The Prevalence of Lower Limb and Genital Lymphedema after Prostate Cancer Treatment: A Systematic Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategy and Evidence Acquisition
2.2. Outcome Measurement
2.3. Risk of Bias and Study Quality Assessment
3. Results
3.1. Study Selection
3.2. Study Characteristics
3.3. Risk of Bias within Studies
3.4. Lower Limb Lymphedema
3.4.1. Surgery
3.4.2. External Beam Radiotherapy with or without Staging PLND
3.5. Genital Lymphedema
3.5.1. Surgery
3.5.2. External Beam Radiotherapy with or without Staging PLND
4. Discussion
5. Limitations of This Study
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rockson, S.G. Lymphedema after Breast Cancer Treatment. N. Engl. J. Med. 2018, 379, 1937–1944. [Google Scholar] [CrossRef] [PubMed]
- Cemal, Y.; Jewell, S.; Albornoz, C.R.; Pusic, A.; Mehrara, B.J. Systematic Review of Quality of Life and Patient Reported Outcomes in Patients with Oncologic Related Lower Extremity Lymphedema. Lymphat. Res. Biol. 2013, 11, 14–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tassenoy, A.; De Strijcker, D.; Adriaenssens, N.; Lievens, P. The Use of Noninvasive Imaging Techniques in the Assessment of Secondary Lymphedema Tissue Changes as Part of Staging Lymphedema. Lymphat. Res. Biol. 2016, 14, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Grada, A.A.; Phillips, T.J. Lymphedema. J. Am. Acad. Dermatol. 2017, 77, 1009–1020. [Google Scholar] [CrossRef]
- Rasmusson, E.; Gunnlaugsson, A.; Blom, R.; Björk-Eriksson, T.; Nilsson, P.; Ahlgen, G.; Jönsson, C.; Johansson, K.; Kjellén, E. Low rate of lymphedema after extended pelvic lymphadenectomy followed by pelvic irradiation of node-positive prostate cancer. Radiat. Oncol. 2013, 8, 271. [Google Scholar] [CrossRef] [Green Version]
- Lindqvist, E.; Wedin, M.; Fredrikson, M.; Kjølhede, P. Lymphedema after treatment for endometrial cancer − A review of prevalence and risk factors. Eur. J. Obstet. Gynecol. Reprod. Biol. 2017, 211, 112–121. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Yu, N.; Wang, X.; Long, X. Incidence of lower limb lymphedema after vulvar cancer: A systematic review and meta-analysis. Medicine 2017, 96, e8722. [Google Scholar] [CrossRef]
- Biglia, N.; Librino, A.; Ottino, M.C.; Panuccio, E.; Daniele, A.; Chahin, A. Lower Limb Lymphedema and Neurological Complications After Lymphadenectomy for Gynecological Cancer. Int. J. Gynecol. Cancer 2015, 25, 521–525. [Google Scholar] [CrossRef] [Green Version]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Int. J. Surg. 2010, 8, 336–341. [Google Scholar] [CrossRef] [Green Version]
- Walsh, P.C.; Lepor, H.; Eggleston, J.C. Radical prostatectomy with preservation of sexual function: Anatomical and pathological considerations. Prostate 1983, 4, 473–485. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V.A. (Eds.) Cochrane Handbook for Systematic Reviews of Interventions; Wiley: New York, NY, USA, 2019; ISBN 9781119536628. [Google Scholar]
- Anscher, M.S.; Prosnitz, L.R. Postoperative Radiotherapy for Patients with Carcinoma of the Prostate Undergoing Radical Prostatectomy with Positive Surgical Margins, Seminal Vesicle Involvement and/or Penetration Through the Capsule. J. Urol. 1987, 138, 1407–1412. [Google Scholar] [CrossRef]
- Thorsteinsdottir, T.; Stranne, J.; Carlsson, S.; Anderberg, B.; Björholt, I.; Damber, J.-E.; Hugosson, J.; Wilderäng, U.; Wiklund, P.; Steineck, G.; et al. LAPPRO: A prospective multicentre comparative study of robot-assisted laparoscopic and retropubic radical prostatectomy for prostate cancer. Scand. J. Urol. Nephrol. 2010, 45, 102–112. [Google Scholar] [CrossRef] [Green Version]
- Chenam, A.; Yuh, B.; Zhumkhawala, A.; Ruel, N.; Chu, W.; Lau, C.; Chan, K.; Wilson, T.; Yamzon, J. Prospective randomised non-inferiority trial of pelvic drain placement vs no pelvic drain placement after robot-assisted radical prostatectomy. BJU Int. 2017, 121, 357–364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clark, T.; Parekh, D.J.; Cookson, M.S.; Chang, S.S.; Smith, E.R.; Wells, N.; Smith, J.A. Randomized Prospective Evaluation of Extended Versus Limited Lymph Node Dissection in Patients With Clinically Localized Prostate Cancer. J. Urol. 2003, 169, 145–148. [Google Scholar] [CrossRef]
- Davis, J.W.; Shah, J.B.; Achim, M. Robot-assisted extended pelvic lymph node dissection (PLND) at the time of radical prostatectomy (RP): A video-based illustration of technique, results, and unmet patient selection needs. Br. J. Urol. 2011, 108, 993–998. [Google Scholar] [CrossRef]
- Feicke, A.; Baumgartner, M.; Talimi, S.; Schmid, D.M.; Seifert, H.-H.; Müntener, M.; Fatzer, M.; Sulser, T.; Strebel, R.T. Robotic-Assisted Laparoscopic Extended Pelvic Lymph Node Dissection for Prostate Cancer: Surgical Technique and Experience with the First 99 Cases. Eur. Urol. 2009, 55, 876–884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, K.H.; Lim, S.K.; Koo, K.C.; Han, W.K.; Hong, S.J.; Rha, K.H. Extended lymph node dissection in robot-assisted radical prostatectomy: Lymph node yield and distribution of metastases. Asian J. Androl. 2014, 16, 824–828. [Google Scholar] [CrossRef]
- Mattei, A.; Di Pierro, G.B.; Grande, P.; Beutler, J.; Danuser, H. Standardized and Simplified Extended Pelvic Lymph Node Dissection During Robot-assisted Radical Prostatectomy: The Monoblock Technique. Urology 2013, 81, 446–450. [Google Scholar] [CrossRef]
- Morizane, S.; Honda, M.; Fukasawa, S.; Komaru, A.; Inokuchi, J.; Eto, M.; Shimbo, M.; Hattori, K.; Kawano, Y.; Takenaka, A. Comparison of the diagnostic efficacy and perioperative outcomes of limited versus extended pelvic lymphadenectomy during robot-assisted radical prostatectomy: A multi-institutional retrospective study in Japan. Int. J. Clin. Oncol. 2018, 23, 568–575. [Google Scholar] [CrossRef]
- Porcaro, A.B.; Sebben, M.; Tafuri, A.; de Luyk, N.; Corsi, P.; Processali, T.; Pirozzi, M.; Rizzetto, R.; Amigoni, N.; Mattevi, D.; et al. Body mass index is an independent predictor of Clavien–Dindo grade 3 complications in patients undergoing robot assisted radical prostatectomy with extensive pelvic lymph node dissection. J. Robot. Surg. 2019, 13, 83–89. [Google Scholar] [CrossRef]
- Yuh, B.E.; Ruel, N.H.; Mejia, R.; Novara, G.; Wilson, T.G. Standardized comparison of robot-assisted limited and extended pelvic lymphadenectomy for prostate cancer. BJU Int. 2013, 112, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Amdur, R.J.; Parsons, J.T.; Fitzgerald, L.T.; Million, R.R. Adenocarcinoma of the prostate treated with external-beam radiation therapy: 5-year minimum follow-up. Radiother. Oncol. 1990, 18, 235–246. [Google Scholar] [CrossRef]
- Aristizabal, S.A.; Steinbronn, D.; Heusinkveld, R.S. External beam radiotherapy in cancer of the prostate: The University of Arizona Experience. Radiother. Oncol. 1984, 1, 309–315. [Google Scholar] [CrossRef]
- Borghede, G.; Hedelin, H. Radiotherapy of localised prostate cancer. Analysis of late treatment complications. A prospective study. Radiother. Oncol. 1997, 43, 139–146. [Google Scholar] [CrossRef]
- Forman, J.; Zinreich, E.V.A.; Order, S.; Sc, D. The therapeutic ratio f external beam ir for carcinoma of the prostate iation. Int. J. Radiat. Oncol. Biol. Phys. 1985, 1, 2073–2080. [Google Scholar] [CrossRef]
- Perez, C.A.; Walz, B.J.; Zivnuska, F.R.; Pilepich, M.; Prasad, K.; Bauer, W. Irradiation of carcinoma of the prostate localized to the pelvis: Analysis of tumor response and prognosis. Int. J. Radiat. Oncol. Biol. Phys. 1980, 6, 555–563. [Google Scholar] [CrossRef]
- Pilepich, M.V.; Perez, C.A.; Walz, B.J.; Zivnuska, F.R. Complications of definitive radiotherapy for carcinoma of the prostate. Int. J. Radiat. Oncol. 1981, 7, 1341–1348. [Google Scholar] [CrossRef]
- Pilepich, M.V.; Pajak, T.; George, F.W.; Asbell, S.O.; Stetz, J.; Zinninger, M.; Plenk, H.P.; Johnson, R.J.; Mulholland, S.G.; Walz, B.J.; et al. Preliminary report on phase III RTOG studies of extended-field irradiation in carcinoma of the prostate. Am. J. Clin. Oncol. 1983, 6, 485–492. [Google Scholar] [CrossRef]
- Fossati, N.; Willemse, P.-P.M.; Van den Broeck, T.; van den Bergh, R.C.N.; Yuan, C.Y.; Briers, E.; Bellmunt, J.; Bolla, M.; Cornford, P.; De Santis, M.; et al. The Benefits and Harms of Different Extents of Lymph Node Dissection During Radical Prostatectomy for Prostate Cancer: A Systematic Review. Eur. Urol. 2017, 72, 84–109. [Google Scholar] [CrossRef]
- Loeb, S.; Partin, A.W.; Schaeffer, E.M. Complications of Pelvic Lymphadenectomy: Do the Risks Outweigh the Benefits? Rev. Urol. 2010, 12, 20–24. [Google Scholar] [CrossRef]
- Gillespie, T.C.; Sayegh, H.E.; Brunelle, C.L.; Daniell, K.M.; Taghian, A.G. Breast cancer-related lymphedema: Risk factors, precautionary measures, and treatments. Gland Surg. 2018, 7, 379–403. [Google Scholar] [CrossRef]
- Pusic, A.L.; Cemal, Y.; Albornoz, C.; Klassen, A.; Cano, S.; Sulimanoff, I.; Hernandez, M.; Massey, M.; Cordeiro, P.; Morrow, M.; et al. Quality of life among breast cancer patients with lymphedema: A systematic review of patient-reported outcome instruments and outcomes. J. Cancer Surviv. 2013, 7, 83–92. [Google Scholar] [CrossRef] [Green Version]
- Brahma, B.; Yamamoto, T. Breast cancer treatment-related lymphedema (BCRL): An overview of the literature and updates in microsurgery reconstructions. Eur. J. Surg. Oncol. 2019, 45, 1138–1145. [Google Scholar] [CrossRef]
- Kim, M.; Kim, S.W.; Lee, S.U.; Lee, N.K.; Jung, S.-Y.; Kim, T.H.; Lee, E.S.; Kang, H.-S.; Shin, K.H. A Model to Estimate the Risk of Breast Cancer-Related Lymphedema: Combinations of Treatment-Related Factors of the Number of Dissected Axillary Nodes, Adjuvant Chemotherapy, and Radiation Therapy. Int. J. Radiat. Oncol. 2013, 86, 498–503. [Google Scholar] [CrossRef]
- Soran, A.; Menekse, E.; Girgis, M.; DeGore, L.; Johnson, R. Breast cancer-related lymphedema after axillary lymph node dissection: Does early postoperative prediction model work? Support. Care Cancer 2016, 24, 1413–1419. [Google Scholar] [CrossRef]
- Yafi, F.A.; Jenkins, L.; Albersen, M.; Corona, G.; Isidori, A.M.; Goldfarb, S.; Maggi, M.; Nelson, C.J.; Parish, S.; Salonia, A.; et al. Erectile dysfunction. Nat. Rev. Dis. Prim. 2016, 2, 16003. [Google Scholar] [CrossRef] [Green Version]
- Karlsson, K.; Nilsson-Wikmar, L.; Brogårdh, C.; Johansson, K. Palpation of Increased Skin and Subcutaneous Thickness, Tissue Dielectric Constant, and Water Displacement Method for Diagnosis of Early Mild Arm Lymphedema. Lymphat. Res. Biol. 2020, 18, 219–225. [Google Scholar] [CrossRef]
- Kamali Polat, A.; Karabacak, U.; Mutlu, V.; Tomak, L.; Bilgici, A. Early Diagnosis of Lymphedema after Breast Cancer Treatment: Bio-Impedance Spectroscopy. J. Breast Health 2017, 13, 83–87. [Google Scholar] [CrossRef]
- Cornish, B.H.; Chapman, M.; Thomas, B.J.; Ward, L.C.; Bunce, I.H.; Hirst, C. Early diagnosis of lymphedema in postsurgery breast cancer patients. Ann. N. Y. Acad. Sci. 2000, 904, 571–575. [Google Scholar] [CrossRef]
- Zelefsky, M.J.; Levin, E.J.; Hunt, M.; Yamada, Y.; Shippy, A.M.; Jackson, A.; Amols, H.I. Incidence of Late Rectal and Urinary Toxicities After Three-Dimensional Conformal Radiotherapy and Intensity-Modulated Radiotherapy for Localized Prostate Cancer. Int. J. Radiat. Oncol. 2008, 70, 1124–1129. [Google Scholar] [CrossRef]
- Son, A.; O’Donnell, T.F.; Izhakoff, J.; Gaebler, J.A.; Niecko, T.; Iafrati, M.A. Lymphedema-associated comorbidities and treatment gap. J. Vasc. Surg. Venous Lymphat. Disord. 2019, 7, 724–730. [Google Scholar] [CrossRef]
Study ID; Country; Design; Recruitment Period | Treatment | Patients (N) | FU | Age (Years) (Mean/Median/IQR/Range) | iPSA (Mean/Median/IQR/Range) | bGS (N, %) | cT Stage (N, %) | RP Type (Robot/Laparoscopy/Open) PLND (Template, N, %) | Dose (Gy) Pelvic RT (N/%) | Neoadjuvant Therapy (Type/%) Adjuvant Therapy (Type/%) | LN Removed (Mean/Median/IQR/Range) pN1 (N, %) | Comorbidities |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Surgery | ||||||||||||
Anscher MS [12], 1987, USA, retrospective comparative 1970–1983 | RP ± PLND | 113 | 15 years | 64 (range: 40–78) | NR | Histological differentiation grade: Well: 16 (14%), Moderate: 62 (55%), Poor: 23 (20%), NR: 12 (11%) | Whitmore stage: A: 20 (18%) B: 84 (74%) C: 8 (7%) D: 1 (1%) | retropubic: 25 (22%), perineal: 88 (78%) PLND: 77 (68%) | NA | ADT: 69 (62%) | pN1: 3/77 patients (4%) | NR |
RP ± PLND + EBRT | 46 | 15 years | 61 (range: 43–77) | NR | Histological differentiation grade: Well: 7 (15%), Moderate: 27 (59%), Poor: 9 (20%), NR: 3 (6%) | Whitmore stage: A: 8 (17%) B: 35 (76%) C: 2 (4%) D: 1 (3%) | retropubic 9 (20%), perineal 37 (80%) PLND: 39 (85%) | 45 to 50 Gy to the whole pelvis + 10 to 15 Gy boost on prostatic bed | ADT: 8 (17%) | pN1: 4/39 (10%) | ||
Carlsson S [13], 2022, prospective non-randomized controlled trial 2008–2011 | RP ± PLND vs RARP ± PLND | 3675 | 3 months | NR | NR | NR | NR | PLND 645 (18%) | NA | NA | NR | NR |
Chenam A [14], 2018, USA, RCT 2012–2016 | RARP ± limited or extended PLND + no pelvic drain | 92 | 90 days | 634 (IQR: 57–69) | 6.2 (IQR: 4.7–7.8) | ≤6: 27 (29%) 7: 50 (54%) ≥8: 15 (16%) | cT1: 54 (59%) cT2: 35 (38%) cT3: 3 (3%) | Robot PLND: None: 11 (12%) Limited: 16 (17%) Extended: 65 (71%) | NA | NR | 17 pN1: 6 (7%) | BMI: 28.6 (IQR: 26.0–30.8) |
RARP ± limited or extended PLND + pelvic drain | 97 | 90 days | 65 (IQR: 58–69) | 5.8 (IQR: 4.5–8.4) | ≤6: 19 (20%) 7: 65 (67%) ≥8: 13 (13%) | cT1: 58 (60%) cT2: 34 (35%) cT3: 5 (5%) | Robot PNLD: None: 9 (9%) Limited: 11 (11%) Extended: 77 (79%) | NA | NR | 18 pN1: 13 (13%) | BMI: 28.7 (IQR: 25.9–31.1) | |
Clark T [15], 2003, USA, RCT NR | RRP + limited PLND (ipsilateral) | 123* | NR | 61 (range: 45–75) | Mean: 7.4 ng/ml | ≤6:83 (68%), 7: 25 (20%), ≥8: 15 (12%) | cT1c: 88 (72%) cT2a: 26 (21%) cT2b: 7 (5.7%) cT3: 2 (1.3%) | Open, retropubic PLND: limited | NA | NR | pN1: 3 (2%) | NR |
RRP + ePLND (contralateral) | 123* | NR | 61 (range: 45–75) | Mean 7.4 ng/ml | ≤6: 83 (68%), 7: 25 (20%) ≥8: 15 (12%) | cT1c: 88 (72%) cT2a: 26 (21%) cT2b: 7 (5.7%) cT3 (1%) | open, retropubic PLND: extended | NA | NR | pN1: 4 (3%) | NR | |
Davis JW [16], 2011, USA, prospective comparative 2006–2010 | RARP + limited PLND | 261 | 18 months | NR | NR | NR | NR | Robot PLND: limited | NA | NR | 8 (IQR: 5–11) pN1: 7% | NR |
RARP + ePLND | 670 | 36 months | NR | NR | NR | NR | RARP PLND: extended | NA | NR | 16 (IQR: 11–21) pN1: 18% | NR | |
Feicke A [17], 2008, Switzerland, retrospective descriptive 2006–2008 | RARP + ePLND | 99 | NR | 64 (range: 45–78) | 7.7 (range: 1.5–84.6) | 5: 2 (2%), 6: 18 (18%), 7: 64 (65%), 8: 8 (8%), 9: 5 (5%), NR: 2 (2%) | cT1: 66 (67%) cT2: 27 (27%) cT3: 6 (6%) | Robot PLND: extended | NA | Neo-adjuvant ADT: 2 patients | 19 (range: 8–53) pN1: 16 (16%) | BMI: 26.4 (range: 19.8–34.3) |
Kim KH [18], 2014, Korea, prospective observational 2008–2011 | RARP + ePLND | 147 | NR | 66 (IQR: 62–70) | 10.7 (IQR: 6.5–17.4) | 6: 19 (12.9%), 7: 57 (38.8%), 8–10: 71 (48.3%) | cT1: 80 (54.4%) cT2: 44 (29.9%) cT3: 23 (15.7%) | Robot PLND: extended | NA | NR | 22 (18–26) pN1: 24 (16%) | BMI: 24.2 (IQR: 22.4–25.6) |
Mattei A [19], 2013, Switzerland & Italy, prospective observational 2008–2011 | RARP + ePLND | 134 | 3 months | 64 (IQR: 59–68) | 8.6 (IQR: 6.1–13.5) | 6: 33 (24.6%), 7: 76 (56.8%), 8–10: 25 (18.6%) | cT1c: 60 (44.8%) cT2a-T2b: 72 (53.7%) cT3: 2 (1.5%) | Robot PLND: extended | NA | NR | 14 (11–19) pN1: 18 (13%) | NR |
Morizane S [20], 2018, Japan, retrospective comparative 2010–2015 | RARP + limited PLND | 902 | 28 days | 66 (IQR: 62–71) | 7.8 (IQR: 5.6–11.4) | 6: 147 (16.3%), 7: 536 (59.4%), 8: 110 (12.2%), ≥ 9: 109 (12.1%) | cT1: 381 (42.2%) cT2: 454 (34.1%) cT3: 61 (6.8%) | Robot PLND: limited | NA | NR | 5.0 (3.0–8.0) pN1: 5 (1%) | BMI: 23.6 (22.0–25.4) |
RARP + ePLND | 431 | 28 days | 67.0 (IQR: 63.0–71.0) | 7.3 (IQR: 5.4–10.4) | 6: 5 (1.2%), 7: 123 (28.5%), 8: 159 (36.9%), ≥ 9: 144 (33.4%) | cT1: 48 (11.1%) cT2: 279 (64.7%) cT3: 98 (22.7%) | Robot PLND: extended | NA | NR | 19.0 (14.0–24.0) pN1: 53 (12%) | BMI: 23.3 (21.8–25.3) | |
Porcaro AB [21], 2019, Italy, retrospective descriptive 2013–2017 | RARP + ePLND | 211 | 4 months | 65 (IQR: 61–70) | 7 (IQR: 4.9–9.9) | >7: 44 (20.9%) | cT1: 142 cT2–3: 69 | Robot PLND: extended | NA | NR | 26 (21–33) pN1: 28 (13%): | BMI: 25.3 (23.5–28.0) |
Yuh BE [22], 2013, USA, prospective comparative 2008–2012 | RARP + limited PLND | 204 | 90 days | 64 (IQR: 58–70) | 5.9 (IQR: 4.4–9.1) | 6: 13 (6.4%), 3 + 4: 112 (54.9%), 4 + 3: 45 (22.1%), 8: 25 (12.2%), 9: 9 (4.4%) | cT1: 147 (72.1%), cT2: 56 (27.4%), cT3: 1 (0.5%) | Robot PLND: limited | NA | NR | 7 (5–9) pN1: 8 (4%) | BMI: 27.5 (IQR: 25.2–30.3) |
RARP + ePLND | 202 | 90 days | 64 (IQR: 58–69) | 5.5 (IQR: 4.2–8.3) | 6: 12 (5.9%), 3 + 4: 121 (59.9%), 4 + 3: 40 (19.8%), 8: 23 (11.4%), 9: 6 (3.0%) | cT1: 139 (68.8%), cT2: 61 (30.2%) cT3: 2 (1.0%) | Robot PLND: extended | NA | NR | 21.5 (17–27) pN1 24 (12%) | BMI: 27.1 (IQR: 25.2–30.5) | |
Amdur RJ [23], 1990, USA, retrospective descriptive 1964–1982 | EBRT ± pelvic RT | 225 | > 5 years | 66 (range: 45–81) | NR | Whitmore stage, histological grade: Well: 84 (37%) Moderate 97 (43%) Poor 37 (16%) N.R. 7 (3%) | Whitmore stage: A: 27 (12%) B: 87 (39%) C: 111 (49%) | EBRT PLND: Limited 16 (7%) | Stage A- B1: 6500 cGy in 7–7.5 weeks Stage B2-C: 6500–7000 cGy in 7–8.5 weeks. Pelvic RT: 214 (95%). | No | NR | NR |
Radiation Therapy | ||||||||||||
Aristizabal SA [24], 1984, USA, retrospective descriptive 1972–1979 | EBRT prostate ± pelvic RT | 218 | >36 months | 68 (range: 48–89) | NR | NR | NR A2: 17 (1%) B: 101 (5%) C: 82 (10%) D1: 18 (3%) | PLND: Limited 9 (4%) | 6500–7000 rad in 6–7 weeks (n = 184) 4600–5000 (n = 3) 300 rad 3×/week for 6–7 weeks (n = 31). WPRT: 58 pts (32%) | 5 underwent RP first | NR | |
Borghede G [25], 1997, Sweden, prospective observational 1987–1992 | EBRT prostate ± pelvis | 184 | 46 months (24–96) | 67 (range: 46–83) | NR | WHO classification: well: 37 (20%) moderate: 84 (46%) poor: 63 (11%) | AUAC clinical staging: A1: 1 (1%) A2: 10 (5%) B1: 62 (34%) B2: 14 (8%) C1: 65 (35%) C2: 32. (17%) | PLND: Limited: 154 (84%), | Dose: First 161 patients: 70 Gy, 2.0 Gy 5×/week in 7 weeks; last 23 patients: 64.8 Gy; 2.4 Gy 4×/week in 7 wks. WPRT: 161 (88%) | NR | range 1–12. | |
Forman [26] 1985, USA, Prospective observational 1975–1983 | EBRT prostate + pelvis | 240 | median 40 months (range 1–9 years) | 68 (52–86) | NR | 2–4: 23 (11%) 5: 33 (16%); 6: 60 (29%), 7: 45 (22%); 8: 25 (12%), 9–10: 18 (9%), NR: 36 (15%) | Whitmore staging system: A2: 27 (13%), B1: 29 (14%), B2: 45 (22%), C: 103 (51%) | PLND: Limited 41 (17%) | Total dose to the prostate tumor 6500 rad. | 16 radical suprapubic prostatectomies before EBRT | NA | NR |
Perez [27] 1980, USA, Retrospective descriptive 1966–1975 | EBRT prostate + pelvis | 195 | mean 4.6 y | NR | NA | degree of differentiation: Well 75 (38%), Moderate 72 (26%), Poor 41(21%) NR 6 (3%). | Whitmore staging: B: 42 (22%) C: 141(72%) D1: 12 (6%) | PLND 14 (7%) | 5000 rad to midplane pelvis. 6000 to 7000 rad to prostate. dose fractionation: 180 rad/day, 5×/week. Para-Aortic radiation 6 (3%) | ADT 25 (13%) | NA | NR |
Pilepich [28] 1981, USA, Retrospective descriptive 1967–1978 | EBRT Prostate + pelvis | 267 | median 48 months (mean 58 months) | NA | NA | NA | Whitmore staging A: 6 (2%) B: 72 (27%) C: 173 (65%) D: 16 (6%) | PLND: 31 (12%) | whole pelvis: 5000 rad in 25 treatments. Prostate 6000 rad. | RP 11 (4%) | NA | NR |
Pilepich [29], 1983, USA, RCT RTOG 75–06: 1976 –1982 RTOG 77–06: 1977–1982 | RTOG 75–06 EBRT prostate and pelvis | 131 | 20 months | 66 | NR | NR | NR | PLND: Limited 57 (44%) Extended: 7 (5%) | Prostate 6500 rad Pelvis 4000 rad | Neoadjuvant ADT 11.4% | NR | NR |
RTOG 75-06 EBRT prostate, pelvis & para-aortic | 137 | 21 months | 67 | NR | NR | NR | Limited 57 (44%) Extended 7 (5%) | Prostate 6500 rad Pelvic LN 4000 rad PA LN: 4000 rad | Neoadjuvant ADT 13.1% | NR | NR | |
RTOG 77-06 EBRT prostate | 113 | 19 months | 68 | NR | NR | NR | PLND: Limited 59 (52%) | Prostate 6500 rad 180–200 rad/day. | Neoadjuvant ADT 5.3% | NR | NR | |
RTOG 77-06 EBRT prostate and pelvis | 106 | 20 months | 66 | NR | NR | NR | PLND: Limited 59 (52%) Extended 0 | Prostate 6500 rad Pelvic LN 4500–5000 rad 180–200 rad/day. | Neoadjuvant ADT 5.7% | NR | NR |
Study ID | Type of Intervention | N | Prevalence of Lymphedema | p-Value | ||||
---|---|---|---|---|---|---|---|---|
Intervention | Comparator | Int. | Comp. | Lymphedema Subtype | Intervention | Comparator | ||
SURGERY | ||||||||
Anscher [12], 1987 | RRP ± PLND + adjuvant RT. | RRP ± PLND. | 46 | 113 | Not specified | 4/46 (9%) | 2/113 (2%) | NR |
Carlsson [13], 2022 | RRP/RARP + PLND | RRP/RARP | 437 | 2578 | Lower limb + groin | 85/621 (14%) | 89/2902 (3%) | <0.001 |
Chenam [14], 2018 | RARP ± limited/extended PLND + pelvic drain. | RARP ± limited/extended PLND + no pelvic drain. | 97 | 92 | Lower limb LE | 2/97 (2%) | 0/92 (0%) | NR |
Clark [15], 2003 | RRP + e PLND. | RRP + limited PLND. | 123 * | 123 * | not specified | 3/123 (4%), 3/5 occurring on the extended side | 2/123 (2%) | NR |
Davis [16], 2011 | RARP + e PLND. | RARP + limited PLND. | 670 | 261 | Lower limb LE | 1/670 (0%) | 0/261 (0%) | NR |
Feicke [17], 2009 | RARP + e PLND. | NA | 99 | NA | Lower limb LE | 2/99 (2%) | NA | NA |
Kim [18], 2014 | RARP + e PLND. | NA | 147 | NA | Lower limb LE | 15/147 (10%), | NA | NA |
Mattei [19], 2013 | RARP + e PLND. | NA | 134 | NA | Lower limb LE | 1/134 (1%) | NA | NA |
Morizane [20], 2018 | RARP + e PLND. | RARP + limited PLND. | 431 | 902 | not specified | 28/431(6%) | 7/902 (1%) | p < 0.001 |
Porcaro [21], 2019 | RARP + extended PLND. | NA | 211 | NA | Lower limb LE | 5/211 (2%) | NA | NA |
Genital LE | 1/211 (0%) | NA | NA | |||||
Yuh [22], 2013 | RARP + extended PLND. | RARP + limited PLND. | 202 | 204 | Lower limb LE | 1/202 (0%) | 0/204 (0%) | NR |
Genital LE | 1/202 (0%) | 3/204 (1%) | NR | |||||
RADIATION THERAPY | ||||||||
Amdur [23], 1990 | EBRT prostate ± pelvis | NA | 225 | NA | Not specified | 2/225 (1%) | NA | NA |
Aristizabal [24], 1984 | EBRT prostate ± pelvis | NA | 218 | NA | Lower limb LE | 1/218 (0%) | NA | NA |
Genital LE | 4/218 (2%) | NA | NA | |||||
Borghede [25], 1997 | EBRT prostate ± pelvis | NA | 184 | NA | Lower limb LE | 4/184 (2%) | NA | NA |
Forman [26], 1985 | EBRT prostate + pelvis after staging PLND | EBRT prostate + pelvis without staging PLND | 41 | 199 | Genital LE | 9/41 (22%) | 2/199 (1%) | NA |
Lower limb LE | 12/41 (29%) | 5/199 (3%) | NA | |||||
Perez [27], 1980 | EBRT prostate + pelvis after staging PLND | EBRT + pelvic RT without staging PLND | 14 | 181 | Lower limb LE | 3/14 (21%) | 3/181 (2%) | NA |
Genital edema | 4/195 (2%) | NR | NA | |||||
Pilepich [28], 1981 | EBRT prostate + pelvis after staging PLND | EBRT + pelvic RT without staging PLND | 31 | 236 | Lower limb LE | 8/31(26%) | 0/236 (0%) | NA |
Genital edema | 6/267 (2%) | NA | NA | |||||
Pilepich [29], 1983 | RTOG 75-06 PPP Prostate, pelvic and para-aortic irradiation. ± staging PLND | RTOG 75-06 PP Prostate and pelvic irradiation ± staging PLND | 137 | 131 | Lower limb LE | 6/137 (4%) | 11/131 (8%) | p = 0.26 |
Genital LE | 5/137 (4%) | 8/131 (6%) | p = 0.26 | |||||
LE in pts undergoing PLND | Overall, 24/72 (18%) | |||||||
RTOG 77-06 PP Prostate and pelvic irradiation. | RTOG 77-06 P Prostate irradiation | 106 | 113 | Lower limb LE | 3/106 (3%) | 0/113 (0%) | p = 0.03 | |
Genital edema | 5/106 (5%) | 0/113 (0%) | p = 0.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Clinckaert, A.; Callens, K.; Cooreman, A.; Bijnens, A.; Moris, L.; Van Calster, C.; Geraerts, I.; Joniau, S.; Everaerts, W. The Prevalence of Lower Limb and Genital Lymphedema after Prostate Cancer Treatment: A Systematic Review. Cancers 2022, 14, 5667. https://doi.org/10.3390/cancers14225667
Clinckaert A, Callens K, Cooreman A, Bijnens A, Moris L, Van Calster C, Geraerts I, Joniau S, Everaerts W. The Prevalence of Lower Limb and Genital Lymphedema after Prostate Cancer Treatment: A Systematic Review. Cancers. 2022; 14(22):5667. https://doi.org/10.3390/cancers14225667
Chicago/Turabian StyleClinckaert, Andries, Klaas Callens, Anne Cooreman, Annabel Bijnens, Lisa Moris, Charlotte Van Calster, Inge Geraerts, Steven Joniau, and Wouter Everaerts. 2022. "The Prevalence of Lower Limb and Genital Lymphedema after Prostate Cancer Treatment: A Systematic Review" Cancers 14, no. 22: 5667. https://doi.org/10.3390/cancers14225667
APA StyleClinckaert, A., Callens, K., Cooreman, A., Bijnens, A., Moris, L., Van Calster, C., Geraerts, I., Joniau, S., & Everaerts, W. (2022). The Prevalence of Lower Limb and Genital Lymphedema after Prostate Cancer Treatment: A Systematic Review. Cancers, 14(22), 5667. https://doi.org/10.3390/cancers14225667