché, O.; Guimbaud, R.; Bécouarn, Y.; Adenis, A.; Raoul, J.-L.; Gourgou-Bourgade, S.; de la Fouchardière, C.; et al. FOLFIRINOX versus Gemcitabine for Metastatic Pancreatic Cancer. N. Engl. J. Med. 2011, 364, 1817–1825. [Google Scholar] [CrossRef] [Green Version]
- Katz, M.H.G.; Shi, Q.; Meyers, J.; Herman, J.M.; Chuong, M.; Wolpin, B.M.; Ahmad, S.; Marsh, R.; Schwartz, L.; Behr, S.; et al. Efficacy of Preoperative mFOLFIRINOX vs mFOLFIRINOX Plus Hypofractionated Radiotherapy for Borderline Resectable Adenocarcinoma of the Pancreas: The A021501 Phase 2 Randomized Clinical Trial. JAMA Oncol. 2022, 8, 1263–1270. [Google Scholar] [CrossRef]
- Katz, M.H.G.; Shi, Q.; Ahmad, S.A.; Herman, J.M.; Marsh, R.D.; Collisson, E.; Schwartz, L.; Frankel, W.; Martin, R.; Conway, W.; et al. Preoperative Modified FOLFIRINOX Treatment Followed by Capecitabine-Based Chemoradiation for Borderline Resectable Pancreatic Cancer: Alliance for Clinical Trials in Oncology Trial A021101. JAMA Surg. 2016, 151, e161137. [Google Scholar] [CrossRef] [Green Version]
- Janssen, Q.P.; van Dam, J.L.; Bonsing, B.A.; Bos, H.; Bosscha, K.P.; Coene, P.P.L.O.; van Eijck, C.H.J.; de Hingh, I.H.J.T.; Karsten, T.M.; van der Kolk, M.B.; et al. Total neoadjuvant FOLFIRINOX versus neoadjuvant gemcitabine-based chemoradiotherapy and adjuvant gemcitabine for resectable and borderline resectable pancreatic cancer (PREOPANC-2 trial): Study protocol for a nationwide multicenter randomized controlled trial. BMC Cancer 2021, 21, 7094. [Google Scholar] [CrossRef]
- Ghaneh, P.; Palmer, D.; Cicconi, S. ESPAC-5F: Four-arm, prospective, multicenter, international randomized phase II trial of immediate surgery compared with neoadjuvant gemcitabine plus capecitabime (GEMCAP) or FOLFIRINOX or chemoradiotherapy (CRT) in patients with borderline resectable pan. J. Clin. Oncol. 2019, 38, 4505. [Google Scholar] [CrossRef]
- Rahma, O.; Katz, M.; Bauer, T. Randomized Multicenter Study of Neoadjuvant Chemoradiation Therapy (CRT) Alone or in Combination with Pembrolizumab in Patients with Resectable or Borderline Resectable Pancreatic Cancer. J. Immunother. Cancer 2021, 9 (Suppl. S2). [Google Scholar] [CrossRef]
- Slinguff, C. Safety and Immunological Effect of Pembrolizumab in Resectable or Borderline Resectable Pancreatic Cancer. Clinicaltrials.Gov, p. NCT02305186. Available online: https://clinicaltrials.gov/show/NCT02305186 (accessed on 1 July 2022).
- Laheru, D. GVAX Pancreas Vaccine (with CY) in Combination With Nivolumab and SBRT for Patients With Borderline Resectable Pancreatic Cancer Clinicaltrials.gov, p. NCT03161379. Available online: https://clinicaltrials.gov/ct2/show/NCT03161379?id=NCT01072981+OR+NCT03778879+OR+NCT03114631+OR+NCT03165591+OR+NCT00795977+OR+NCT03180437+OR+NCT02929797+OR+NCT03891979+OR+NCT03323944+OR+NCT04157127+OR+NCT03267173+OR+NCT00003780+OR+NCT00003025+OR+NCT000034 (accessed on 1 July 2022).
Study | Design | Patients | Intervention | OS | FFLP | Toxicity |
---|---|---|---|---|---|---|
LAP07 [6] | Phase III | 133 | Standard dose chemoradiation (54 Gy in 30 fractions plus capecitabine) | Median 15.2 months | 68% | 6% grade 3+ nausea |
Herman et al. [10] | Phase II | 49 | Standard dose SBRT (33 Gy in 5 fractions) | Median 13.9 months | 78% at 1 year | 2% grade 2+ gastritis and ulcers |
Krishnan et al. [9] | Retrospective | 47 | Dose escalated chemoradiation (BED > 70 Gy plus gemcitabine or capecitabine) | Median 17.8 months | Median 10.2 months | 2% grade 3+ nausea |
Reyngold et al. [15] | Retrospective | 119 | Ablative hypofractionation (67.5 Gy in 15 fractions or 75 Gy in 25 fractions plus fluoropyrimidine) | Median 18.4 months | 83% at 1 year | 13% grade 3+ toxicity (8% GI bleeding, 2% gastric outlet obstruction, 3% bile duct stenosis) |
Parisi et al. [20] | Phase I/II | 8 | Induction chemotherapy followed by standard dose chemoradiation followed by SBRT boost to a median dose of 12 Gy in 1–3 fractions | Median 21.5 months | 73% at 2 years | No grade 3 toxicities |
Rudra et al. [21] | Retrospective | 20 | High dose MRgRT (BED > 70 Gy, SBRT alone or hypofractionated RT plus concurrent gemcitabine, capecitabine, or gemcitabine-nab-paclitaxel) | Median 20.8 months | 77% at 2 years | 0% grade 3+ GI toxicities |
Hassanzadeh et al. [23] | Retrospective | 44 | MR guided SBRT (50 Gy in 5 fractions) with adaptive reoptimization | Median 15.7 months | 84% at 1 year | 5% grade 3+ ulcers |
Chuong et al. [24] | Retrospective | 35 | MR guided SBRT (50 Gy in 5 fractions) with adaptive reoptimization | 59% at 1 year | 88% at 1 year | 6% grade 3+ diarrhea and bile duct stenosis |
TITE-CRM (Kim et al.) [25] | Phase I/II | 26 | MR guided radiation therapy (40–45 Gy in 25 fractions up to 60–67.5 Gy in 15 fractions) with full-dose gemcitabine/nab-paclitaxel | Median 14.5 months | 85% at 2 years | 14% dose limiting toxicity (cholecystitis) |
SMART (Parikh et al.) [22] | Phase II | 136 | MR guided SBRT (50 Gy in 5 fractions) with adaptive reoptimization | 94% at 1 year | 83% at 1 year | No grade 3 toxicities |
Takatori et al. [28] | Retrospective review of prospective database | 91 | Proton beam therapy (67.5 GyE in 25 fractions plus gemcitabine) | 77% at 1 year | 82% at 1 year | 50% grade 3+ ulcers |
Hiroshima et al. [29] | Retrospective | 42 | Proton beam therapy (54–67.5 GyE in 25–33 fractions plus gemcitabine or S-1) | Median 25.6 months | 83% at 1 year | 0% grade 3+ GI toxicities |
Kim et al. [30] | Retrospective | 44 | Proton beam therapy (45–50 GyE in 10 fractions plus gemcitabine, capecitabine, or gemcitabine-nab-paclitaxel) | Median 26.1 months | 79% at 1 year | 0% grade 3+ GI toxicities |
Kawashiro et al. [31] | Retrospective | 72 | Carbon ion therapy (52.8 Gy in 12 fractions plus gemcitabine) | Median 21.5 months | 84% at 1 year | 0% grade 3+ GI toxicities |
Study | Phase | Patients | Intervention | OS | FFLP | Toxicity |
---|---|---|---|---|---|---|
LAP07 [6] | III | 133 | Standard dose chemoradiation (54 Gy in 30 fractions plus capecitabine) | Median 15.2 months | 68% | 6% grade 3+ nausea |
Herman et al. [10] | II | 49 | Standard dose SBRT (33 Gy in 5 fractions) | Median 13.9 months | 78% at 1 year | 2% grade 2+ gastritis and ulcers |
Jiang et al. [34] | II | 15 | Erlotinib (EGFR inhibitor) plus chemoradiation (50.4 Gy in 28 fractions plus capecitabine) | Median 13.2 months | Not reported | 0% grade 3+ GI toxicities |
Crane et al. [35] | II | 69 | Cetuximab (EGFR inhibitor) plus chemoradiation (50.4 Gy in 28 fractions plus capecitabine) | Median 19.2 months | 77% at 1 year | 10% grade 3+ GI toxicities |
PARC [36] | II | 34 | Cetuximab (EGFR inhibitor) plus chemoradiation (54 Gy in 30 fractions plus gemcitabine) | Median 13.1 months | 77% at 1 year | 13% grade 3+ nausea and GI bleeding |
Cuneo et al. [37] | II | 34 | Adavosertib (Wee1 inhibitor) plus chemoradiation (54 Gy in 30 fractions plus gemcitabine) | Median 21.7 months | 84% at 1 year | 24% grade 3+ anorexia, nausea, and fatigue |
Tuli et al. [38] | II | 30 | Veliparib (PARP inhibitor) plus chemoradiation (36 Gy in 15 fractions plus gemcitabine) | Median 15 months for all, but 19 months in patients with PARP3 and RBX1 alterations | Not reported | 34% grade 3+ nausea, vomiting, diarrhea, abdominal pain, colitis |
Lin et al. [39] | II | 46 | Nelfinavir (AKT inhibitor) plus SBRT (40 Gy in 5 fractions) | Median 14.4 months | 85% at 1 year | 11% grade 3+ GI bleeding |
Study | Phase | Patients | Intervention | OS | Resection Rate | R0 Rate |
---|---|---|---|---|---|---|
PREOPANC-1 [48] | III | 119, RPC and BRPC | Neoadjuvant gemcitabine × 3 cycles followed by chemoradiation (36 Gy in 15 fractions plus gemcitabine) followed by surgery followed by adjuvant gemcitabine × 6 cycles | Median 14.6 months for RPC and 17.6 months for BRPC | 61% | 71% |
Alliance A021501 [52] | II | 126, BRPC | Neoadjuvant mFOLFIRINOX × 8 cycles (arm A) vs. mFOLFIRINOX × 7 cycles followed by radiation (33–40 Gy in 5 fractions or 25 Gy in 5 fractions) (arm B) followed by surgery followed by adjuvant mFOLFOX × 6 cycles | Median 29.8 months for arm A vs. 17.1 months for arm B | 58% for arm A 51% for arm B | 88% for arm A 74% for arm B |
PREOPANC-2 [54] | III | Goal of 368, RPC and BRPC | Neoadjuvant FOLFIRINOX × 8 cycles followed by surgery followed by no adjuvant treatment (arm A) vs. gemcitabine × 3 cycles followed by chemoradiation (36 Gy in 15 fractions plus gemcitabine) followed by surgery followed by adjuvant gemcitabine × 4 cycles (arm B) | Pending | Pending | Pending |
ESPAC-5F [55] | II | 88, BRPC | Immediate surgery (arm 1) vs. neoadjuvant gemcitabine and capecitabine × 2 cycles (arm 2) vs. neoadjuvant FOLFIRINOX × 4 cycles (arm 3) vs. chemoradiation (50.4 Gy in 28 fractions plus capecitabine) (arm 4) followed by surgery | 40% at 1 year for arm 1 77% at 1 year for arms 2–4 | 62% for arm 1 55% for arms 2–4 | 15% for arm 1 23% for arms 2–4 |
Rahma et al. [56] | II | 37, RPC and BRPC | Neoadjuvant pembrolizumab (arm A) plus chemoradiation (50.4 Gy in 28 fractions plus capecitabine) vs. chemoradiation alone (arm B) followed by surgery | Median 27.8 months in arm A and 24.3 months in arm B | 64% for arm A 69% for arm B | Not reported |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Lee, P.; McGee, H.M.; Chung, V.; Melstrom, L.; Singh, G.; Raoof, M.; Amini, A.; Chen, Y.-J.; Williams, T.M. Advances in Radiation Oncology for Pancreatic Cancer: An Updated Review. Cancers 2022, 14, 5725. https://doi.org/10.3390/cancers14235725
Liu J, Lee P, McGee HM, Chung V, Melstrom L, Singh G, Raoof M, Amini A, Chen Y-J, Williams TM. Advances in Radiation Oncology for Pancreatic Cancer: An Updated Review. Cancers. 2022; 14(23):5725. https://doi.org/10.3390/cancers14235725
Chicago/Turabian StyleLiu, Jason, Percy Lee, Heather M. McGee, Vincent Chung, Laleh Melstrom, Gagandeep Singh, Mustafa Raoof, Arya Amini, Yi-Jen Chen, and Terence M. Williams. 2022. "Advances in Radiation Oncology for Pancreatic Cancer: An Updated Review" Cancers 14, no. 23: 5725. https://doi.org/10.3390/cancers14235725
APA StyleLiu, J., Lee, P., McGee, H. M., Chung, V., Melstrom, L., Singh, G., Raoof, M., Amini, A., Chen, Y. -J., & Williams, T. M. (2022). Advances in Radiation Oncology for Pancreatic Cancer: An Updated Review. Cancers, 14(23), 5725. https://doi.org/10.3390/cancers14235725