Preclinical Models of Neuroendocrine Neoplasia
Abstract
:Simple Summary
Abstract
1. Introduction
2. Results
2.1. Cell Lines
2.1.1. NEN Cell Lines
2.1.2. NEPC Cell Lines
2.1.3. PPGL Cell Lines
2.2. 3D Models
2.2.1. NEN 3D Models
2.2.2. NEPC 3D Models
2.2.3. PPGL 3D Models
2.3. Patient-Derived Xenografts
2.3.1. NEN PDXs
2.3.2. NEPC PDXs
2.3.3. PPGL PDXs
2.4. Genetically-Engineered Mouse Models
2.4.1. NEN GEMMS
2.4.2. NEPC GEMMS
2.4.3. PPGL GEMMS
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Oronsky, B.; Ma, P.C.; Morgensztern, D.; Carter, C.A. Nothing But NET: A Review of Neuroendocrine Tumors and Carcinomas. Neoplasia 2017, 19, 991–1002. [Google Scholar] [CrossRef] [PubMed]
- Dasari, A.; Shen, C.; Halperin, D.; Zhao, B.; Zhou, S.; Xu, Y.; Shih, T.; Yao, J.C. Trends in the Incidence, Prevalence, and Survival Outcomes in Patients with Neuroendocrine Tumors in the United States. JAMA Oncol. 2017, 3, 1335–1342. [Google Scholar] [CrossRef] [PubMed]
- Raphael, M.J.; Chan, D.L.; Law, C.; Singh, S. Principles of Diagnosis and Management of Neuroendocrine Tumours. CMAJ 2017, 189, E398–E404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jensen, R.T.; Bodei, L.; Capdevila, J.; Couvelard, A.; Falconi, M.; Glasberg, S.; Kloppel, G.; Lamberts, S.; Peeters, M.; Rindi, G.; et al. Unmet Needs in Functional and Nonfunctional Pancreatic Neuroendocrine Neoplasms. Neuroendocrinology 2019, 108, 26–36. [Google Scholar] [CrossRef] [PubMed]
- Rindi, G.; Mete, O.; Uccella, S.; Basturk, O.; La Rosa, S.; Brosens, L.A.A.; Ezzat, S.; de Herder, W.W.; Klimstra, D.S.; Papotti, M.; et al. Overview of the 2022 WHO Classification of Neuroendocrine Neoplasms. Endocr. Pathol. 2022, 33, 115–154. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.-Y.; Gong, Y.-F.; Zhuang, H.-K.; Zhou, Z.-X.; Huang, S.-Z.; Zou, Y.-P.; Huang, B.-W.; Sun, Z.-H.; Zhang, C.-Z.; Tang, Y.-Q.; et al. Pancreatic Neuroendocrine Tumors: A Review of Serum Biomarkers, Staging, and Management. World J. Gastroenterol. 2020, 26, 2305–2322. [Google Scholar] [CrossRef]
- Metz, D.C.; Jensen, R.T. Gastrointestinal Neuroendocrine Tumors: Pancreatic Endocrine Tumors. Gastroenterology 2008, 135, 1469–1492. [Google Scholar] [CrossRef] [Green Version]
- Ebbehoj, A.; Li, D.; Kaur, R.J.; Zhang, C.; Singh, S.; Li, T.; Atkinson, E.; Achenbach, S.; Khosla, S.; Arlt, W.; et al. Epidemiology of Adrenal Tumors—A Population-Based Study in Olmsted County, Minnesota. Lancet Diabetes Endocrinol. 2020, 8, 894–902. [Google Scholar] [CrossRef]
- Detterbeck, F.C. Clinical Presentation and Evaluation of Neuroendocrine Tumors of the Lung. Thorac. Surg. Clin. 2014, 24, 267–276. [Google Scholar] [CrossRef] [PubMed]
- Basu, B.; Sirohi, B.; Corrie, P. Systemic Therapy for Neuroendocrine Tumours of Gastroenteropancreatic Origin. Endocr. Relat. Cancer 2010, 17, R75–R90. [Google Scholar] [CrossRef] [PubMed]
- Chedgy, E.C.; Vandekerkhove, G.; Herberts, C.; Annala, M.; Donoghue, A.J.; Sigouros, M.; Ritch, E.; Struss, W.; Konomura, S.; Liew, J.; et al. Biallelic Tumour Suppressor Loss and DNA Repair Defects in de Novo Small-Cell Prostate Carcinoma. J. Pathol. 2018, 246, 244–253. [Google Scholar] [CrossRef] [PubMed]
- Abbas, F.; Civantos, F.; Benedetto, P.; Soloway, M.S. Small Cell Carcinoma of the Bladder and Prostate. Urology 1995, 46, 617–630. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Ci, X.; Choi, S.Y.C.; Crea, F.; Lin, D.; Wang, Y. Molecular Events in Neuroendocrine Prostate Cancer Development. Nat. Rev. Urol. 2021, 18, 581–596. [Google Scholar] [CrossRef] [PubMed]
- Watson, P.A.; Arora, V.K.; Sawyers, C.L. Emerging Mechanisms of Resistance to Androgen Receptor Inhibitors in Prostate Cancer. Nat. Rev. Cancer 2015, 15, 701–711. [Google Scholar] [CrossRef] [Green Version]
- Conteduca, V.; Oromendia, C.; Eng, K.W.; Bareja, R.; Sigouros, M.; Molina, A.; Faltas, B.M.; Sboner, A.; Mosquera, J.M.; Elemento, O.; et al. Clinical Features of Neuroendocrine Prostate Cancer. Eur. J. Cancer 2019, 121, 7–18. [Google Scholar] [CrossRef]
- Tzelepi, V.; Zhang, J.; Lu, J.-F.; Kleb, B.; Wu, G.; Wan, X.; Hoang, A.; Efstathiou, E.; Sircar, K.; Navone, N.M.; et al. Modeling a Lethal Prostate Cancer Variant with Small-Cell Carcinoma Features. Clin. Cancer Res. 2012, 18, 666–677. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Barcons, L.-A. Small-Cell Neuroendocrine Carcinoma of the Prostate: Are Heterotransplants a Better Experimental Model? Asian J. Androl. 2010, 12, 308–314. [Google Scholar] [CrossRef] [Green Version]
- Detjen, K.; Hammerich, L.; Özdirik, B.; Demir, M.; Wiedenmann, B.; Tacke, F.; Jann, H.; Roderburg, C. Models of Gastroenteropancreatic Neuroendocrine Neoplasms: Current Status and Future Directions. Neuroendocrinology 2021, 111, 217–236. [Google Scholar] [CrossRef]
- Pfragner, R.; Behmel, A.; Smith, D.P.; Ponder, B.A.; Wirnsberger, G.; Rinner, I.; Porta, S.; Henn, T.; Niederle, B. First Continuous Human Pheochromocytoma Cell Line: KNA. Biological, Cytogenetic and Molecular Characterization of KNA Cells. J. Neurocytol. 1998, 27, 175–186. [Google Scholar] [CrossRef]
- Venihaki, M.; Ain, K.; Dermitzaki, E.; Gravanis, A.; Margioris, A.N. KAT45, a Noradrenergic Human Pheochromocytoma Cell Line Producing Corticotropin-Releasing Hormone. Endocrinology 1998, 139, 713–722. [Google Scholar] [CrossRef]
- Ghayee, H.K.; Bhagwandin, V.J.; Stastny, V.; Click, A.; Ding, L.-H.; Mizrachi, D.; Zou, Y.S.; Chari, R.; Lam, W.L.; Bachoo, R.M.; et al. Progenitor Cell Line (HPheo1) Derived from a Human Pheochromocytoma Tumor. PLoS ONE 2013, 8, e65624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dizdar, L.; Drusenheimer, J.; Werner, T.A.; Möhlendick, B.; Schütte, S.C.; Esposito, I.; Filler, T.J.; Knoefel, W.T.; Krieg, A. Establishment and Characterization of a Novel Cell Line Derived from a Small Cell Neuroendocrine Carcinoma of the Anal Canal. Neuroendocrinology 2018, 107, 246–256. [Google Scholar] [CrossRef] [PubMed]
- Ear, P.H.; Li, G.; Wu, M.; Abusada, E.; Bellizzi, A.M.; Howe, J.R. Establishment and Characterization of Small Bowel Neuroendocrine Tumor Spheroids. J. Vis. Exp. 2019, 152, e60303. [Google Scholar] [CrossRef] [PubMed]
- Quinn, L.A.; Moore, G.E.; Morgan, R.T.; Woods, L.K. Cell Lines from Human Colon Carcinoma with Unusual Cell Products, Double Minutes, and Homogeneously Staining Regions. Cancer Res. 1979, 39, 4914–4924. [Google Scholar] [PubMed]
- Lundqvist, M.; Mark, J.; Funa, K.; Heldin, N.E.; Morstyn, G.; Wedell, B.; Layton, J.; Oberg, K. Characterisation of a Cell Line (LCC-18) from a Cultured Human Neuroendocrine-Differentiated Colonic Carcinoma. Eur. J. Cancer 1991, 27, 1663–1668. [Google Scholar] [CrossRef]
- Krieg, A.; Mersch, S.; Boeck, I.; Dizdar, L.; Weihe, E.; Hilal, Z.; Krausch, M.; Möhlendick, B.; Topp, S.A.; Piekorz, R.P.; et al. New Model for Gastroenteropancreatic Large-Cell Neuroendocrine Carcinoma: Establishment of Two Clinically Relevant Cell Lines. PLoS ONE 2014, 9, e88713. [Google Scholar] [CrossRef] [Green Version]
- Gock, M.; Mullins, C.S.; Harnack, C.; Prall, F.; Ramer, R.; Göder, A.; Krämer, O.H.; Klar, E.; Linnebacher, M. Establishment, Functional and Genetic Characterization of a Colon Derived Large Cell Neuroendocrine Carcinoma Cell Line. World J. Gastroenterol. 2018, 24, 3749–3759. [Google Scholar] [CrossRef]
- Shinji, S.; Sasaki, N.; Yamada, T.; Koizumi, M.; Ohta, R.; Matsuda, A.; Yokoyama, Y.; Takahashi, G.; Hotta, M.; Hara, K.; et al. Establishment and Characterization of a Novel Neuroendocrine Carcinoma Cell Line Derived from a Human Ascending Colon Tumor. Cancer Sci. 2019, 110, 3708–3717. [Google Scholar] [CrossRef] [Green Version]
- Stuschke, M.; Budach, V.; Klaes, W.; Sack, H. Radiosensitivity, Repair Capacity, and Stem Cell Fraction in Human Soft Tissue Tumors: An in Vitro Study Using Multicellular Spheroids and the Colony Assay. Int. J. Radiat. Oncol. Biol. Phys. 1992, 23, 69–80. [Google Scholar] [CrossRef]
- Fujiwara, T.; Motoyama, T.; Ishihara, N.; Watanabe, H.; Kumanishi, T.; Kato, K.; Ichinose, H.; Nagatsu, T. Characterization of Four New Cell Lines Derived from Small-Cell Gastrointestinal Carcinoma. Int. J. Cancer 1993, 54, 965–971. [Google Scholar] [CrossRef]
- Okumura, T.; Shimada, Y.; Omura, T.; Hirano, K.; Nagata, T.; Tsukada, K. MicroRNA Profiles to Predict Postoperative Prognosis in Patients with Small Cell Carcinoma of the Esophagus. Anticancer Res. 2015, 35, 719–727. [Google Scholar] [PubMed]
- Cama, A.; Verginelli, F.; Lotti, L.V.; Napolitano, F.; Morgano, A.; D’Orazio, A.; Vacca, M.; Perconti, S.; Pepe, F.; Romani, F.; et al. Integrative Genetic, Epigenetic and Pathological Analysis of Paraganglioma Reveals Complex Dysregulation of NOTCH Signaling. Acta Neuropathol. 2013, 126, 575–594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oboshi, S.; Tsugawa, S.; Seido, T.; Shimosato, Y.; Koide, T. A New Floating Cell Line Derived from Human Pulmonary Carcinoma of Oat Cell Type. GANN Jpn. J. Cancer Res. 1971, 62, 505–514. [Google Scholar] [CrossRef]
- Fisher, E.R.; Paulson, J.D. A New in Vitro Cell Line Established from Human Large Cell Variant of Oat Cell Lung Cancer. Cancer Res. 1978, 38, 3830–3835. [Google Scholar]
- Sui, J.S.Y.; Martin, P.; Gray, S.G. Pre-Clinical Models of Small Cell Lung Cancer and the Validation of Therapeutic Targets. Expert Opin. Ther. Targets 2020, 24, 187–204. [Google Scholar] [CrossRef] [PubMed]
- Baillie-Johnson, H.; Twentyman, P.R.; Fox, N.E.; Walls, G.A.; Workman, P.; Watson, J.V.; Johnson, N.; Reeve, J.G.; Bleehen, N.M. Establishment and Characterisation of Cell Lines from Patients with Lung Cancer (Predominantly Small Cell Carcinoma). Br. J. Cancer 1985, 52, 495–504. [Google Scholar] [CrossRef] [Green Version]
- Bepler, G.; Jaques, G.; Koehler, A.; Gropp, C.; Havemann, K. Markers and Characteristics of Human SCLC Cell Lines. J. Cancer Res. Clin. Oncol. 1987, 113, 253–259. [Google Scholar] [CrossRef]
- Paulin, C.; Charnay, Y. Demonstration of delta sleep inducing peptide in a strain of human small cell lung cancer by immunocytology. C. R. Acad. Sci. III 1992, 314, 259–262. [Google Scholar]
- Giaccone, G.; Battey, J.; Gazdar, A.F.; Oie, H.; Draoui, M.; Moody, T.W. Neuromedin B Is Present in Lung Cancer Cell Lines. Cancer Res. 1992, 52, 2732s–2736s. [Google Scholar]
- Schauer, I.E.; Siriwardana, S.; Langan, T.A.; Sclafani, R.A. Cyclin D1 Overexpression vs. Retinoblastoma Inactivation: Implications for Growth Control Evasion in Non-Small Cell and Small Cell Lung Cancer. Proc. Natl. Acad. Sci. USA 1994, 91, 7827–7831. [Google Scholar] [CrossRef] [Green Version]
- Twentyman, P.R.; Wright, K.A.; Mistry, P.; Kelland, L.R.; Murrer, B.A. Sensitivity to Novel Platinum Compounds of Panels of Human Lung Cancer Cell Lines with Acquired and Inherent Resistance to Cisplatin. Cancer Res. 1992, 52, 5674–5680. [Google Scholar] [PubMed]
- Phelps, R.M.; Johnson, B.E.; Ihde, D.C.; Gazdar, A.F.; Carbone, D.P.; McClintock, P.R.; Linnoila, R.I.; Matthews, M.J.; Bunn, P.A., Jr.; Carney, D.; et al. NCI-Navy Medical Oncology Branch Cell Line Data Base. J. Cell. Biochem. 1996, 63, 32–91. [Google Scholar] [CrossRef] [PubMed]
- Virmani, A.K.; Fong, K.M.; Kodagoda, D.; McIntire, D.; Hung, J.; Tonk, V.; Minna, J.D.; Gazdar, A.F. Allelotyping Demonstrates Common and Distinct Patterns of Chromosomal Loss in Human Lung Cancer Types. Genes Chromosomes Cancer 1998, 21, 308–319. [Google Scholar] [CrossRef]
- Ohara, K.; Kinoshita, S.; Ando, J.; Azusawa, Y.; Ishii, M.; Harada, S.; Mitsuishi, Y.; Asao, T.; Tajima, K.; Yamamoto, T.; et al. SCLC-J1, a Novel Small Cell Lung Cancer Cell Line. Biochem. Biophys. Rep. 2021, 27, 101089. [Google Scholar] [CrossRef]
- Kaku, M.; Nishiyama, T.; Yagawa, K.; Abe, M. Establishment of a Carcinoembryonic Antigen-Producing Cell Line from Human Pancreatic Carcinoma. GANN Jpn. J. Cancer Res. 1980, 71, 596–601. [Google Scholar]
- Gueli, N.; Toto, G.; Palmieri, G.; Carmenini, G.; Delfino, A.; Ferrini, U. In Vitro Growth of a Cell Line Originated from a Human Insulinoma. J. Exp. Clin. Cancer Res. 1987, 6, 281–285. [Google Scholar]
- Evers, B.M.; Townsend, C.M.; Upp, J.R.; Allen, E.; Hurlbut, S.C.; Kim, S.W.; Rajaraman, S.; Singh, P.; Reubi, J.C.; Thompson, J.C. Establishment and Characterization of a Human Carcinoid in Nude Mice and Effect of Various Agents on Tumor Growth. Gastroenterology 1991, 101, 303–311. [Google Scholar] [CrossRef]
- Tillotson, L.G.; Lodestro, C.; Höcker, M.; Wiedenmann, B.; Newcomer, C.E.; Reid, L.M. Isolation, Maintenance, and Characterization of Human Pancreatic Islet Tumor Cells Expressing Vasoactive Intestinal Peptide. Pancreas 2001, 22, 91–98. [Google Scholar] [CrossRef]
- Yachida, S.; Zhong, Y.; Patrascu, R.; Davis, M.B.; Morsberger, L.A.; Griffin, C.A.; Hruban, R.H.; Laheru, D.; Iacobuzio-Donahue, C.A. Establishment and Characterization of a New Cell Line, A99, from a Primary Small Cell Carcinoma of the Pancreas. Pancreas 2011, 40, 905–910. [Google Scholar] [CrossRef] [Green Version]
- Krampitz, G.W.; George, B.M.; Willingham, S.B.; Volkmer, J.-P.; Weiskopf, K.; Jahchan, N.; Newman, A.M.; Sahoo, D.; Zemek, A.J.; Yanovsky, R.L.; et al. Identification of Tumorigenic Cells and Therapeutic Targets in Pancreatic Neuroendocrine Tumors. Proc. Natl. Acad. Sci. USA 2016, 113, 4464–4469. [Google Scholar] [CrossRef] [Green Version]
- Benten, D.; Behrang, Y.; Unrau, L.; Weissmann, V.; Wolters-Eisfeld, G.; Burdak-Rothkamm, S.; Stahl, F.R.; Anlauf, M.; Grabowski, P.; Möbs, M.; et al. Establishment of the First Well-Differentiated Human Pancreatic Neuroendocrine Tumor Model. Mol. Cancer Res. 2018, 16, 496–507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viol, F.; Sipos, B.; Fahl, M.; Clauditz, T.S.; Amin, T.; Kriegs, M.; Nieser, M.; Izbicki, J.R.; Huber, S.; Lohse, A.W.; et al. Novel Preclinical Gastroenteropancreatic Neuroendocrine Neoplasia Models Demonstrate the Feasibility of Mutation-Based Targeted Therapy. Cell. Oncol. 2022. [Google Scholar] [CrossRef] [PubMed]
- Horoszewicz, J.S.; Leong, S.S.; Chu, T.M.; Wajsman, Z.L.; Friedman, M.; Papsidero, L.; Kim, U.; Chai, L.S.; Kakati, S.; Arya, S.K.; et al. The LNCaP Cell Line--a New Model for Studies on Human Prostatic Carcinoma. Prog Clin. Biol. Res. 1980, 37, 115–132. [Google Scholar]
- Johnson, B.E.; Whang-Peng, J.; Naylor, S.L.; Zbar, B.; Brauch, H.; Lee, E.; Simmons, A.; Russell, E.; Nam, M.H.; Gazdar, A.F. Retention of Chromosome 3 in Extrapulmonary Small Cell Cancer Shown by Molecular and Cytogenetic Studies. J. Natl. Cancer Inst. 1989, 81, 1223–1228. [Google Scholar] [CrossRef]
- Faugeroux, V.; Pailler, E.; Oulhen, M.; Deas, O.; Brulle-Soumare, L.; Hervieu, C.; Marty, V.; Alexandrova, K.; Andree, K.C.; Stoecklein, N.H.; et al. Genetic Characterization of a Unique Neuroendocrine Transdifferentiation Prostate Circulating Tumor Cell-Derived EXplant Model. Nat. Commun. 2020, 11, 1884. [Google Scholar] [CrossRef] [Green Version]
- Okasho, K.; Mizuno, K.; Fukui, T.; Lin, Y.-Y.; Kamiyama, Y.; Sunada, T.; Li, X.; Kimura, H.; Sumiyoshi, T.; Goto, T.; et al. Establishment and Characterization of a Novel Treatment-Related Neuroendocrine Prostate Cancer Cell Line KUCaP13. Cancer Sci. 2021, 112, 2781–2791. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, N.; Onda, M.; Seya, T.; Kanazawa, Y.; Naito, Z.; Asano, G.; Oguro, T. Establishment and Characterization of a Human Rectal Neuroendocrine Carcinoma Xenograft into Nude Mice. Digestion 1999, 60, 117–124. [Google Scholar] [CrossRef]
- Takahashi, Y.; Onda, M.; Tanaka, N.; Seya, T. Establishment and Characterization of Two New Rectal Neuroendocrine Cell Carcinoma Cell Lines. Digestion 2000, 62, 262–270. [Google Scholar] [CrossRef] [PubMed]
- Pfragner, R.; Wirnsberger, G.; Niederle, B.; Behmel, A.; Rinner, I.; Mandl, A.; Wawrina, F.; Luo, J.; Adamiker, D.; Hoger, H.; et al. Establishment of a Continuous Cell Line from a Human Carcinoid of the Small Intestine (KRJ-I). Int. J. Oncol. 1996, 8, 513–520. [Google Scholar] [CrossRef]
- Konno, H.; Arai, T.; Tanaka, T.; Baba, M.; Matsumoto, K.; Kanai, T.; Nakamura, S.; Baba, S.; Naito, Y.; Sugimura, H.; et al. Antitumor Effect of a Neutralizing Antibody to Vascular Endothelial Growth Factor on Liver Metastasis of Endocrine Neoplasm. Jpn. J. Cancer Res. 1998, 89, 933–939. [Google Scholar] [CrossRef]
- Kölby, L.; Bernhardt, P.; Ahlman, H.; Wängberg, B.; Johanson, V.; Wigander, A.; Forssell-Aronsson, E.; Karlsson, S.; Ahrén, B.; Stenman, G.; et al. A Transplantable Human Carcinoid as Model for Somatostatin Receptor-Mediated and Amine Transporter-Mediated Radionuclide Uptake. Am. J. Pathol. 2001, 158, 745–755. [Google Scholar] [CrossRef] [Green Version]
- Van Buren, G.; Rashid, A.; Yang, A.D.; Abdalla, E.K.; Gray, M.J.; Liu, W.; Somcio, R.; Fan, F.; Camp, E.R.; Yao, J.C.; et al. The Development and Characterization of a Human Midgut Carcinoid Cell Line. Clin. Cancer Res. 2007, 13, 4704–4712. [Google Scholar] [CrossRef] [Green Version]
- Pfragner, R.; Behmel, A.; Höger, H.; Beham, A.; Ingolic, E.; Stelzer, I.; Svejda, B.; Moser, V.A.; Obenauf, A.C.; Siegl, V.; et al. Establishment and Characterization of Three Novel Cell Lines—P-STS, L-STS, H-STS—Derived from a Human Metastatic Midgut Carcinoid. Anticancer Res. 2009, 29, 1951–1961. [Google Scholar]
- Yanagihara, K.; Kubo, T.; Mihara, K.; Kuwata, T.; Ochiai, A.; Seyama, T.; Yokozaki, H. Establishment of a Novel Cell Line from a Rare Human Duodenal Poorly Differentiated Neuroendocrine Carcinoma. Oncotarget 2018, 9, 36503–36514. [Google Scholar] [CrossRef] [Green Version]
- Pfragner, R.; Höfler, H.; Behmel, A.; Ingolic, E.; Walser, V. Establishment and Characterization of Continuous Cell Line MTC-SK Derived from a Human Medullary Thyroid Carcinoma. Cancer Res. 1990, 50, 4160–4166. [Google Scholar]
- April-Monn, S.L.; Wiedmer, T.; Skowronska, M.; Maire, R.; Schiavo Lena, M.; Trippel, M.; Di Domenico, A.; Muffatti, F.; Andreasi, V.; Capurso, G.; et al. Three-Dimensional Primary Cell Culture: A Novel Preclinical Model for Pancreatic Neuroendocrine Tumors. Neuroendocrinology 2021, 111, 273–287. [Google Scholar] [CrossRef]
- Gragnoli, C. The CM Cell Line Derived from Liver Metastasis of Malignant Human Insulinoma Is Not a Valid Beta Cell Model for in Vitro Studies. J. Cell. Physiol. 2008, 216, 569–570. [Google Scholar] [CrossRef]
- Lopez, J.R.; Claessen, S.M.H.; Macville, M.V.E.; Albrechts, J.C.M.; Skogseid, B.; Speel, E.-J.M. Spectral Karyotypic and Comparative Genomic Analysis of the Endocrine Pancreatic Tumor Cell Line BON-1. Neuroendocrinology 2010, 91, 131–141. [Google Scholar] [CrossRef]
- Boora, G.K.; Kanwar, R.; Kulkarni, A.A.; Pleticha, J.; Ames, M.; Schroth, G.; Beutler, A.S.; Banck, M.S. Exome-Level Comparison of Primary Well-Differentiated Neuroendocrine Tumors and Their Cell Lines. Cancer Genet. 2015, 208, 374–381. [Google Scholar] [CrossRef]
- Siddique, Z.-L.; Drozdov, I.; Floch, J.; Gustafsson, B.I.; Stunes, K.; Pfragner, R.; Kidd, M.; Modlin, I.M. KRJ-I and BON Cell Lines: Defining an Appropriate Enterochromaffin Cell Neuroendocrine Tumor Model. Neuroendocrinology 2009, 89, 458–470. [Google Scholar] [CrossRef]
- Yanagihara, K.; Kubo, T.; Iino, Y.; Mihara, K.; Morimoto, C.; Seyama, T.; Kuwata, T.; Ochiai, A.; Yokozaki, H. Development and Characterization of a Cancer Cachexia Model Employing a Rare Human Duodenal Neuroendocrine Carcinoma-Originating Cell Line. Oncotarget 2019, 10, 2435–2450. [Google Scholar] [CrossRef] [Green Version]
- Hofving, T.; Arvidsson, Y.; Almobarak, B.; Inge, L.; Pfragner, R.; Persson, M.; Stenman, G.; Kristiansson, E.; Johanson, V.; Nilsson, O. The Neuroendocrine Phenotype, Genomic Profile and Therapeutic Sensitivity of GEPNET Cell Lines. Endocr. Relat. Cancer 2018, 25, 367–380. [Google Scholar] [CrossRef] [Green Version]
- Alvarez, M.J.; Yan, P.; Alpaugh, M.L.; Bowden, M.; Sicinska, E.; Zhou, C.W.; Karan, C.; Realubit, R.B.; Mundi, P.S.; Grunn, A.; et al. Reply to ‘H-STS, L-STS and KRJ-I Are Not Authentic GEPNET Cell Lines’. Nat. Genet. 2019, 51, 1427–1428. [Google Scholar] [CrossRef]
- Chen, Y.; Cang, S.; Han, L.; Liu, C.; Yang, P.; Solangi, Z.; Lu, Q.; Liu, D.; Chiao, J.W. Establishment of Prostate Cancer Spheres from a Prostate Cancer Cell Line after Phenethyl Isothiocyanate Treatment and Discovery of Androgen-Dependent Reversible Differentiation between Sphere and Neuroendocrine Cells. Oncotarget 2016, 7, 26567–26579. [Google Scholar] [CrossRef]
- Chiao, J.W.; Hsieh, T.C.; Xu, W.; Sklarew, R.J.; Kancherla, R. Development of Human Prostate Cancer Cells to Neuroendocrine-like Cells by Interleukin-1. Int. J. Oncol. 1999, 15, 1033–1037. [Google Scholar] [CrossRef]
- Shui, X.; Xu, R.; Zhang, C.; Meng, H.; Zhao, J.; Shi, C. Advances in Neuroendocrine Prostate Cancer Research: From Model Construction to Molecular Network Analyses. Lab. Investig. 2021, 102, 332–340. [Google Scholar] [CrossRef]
- Florio, R.; De Lellis, L.; di Giacomo, V.; Di Marcantonio, M.C.; Cristiano, L.; Basile, M.; Verginelli, F.; Verzilli, D.; Ammazzalorso, A.; Prasad, S.C.; et al. Effects of PPARα Inhibition in Head and Neck Paraganglioma Cells. PLoS ONE 2017, 12, e0178995. [Google Scholar] [CrossRef] [Green Version]
- Korpershoek, E.; Pacak, K.; Martiniova, L. Murine Models and Cell Lines for the Investigation of Pheochromocytoma: Applications for Future Therapies? Endocr. Pathol. 2012, 23, 43–54. [Google Scholar] [CrossRef]
- Kawasaki, K.; Toshimitsu, K.; Matano, M.; Fujita, M.; Fujii, M.; Togasaki, K.; Ebisudani, T.; Shimokawa, M.; Takano, A.; Takahashi, S.; et al. An Organoid Biobank of Neuroendocrine Neoplasms Enables Genotype-Phenotype Mapping. Cell 2020, 183, 1420–1435.e21. [Google Scholar] [CrossRef]
- Fujii, M.; Shimokawa, M.; Date, S.; Takano, A.; Matano, M.; Nanki, K.; Ohta, Y.; Toshimitsu, K.; Nakazato, Y.; Kawasaki, K.; et al. A Colorectal Tumor Organoid Library Demonstrates Progressive Loss of Niche Factor Requirements during Tumorigenesis. Cell Stem Cell 2016, 18, 827–838. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.; Mun, H.; Sung, C.O.; Cho, E.J.; Jeon, H.-J.; Chun, S.-M.; Jung, D.J.; Shin, T.H.; Jeong, G.S.; Kim, D.K.; et al. Patient-Derived Lung Cancer Organoids as in Vitro Cancer Models for Therapeutic Screening. Nat. Commun. 2019, 10, 3991. [Google Scholar] [CrossRef] [Green Version]
- Gmeiner, W.H.; Miller, L.D.; Chou, J.W.; Dominijanni, A.; Mutkus, L.; Marini, F.; Ruiz, J.; Dotson, T.; Thomas, K.W.; Parks, G.; et al. Dysregulated Pyrimidine Biosynthesis Contributes to 5-FU Resistance in SCLC Patient-Derived Organoids but Response to a Novel Polymeric Fluoropyrimidine, CF10. Cancers 2020, 12, 788. [Google Scholar] [CrossRef] [Green Version]
- Gao, D.; Vela, I.; Sboner, A.; Iaquinta, P.J.; Karthaus, W.R.; Gopalan, A.; Dowling, C.; Wanjala, J.N.; Undvall, E.A.; Arora, V.K.; et al. Organoid Cultures Derived from Patients with Advanced Prostate Cancer. Cell 2014, 159, 176–187. [Google Scholar] [CrossRef] [Green Version]
- Puca, L.; Bareja, R.; Prandi, D.; Shaw, R.; Benelli, M.; Karthaus, W.R.; Hess, J.; Sigouros, M.; Donoghue, A.; Kossai, M.; et al. Patient Derived Organoids to Model Rare Prostate Cancer Phenotypes. Nat. Commun. 2018, 9, 2404. [Google Scholar] [CrossRef] [Green Version]
- Singh, N.; Ramnarine, V.R.; Song, J.H.; Pandey, R.; Padi, S.K.R.; Nouri, M.; Olive, V.; Kobelev, M.; Okumura, K.; McCarthy, D.; et al. The Long Noncoding RNA H19 Regulates Tumor Plasticity in Neuroendocrine Prostate Cancer. Nat. Commun. 2021, 12, 7349. [Google Scholar] [CrossRef]
- Mosquera, M.J.; Kim, S.; Bareja, R.; Fang, Z.; Cai, S.; Pan, H.; Asad, M.; Martin, M.L.; Sigouros, M.; Rowdo, F.M.; et al. Extracellular Matrix in Synthetic Hydrogel-Based Prostate Cancer Organoids Regulate Therapeutic Response to EZH2 and DRD2 Inhibitors. Adv. Mater. 2022, 34, e2100096. [Google Scholar] [CrossRef]
- Dijkstra, K.K.; van den Berg, J.G.; Weeber, F.; van de Haar, J.; Velds, A.; Kaing, S.; Peters, D.D.G.C.; Eskens, F.A.L.M.; de Groot, D.-J.A.; Tesselaar, M.E.T.; et al. Patient-Derived Organoid Models of Human Neuroendocrine Carcinoma. Front. Endocrinol. 2021, 12, 627819. [Google Scholar] [CrossRef]
- Iwata, R.; Maruyama, M.; Ito, T.; Nakano, Y.; Kanemura, Y.; Koike, T.; Oe, S.; Yoshimura, K.; Nonaka, M.; Nomura, S.; et al. Establishment of a Tumor Sphere Cell Line from a Metastatic Brain Neuroendocrine Tumor. Med. Mol. Morphol. 2017, 50, 211–219. [Google Scholar] [CrossRef]
- Kawasaki, K.; Fujii, M.; Sato, T. Gastroenteropancreatic Neuroendocrine Neoplasms: Genes, Therapies and Models. Dis. Model. Mech. 2018, 11, dmm029595. [Google Scholar] [CrossRef] [Green Version]
- Choo, N.; Ramm, S.; Luu, J.; Winter, J.M.; Selth, L.A.; Dwyer, A.R.; Frydenberg, M.; Grummet, J.; Sandhu, S.; Hickey, T.E.; et al. High-Throughput Imaging Assay for Drug Screening of 3D Prostate Cancer Organoids. SLAS Discov. 2021, 26, 1107–1124. [Google Scholar] [CrossRef]
- Takács-Vellai, K.; Farkas, Z.; Ősz, F.; Stewart, G.W. Model Systems in SDHx-Related Pheochromocytoma/Paraganglioma. Cancer Metastasis Rev. 2021, 40, 1177–1201. [Google Scholar] [CrossRef]
- Lepoutre-Lussey, C.; Thibault, C.; Buffet, A.; Morin, A.; Badoual, C.; Bénit, P.; Rustin, P.; Ottolenghi, C.; Janin, M.; Castro-Vega, L.-J.; et al. From Nf1 to Sdhb Knockout: Successes and Failures in the Quest for Animal Models of Pheochromocytoma. Mol. Cell. Endocrinol. 2016, 421, 40–48. [Google Scholar] [CrossRef]
- Powers, J.F.; Cochran, B.; Baleja, J.D.; Sikes, H.D.; Pattison, A.D.; Zhang, X.; Lomakin, I.; Shepard-Barry, A.; Pacak, K.; Moon, S.J.; et al. A Xenograft and Cell Line Model of SDH-Deficient Pheochromocytoma Derived from Sdhb+/− Rats. Endocr.-Relat. Cancer 2020, 27, 337–354. [Google Scholar] [CrossRef]
- Tsumura, R.; Koga, Y.; Hamada, A.; Kuwata, T.; Sasaki, H.; Doi, T.; Aikawa, K.; Ohashi, A.; Katano, I.; Ikarashi, Y.; et al. Report of the Use of Patient-Derived Xenograft Models in the Development of Anticancer Drugs in Japan. Cancer Sci. 2020, 111, 3386–3394. [Google Scholar] [CrossRef]
- Pinto, E.M.; Morton, C.; Rodriguez-Galindo, C.; McGregor, L.; Davidoff, A.M.; Mercer, K.; Debelenko, L.V.; Billups, C.; Ribeiro, R.C.; Zambetti, G.P. Establishment and Characterization of the First Pediatric Adrenocortical Carcinoma Xenograft Model Identifies Topotecan as a Potential Chemotherapeutic Agent. Clin. Cancer Res. 2013, 19, 1740–1747. [Google Scholar] [CrossRef] [Green Version]
- Aizawa, K.; Tanaka, N.; Yabusaki, H.; Suzuki, S.; Muto, I.; Nishimaki, T.; Suzuki, T.; Hatakeyama, K.; Tanaka, O. Chemotherapy of Human Small-Cell Gastrointestinal Carcinoma Xenografts in Nude Mice. Surg. Oncol. 1995, 4, 139–145. [Google Scholar] [CrossRef]
- Tran, C.G.; Borbon, L.C.; Mudd, J.L.; Abusada, E.; AghaAmiri, S.; Ghosh, S.C.; Vargas, S.H.; Li, G.; Beyer, G.V.; McDonough, M.; et al. Establishment of Novel Neuroendocrine Carcinoma Patient-Derived Xenograft Models for Receptor Peptide-Targeted Therapy. Cancers 2022, 14, 1910. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, L.; Serra, S.; Law, C.; Wei, A.; Stockley, T.L.; Ezzat, S.; Asa, S.L. Establishment and Characterization of a Human Neuroendocrine Tumor Xenograft. Endocr. Pathol. 2016, 27, 97–103. [Google Scholar] [CrossRef]
- Gaudenzi, G.; Albertelli, M.; Dicitore, A.; Würth, R.; Gatto, F.; Barbieri, F.; Cotelli, F.; Florio, T.; Ferone, D.; Persani, L.; et al. Patient-Derived Xenograft in Zebrafish Embryos: A New Platform for Translational Research in Neuroendocrine Tumors. Endocrine 2017, 57, 214–219. [Google Scholar] [CrossRef]
- Anderson, W.C.; Boyd, M.B.; Aguilar, J.; Pickell, B.; Laysang, A.; Pysz, M.A.; Bheddah, S.; Ramoth, J.; Slingerland, B.C.; Dylla, S.J.; et al. Initiation and Characterization of Small Cell Lung Cancer Patient-Derived Xenografts from Ultrasound-Guided Transbronchial Needle Aspirates. PLoS ONE 2015, 10, e0125255. [Google Scholar] [CrossRef]
- Giffin, M.J.; Cooke, K.; Lobenhofer, E.K.; Estrada, J.; Zhan, J.; Deegen, P.; Thomas, M.; Murawsky, C.M.; Werner, J.; Liu, S.; et al. AMG 757, a Half-Life Extended, DLL3-Targeted Bispecific T-Cell Engager, Shows High Potency and Sensitivity in Preclinical Models of Small-Cell Lung Cancer. Clin. Cancer Res. 2021, 27, 1526–1537. [Google Scholar] [CrossRef] [PubMed]
- Chamberlain, C.E.; German, M.S.; Yang, K.; Wang, J.; VanBrocklin, H.; Regan, M.; Shokat, K.M.; Ducker, G.S.; Kim, G.E.; Hann, B.; et al. A Patient-Derived Xenograft Model of Pancreatic Neuroendocrine Tumors Identifies Sapanisertib as a Possible New Treatment for Everolimus-Resistant Tumors. Mol. Cancer Ther. 2018, 17, 2702–2709. [Google Scholar] [CrossRef] [Green Version]
- Powers, J.F.; Pacak, K.; Tischler, A.S. Pathology of Human Pheochromocytoma and Paraganglioma Xenografts in NSG Mice. Endocr. Pathol. 2017, 28, 2–6. [Google Scholar] [CrossRef] [Green Version]
- van Haaften-Day, C.; Raghavan, D.; Russell, P.; Wills, E.J.; Gregory, P.; Tilley, W.; Horsfall, D.J. Xenografted Small Cell Undifferentiated Cancer of Prostate: Possible Common Origin with Prostatic Adenocarcinoma. Prostate 1987, 11, 271–279. [Google Scholar] [CrossRef]
- Jelbart, M.E.; Russell, P.J.; Russell, P.; Wass, J.; Fullerton, M.; Wills, E.J.; Raghavan, D. Site-Specific Growth of the Prostate Xenograft Line UCRU-PR-2. Prostate 1989, 14, 163–175. [Google Scholar] [CrossRef]
- Jelbart, M.E.; Russell, P.J.; Fullerton, M.; Russell, P.; Funder, J.; Raghavan, D. Ectopic Hormone Production by a Prostatic Small Cell Carcinoma Xenograft Line. Mol. Cell. Endocrinol. 1988, 55, 167–172. [Google Scholar] [CrossRef]
- Pinthus, J.H.; Waks, T.; Schindler, D.G.; Harmelin, A.; Said, J.W.; Belldegrun, A.; Ramon, J.; Eshhar, Z. WISH-PC2: A Unique Xenograft Model of Human Prostatic Small Cell Carcinoma. Cancer Res. 2000, 60, 6563–6567. [Google Scholar]
- Agemy, L.; Harmelin, A.; Waks, T.; Leibovitch, I.; Rabin, T.; Pfeffer, M.R.; Eshhar, Z. Irradiation Enhances the Metastatic Potential of Prostatic Small Cell Carcinoma Xenografts. Prostate 2008, 68, 530–539. [Google Scholar] [CrossRef]
- Aparicio, A.; Tzelepi, V.; Araujo, J.C.; Guo, C.C.; Liang, S.; Troncoso, P.; Logothetis, C.J.; Navone, N.M.; Maity, S.N. Neuroendocrine Prostate Cancer Xenografts with Large-Cell and Small-Cell Features Derived from a Single Patient’s Tumor: Morphological, Immunohistochemical, and Gene Expression Profiles. Prostate 2011, 71, 846–856. [Google Scholar] [CrossRef]
- Palanisamy, N.; Yang, J.; Shepherd, P.D.A.; Li-Ning-Tapia, E.M.; Labanca, E.; Manyam, G.C.; Ravoori, M.K.; Kundra, V.; Araujo, J.C.; Efstathiou, E.; et al. The MD Anderson Prostate Cancer Patient-Derived Xenograft Series (MDA PCa PDX) Captures the Molecular Landscape of Prostate Cancer and Facilitates Marker-Driven Therapy Development. Clin. Cancer Res. 2020, 26, 4933–4946. [Google Scholar] [CrossRef]
- Lin, D.; Wyatt, A.W.; Xue, H.; Wang, Y.; Dong, X.; Haegert, A.; Wu, R.; Brahmbhatt, S.; Mo, F.; Jong, L.; et al. High Fidelity Patient-Derived Xenografts for Accelerating Prostate Cancer Discovery and Drug Development. Cancer Res. 2014, 74, 1272–1283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, H.M.; Vessella, R.L.; Morrissey, C.; Brown, L.G.; Coleman, I.M.; Higano, C.S.; Mostaghel, E.A.; Zhang, X.; True, L.D.; Lam, H.-M.; et al. LuCaP Prostate Cancer Patient-Derived Xenografts Reflect the Molecular Heterogeneity of Advanced Disease an--d Serve as Models for Evaluating Cancer Therapeutics. Prostate 2017, 77, 654–671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Risbridger, G.P.; Clark, A.K.; Porter, L.H.; Toivanen, R.; Bakshi, A.; Lister, N.L.; Pook, D.; Pezaro, C.J.; Sandhu, S.; Keerthikumar, S.; et al. The MURAL Collection of Prostate Cancer Patient-Derived Xenografts Enables Discovery through Preclinical Models of Uro-Oncology. Nat. Commun. 2021, 12, 5049. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, M.G.; Obinata, D.; Sandhu, S.; Selth, L.A.; Wong, S.Q.; Porter, L.H.; Lister, N.; Pook, D.; Pezaro, C.J.; Goode, D.L.; et al. Patient-Derived Models of Abiraterone- and Enzalutamide-Resistant Prostate Cancer Reveal Sensitivity to Ribosome-Directed Therapy. Eur. Urol. 2018, 74, 562–572. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Yang, J.; Cai, J.; Song, X.; Deng, J.; Huang, X.; Chen, D.; Yang, M.; Wery, J.-P.; Li, S.; et al. A Subset of Gastric Cancers with EGFR Amplification and Overexpression Respond to Cetuximab Therapy. Sci. Rep. 2013, 3, 2992. [Google Scholar] [CrossRef] [Green Version]
- Jiang, J.; Wang, D.D.; Yang, M.; Chen, D.; Pang, L.; Guo, S.; Cai, J.; Wery, J.-P.; Li, L.; Li, H.Q.; et al. Comprehensive Characterization of Chemotherapeutic Efficacy on Metastases in the Established Gastric Neuroendocrine Cancer Patient Derived Xenograft Model. Oncotarget 2015, 6, 15639–15651. [Google Scholar] [CrossRef] [Green Version]
- Saunders, L.R.; Bankovich, A.J.; Anderson, W.C.; Aujay, M.A.; Bheddah, S.; Black, K.; Desai, R.; Escarpe, P.A.; Hampl, J.; Laysang, A.; et al. A DLL3-Targeted Antibody-Drug Conjugate Eradicates High-Grade Pulmonary Neuroendocrine Tumor-Initiating Cells in Vivo. Sci. Transl. Med. 2015, 7, 302ra136. [Google Scholar] [CrossRef] [Green Version]
- Crona, J.; Skogseid, B. GEP- NETS UPDATE: Genetics of Neuroendocrine Tumors. European Journal of Endocrinology 2016, 174, R275–R290. [Google Scholar] [CrossRef] [Green Version]
- Kersten, K.; de Visser, K.E.; van Miltenburg, M.H.; Jonkers, J. Genetically Engineered Mouse Models in Oncology Research and Cancer Medicine. EMBO Mol. Med. 2017, 9, 137–153. [Google Scholar] [CrossRef]
- Lines, K.E.; Vas Nunes, R.P.; Frost, M.; Yates, C.J.; Stevenson, M.; Thakker, R.V. A MEN1 Pancreatic Neuroendocrine Tumour Mouse Model under Temporal Control. Endocr. Connect. 2017, 6, 232–242. [Google Scholar] [CrossRef] [Green Version]
- Pelosi, G.; Sonzogni, A.; Harari, S.; Albini, A.; Bresaola, E.; Marchiò, C.; Massa, F.; Righi, L.; Gatti, G.; Papanikolaou, N.; et al. Classification of Pulmonary Neuroendocrine Tumors: New Insights. Transl. Lung Cancer Res. 2017, 6, 513–529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gahete, M.D.; Jiménez-Vacas, J.M.; Alors-Pérez, E.; Herrero-Aguayo, V.; Fuentes-Fayos, A.C.; Pedraza-Arévalo, S.; Castaño, J.P.; Luque, R.M. Mouse Models of Endocrine Tumors. J. Endocrinol. 2019, 240, R73–R96. [Google Scholar] [CrossRef] [Green Version]
- Thakker, R.V. Multiple Endocrine Neoplasia Type 1 (MEN1) and Type 4 (MEN4). Mol. Cell. Endocrinol. 2014, 386, 2–15. [Google Scholar] [CrossRef] [PubMed]
- Jimenez, C.; Gagel, R.F. Genetic Testing in Endocrinology: Lessons Learned from Experience with Multiple Endocrine Neoplasia Type 2 (MEN2). Growth Horm. IGF Res. 2004, 14, 150–157. [Google Scholar] [CrossRef] [PubMed]
- Kalkan, E.; Waguespack, S.G. Endocrine Tumors Associated with Neurofibromatosis Type 1, Peutz-Jeghers Syndrome and Other Familial Neoplasia Syndromes. Endocr. Tumor Syndr. Genet. 2013, 41, 166–181. [Google Scholar] [CrossRef]
- Heanue, T.A.; Boesmans, W.; Bell, D.M.; Kawakami, K.; Berghe, P.V.; Pachnis, V. A Novel Zebrafish Ret Heterozygous Model of Hirschsprung Disease Identifies a Functional Role for Mapk10 as a Modifier of Enteric Nervous System Phenotype Severity. PLoS Genet. 2016, 12, e1006439. [Google Scholar] [CrossRef] [Green Version]
- Elbialy, A.; Asakawa, S.; Watabe, S.; Kinoshita, S. A Zebrafish Acromegaly Model Elevates DNA Damage and Impairs DNA Repair Pathways. Biology 2018, 7, 47. [Google Scholar] [CrossRef] [Green Version]
- Zhu, S.; Lee, J.-S.; Guo, F.; Shin, J.; Perez-Atayde, A.R.; Kutok, J.L.; Rodig, S.J.; Neuberg, D.S.; Helman, D.; Feng, H.; et al. Activated ALK Collaborates with MYCN in Neuroblastoma Pathogenesis. Cancer Cell 2012, 21, 362–373. [Google Scholar] [CrossRef] [Green Version]
- Burzynski, G.; Shepherd, I.T.; Enomoto, H. Genetic Model System Studies of the Development of the Enteric Nervous System, Gut Motility and Hirschsprung’s Disease. Neurogastroenterol. Motil. 2009, 21, 113–127. [Google Scholar] [CrossRef]
- Yang, H.W.; Kutok, J.L.; Lee, N.H.; Piao, H.Y.; Fletcher, C.D.M.; Kanki, J.P.; Look, A.T. Targeted Expression of Human MYCN Selectively Causes Pancreatic Neuroendocrine Tumors in Transgenic Zebrafish. Cancer Res. 2004, 64, 7256–7262. [Google Scholar] [CrossRef] [Green Version]
- Liu, N.-A.; Jiang, H.; Ben-Shlomo, A.; Wawrowsky, K.; Fan, X.-M.; Lin, S.; Melmed, S. Targeting Zebrafish and Murine Pituitary Corticotroph Tumors with a Cyclin-Dependent Kinase (CDK) Inhibitor. Proc. Natl. Acad. Sci. USA 2011, 108, 8414–8419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ríos, Y.; Melmed, S.; Lin, S.; Liu, N.-A. Zebrafish Usp39 Mutation Leads to Rb1 MRNA Splicing Defect and Pituitary Lineage Expansion. PLoS Genet. 2011, 7, e1001271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Rooijen, E.; Voest, E.E.; Logister, I.; Bussmann, J.; Korving, J.; van Eeden, F.J.; Giles, R.H.; Schulte-Merker, S. Von Hippel-Lindau Tumor Suppressor Mutants Faithfully Model Pathological Hypoxia-Driven Angiogenesis and Vascular Retinopathies in Zebrafish. Dis. Models Mech. 2010, 3, 343–353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vitale, G.; Gaudenzi, G.; Dicitore, A.; Cotelli, F.; Ferone, D.; Persani, L. Zebrafish as an Innovative Model for Neuroendocrine Tumors. Endocr.-Relat. Cancer 2014, 21, R67–R83. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-H.; Speirs, C.K.; Solnica-Krezel, L.; Ess, K.C. Zebrafish Model of Tuberous Sclerosis Complex Reveals Cell-Autonomous and Non-Cell-Autonomous Functions of Mutant Tuberin. Dis. Models Mech. 2011, 4, 255–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, J.; Padmanabhan, A.; de Groh, E.D.; Lee, J.-S.; Haidar, S.; Dahlberg, S.; Guo, F.; He, S.; Wolman, M.A.; Granato, M.; et al. Zebrafish Neurofibromatosis Type 1 Genes Have Redundant Functions in Tumorigenesis and Embryonic Development. Dis. Models Mech. 2012, 5, 881–894. [Google Scholar] [CrossRef] [Green Version]
- Capdevila, J.; Casanovas, O.; Salazar, R.; Castellano, D.; Segura, A.; Fuster, P.; Aller, J.; García-Carbonero, R.; Jimenez-Fonseca, P.; Grande, E.; et al. Translational Research in Neuroendocrine Tumors: Pitfalls and Opportunities. Oncogene 2017, 36, 1899–1907. [Google Scholar] [CrossRef]
- Zumsteg, A.; Strittmatter, K.; Klewe-Nebenius, D.; Antoniadis, H.; Christofori, G. A Bioluminescent Mouse Model of Pancreatic {beta}-Cell Carcinogenesis. Carcinogenesis 2010, 31, 1465–1474. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, S.; Contractor, T.; Vosburgh, E.; Du, Y.-C.N.; Tang, L.H.; Clausen, R.; Harris, C.R. Alleles of Insm1 Determine Whether RIP1-Tag2 Mice Produce Insulinomas or Nonfunctioning Pancreatic Neuroendocrine Tumors. Oncogenesis 2019, 8, 16. [Google Scholar] [CrossRef]
- Chun, M.G.H.; Mao, J.-H.; Chiu, C.W.; Balmain, A.; Hanahan, D. Polymorphic Genetic Control of Tumor Invasion in a Mouse Model of Pancreatic Neuroendocrine Carcinogenesis. Proc. Natl. Acad. Sci. USA 2010, 107, 17268–17273. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.C.; Bonner-Weir, S.; Oates, P.S.; Chulak, M.; Simon, B.; Merlino, G.T.; Schmidt, E.V.; Brand, S.J. Pancreatic Gastrin Stimulates Islet Differentiation of Transforming Growth Factor Alpha-Induced Ductular Precursor Cells. J. Clin. Investig. 1993, 92, 1349–1356. [Google Scholar] [CrossRef] [Green Version]
- Friis-Hansen, L.; Sundler, F.; Li, Y.; Gillespie, P.J.; Saunders, T.L.; Greenson, J.K.; Owyang, C.; Rehfeld, J.F.; Samuelson, L.C. Impaired Gastric Acid Secretion in Gastrin-Deficient Mice. Am. J. Physiol. 1998, 274, G561–G568. [Google Scholar] [CrossRef] [PubMed]
- Grant, S.G.; Seidman, I.; Hanahan, D.; Bautch, V.L. Early Invasiveness Characterizes Metastatic Carcinoid Tumors in Transgenic Mice. Cancer Res. 1991, 51, 4917–4923. [Google Scholar] [PubMed]
- Gum, J.R.; Hicks, J.W.; Crawley, S.C.; Yang, S.C.; Borowsky, A.D.; Dahl, C.M.; Kakar, S.; Kim, D.H.; Cardiff, R.D.; Kim, Y.S. Mice Expressing SV40 T Antigen Directed by the Intestinal Trefoil Factor Promoter Develop Tumors Resembling Human Small Cell Carcinoma of the Colon. Mol. Cancer Res. 2004, 2, 504–513. [Google Scholar] [CrossRef] [PubMed]
- Gazdar, A.F.; Bunn, P.A.; Minna, J.D. Small-Cell Lung Cancer: What We Know, What We Need to Know and the Path Forward. Nat. Rev. Cancer 2017, 17, 725–737. [Google Scholar] [CrossRef]
- Cui, M.; Augert, A.; Rongione, M.; Conkrite, K.; Parazzoli, S.; Nikitin, A.Y.; Ingolia, N.; MacPherson, D. PTEN Is a Potent Suppressor of Small Cell Lung Cancer. Mol. Cancer Res. 2014, 12, 654–659. [Google Scholar] [CrossRef] [Green Version]
- McFadden, D.G.; Papagiannakopoulos, T.; Taylor-Weiner, A.; Stewart, C.; Carter, S.L.; Cibulskis, K.; Bhutkar, A.; McKenna, A.; Dooley, A.; Vernon, A.; et al. Genetic and Clonal Dissection of Murine Small Cell Lung Carcinoma Progression by Genome Sequencing. Cell 2014, 156, 1298–1311. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Cui, J.; Yang, C.; Rosenblum, J.S.; Zhang, Q.; Song, Q.; Pang, Y.; Fang, F.; Sun, M.; Dmitriev, P.; et al. A Transgenic Mouse Model of Pacak—Zhuang Syndrome with An Epas1 Gain-of-Function Mutation. Cancers 2019, 11, 667. [Google Scholar] [CrossRef] [Green Version]
- Jacks, T.; Shih, T.S.; Schmitt, E.M.; Bronson, R.T.; Bernards, A.; Weinberg, R.A. Tumour Predisposition in Mice Heterozygous for a Targeted Mutation in Nf1. Nat. Genet. 1994, 7, 353–361. [Google Scholar] [CrossRef]
- Merlo, A.; Bernardo-Castiñeira, C.; Sáenz-de-Santa-María, I.; Pitiot, A.S.; Balbín, M.; Astudillo, A.; Valdés, N.; Scola, B.; Toro, R.D.; Méndez-Ferrer, S.; et al. Role of VHL, HIF1A and SDH on the Expression of MiR-210: Implications for Tumoral Pseudo-Hypoxic Fate. Oncotarget 2016, 8, 6700–6717. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, N.; Storey, C.M.; Noll, S.E.; Margulis, K.; Soe, M.H.; Xu, H.; Yeh, B.; Fishbein, L.; Kebebew, E.; Howitt, B.E.; et al. SDHB Knockout and Succinate Accumulation Are Insufficient for Tumorigenesis but Dual SDHB/NF1 Loss Yields SDHx-like Pheochromocytomas. Cell Rep. 2022, 38, 110453. [Google Scholar] [CrossRef] [PubMed]
- You, M.J.; Castrillon, D.H.; Bastian, B.C.; O’Hagan, R.C.; Bosenberg, M.W.; Parsons, R.; Chin, L.; DePinho, R.A. Genetic Analysis of Pten and Ink4a/Arf Interactions in the Suppression of Tumorigenesis in Mice. Proc. Natl. Acad. Sci. USA 2002, 99, 1455–1460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith-Hicks, C.L.; Sizer, K.C.; Powers, J.F.; Tischler, A.S.; Costantini, F. C-Cell Hyperplasia, Pheochromocytoma and Sympathoadrenal Malformation in a Mouse Model of Multiple Endocrine Neoplasia Type 2B. EMBO J. 2000, 19, 612–622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Linnoila, R.I.; Sahu, A.; Miki, M.; Ball, D.W.; DeMayo, F.J. MORPHOMETRIC ANALYSIS OF CC10-HASH1 TRANSGENIC MOUSE LUNG: A Model for Bronchiolization of Alveoli and Neuroendocrine Carcinoma. Exp. Lung Res. 2000, 26, 595–615. [Google Scholar] [CrossRef]
- Meuwissen, R.; Linn, S.C.; Linnoila, R.I.; Zevenhoven, J.; Mooi, W.J.; Berns, A. Induction of Small Cell Lung Cancer by Somatic Inactivation of Both Trp53 and Rb1 in a Conditional Mouse Model. Cancer Cell 2003, 4, 181–189. [Google Scholar] [CrossRef] [Green Version]
- Schaffer, B.E.; Park, K.-S.; Yiu, G.; Conklin, J.F.; Lin, C.; Burkhart, D.L.; Karnezis, A.N.; Sweet-Cordero, E.A.; Sage, J. Loss of P130 Accelerates Tumor Development in a Mouse Model for Human Small-Cell Lung Carcinoma. Cancer Res. 2010, 70, 3877–3883. [Google Scholar] [CrossRef] [Green Version]
- Hanahan, D. Heritable Formation of Pancreatic β-Cell Tumours in Transgenic Mice Expressing Recombinant Insulin/Simian Virus 40 Oncogenes. Nature 1985, 315, 115–122. [Google Scholar] [CrossRef]
- Rindi, G.; Grant, S.G.; Yiangou, Y.; Ghatei, M.A.; Bloom, S.R.; Bautch, V.L.; Solcia, E.; Polak, J.M. Development of Neuroendocrine Tumors in the Gastrointestinal Tract of Transgenic Mice. Heterogeneity of Hormone Expression. Am. J. Pathol. 1990, 136, 1349–1363. [Google Scholar]
- Murphy, D.; Bishop, A.; Rindi, G.; Murphy, M.N.; Stamp, G.W.; Hanson, J.; Polak, J.M.; Hogan, B. Mice Transgenic for a Vasopressin-SV40 Hybrid Oncogene Develop Tumors of the Endocrine Pancreas and the Anterior Pituitary. A Possible Model for Human Multiple Endocrine Neoplasia Type 1. Am. J. Pathol. 1987, 129, 552–566. [Google Scholar]
- Dyer, K.R.; Messing, A. Peripheral Neuropathy Associated with Functional Islet Cell Adenomas in SV40 Transgenic Mice. J. Neuropathol. Exp. Neurol. 1989, 48, 399–412. [Google Scholar] [CrossRef]
- Bell, R.H.; Memoli, V.A.; Longnecker, D.S. Hyperplasia and Tumors of the Islets of Langerhans in Mice Bearing an Elastase I-SV40 T-Antigen Fusion Gene. Carcinogenesis 1990, 11, 1393–1398. [Google Scholar] [CrossRef] [PubMed]
- Cartier, N.; Miquerol, L.; Tulliez, M.; Lepetit, N.; Levrat, F.; Grimber, G.; Briand, P.; Kahn, A. Diet-Dependent Carcinogenesis of Pancreatic Islets and Liver in Transgenic Mice Expressing Oncogenes under the Control of the L-Type Pyruvate Kinase Gene Promoter. Oncogene 1992, 7, 1413–1422. [Google Scholar] [PubMed]
- Montag, A.G.; Oka, T.; Baek, K.H.; Choi, C.S.; Jay, G.; Agarwal, K. Tumors in Hepatobiliary Tract and Pancreatic Islet Tissues of Transgenic Mice Harboring Gastrin Simian Virus 40 Large Tumor Antigen Fusion Gene. Proc. Natl. Acad. Sci. USA 1993, 90, 6696–6700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Onrust, S.V.; Hartl, P.M.; Rosen, S.D.; Hanahan, D. Modulation of L-Selectin Ligand Expression during an Immune Response Accompanying Tumorigenesis in Transgenic Mice. J. Clin. Investig. 1996, 97, 54–64. [Google Scholar] [CrossRef] [Green Version]
- Tuttle, R.L.; Gill, N.S.; Pugh, W.; Lee, J.-P.; Koeberlein, B.; Furth, E.E.; Polonsky, K.S.; Naji, A.; Birnbaum, M.J. Regulation of Pancreatic β-Cell Growth and Survival by the Serine/Threonine Protein Kinase Akt1/PKBα. Nat. Med. 2001, 7, 1133–1137. [Google Scholar] [CrossRef]
- Alliouachene, S.; Tuttle, R.L.; Boumard, S.; Lapointe, T.; Berissi, S.; Germain, S.; Jaubert, F.; Tosh, D.; Birnbaum, M.J.; Pende, M. Constitutively Active Akt1 Expression in Mouse Pancreas Requires S6 Kinase 1 for Insulinoma Formation. J. Clin. Investig. 2008, 118, 3629–3638. [Google Scholar] [CrossRef]
- Sotillo, R.; Dubus, P.; Martín, J.; de la Cueva, E.; Ortega, S.; Malumbres, M.; Barbacid, M. Wide Spectrum of Tumors in Knock-in Mice Carrying a Cdk4 Protein Insensitive to INK4 Inhibitors. EMBO J. 2001, 20, 6637–6647. [Google Scholar] [CrossRef] [Green Version]
- Pelengaris, S.; Khan, M.; Evan, G.I. Suppression of Myc-Induced Apoptosis in Beta Cells Exposes Multiple Oncogenic Properties of Myc and Triggers Carcinogenic Progression. Cell 2002, 109, 321–334. [Google Scholar] [CrossRef] [Green Version]
- Bertolino, P.; Tong, W.-M.; Galendo, D.; Wang, Z.-Q.; Zhang, C.-X. Heterozygous Men1 Mutant Mice Develop a Range of Endocrine Tumors Mimicking Multiple Endocrine Neoplasia Type 1. Mol. Endocrinol. 2003, 17, 1880–1892. [Google Scholar] [CrossRef] [Green Version]
- Bertolino, P.; Radovanovic, I.; Casse, H.; Aguzzi, A.; Wang, Z.-Q.; Zhang, C.-X. Genetic Ablation of the Tumor Suppressor Menin Causes Lethality at Mid-Gestation with Defects in Multiple Organs. Mech. Dev. 2003, 120, 549–560. [Google Scholar] [CrossRef]
- Gelling, R.W.; Du, X.Q.; Dichmann, D.S.; Romer, J.; Huang, H.; Cui, L.; Obici, S.; Tang, B.; Holst, J.J.; Fledelius, C.; et al. Lower Blood Glucose, Hyperglucagonemia, and Pancreatic Alpha Cell Hyperplasia in Glucagon Receptor Knockout Mice. Proc. Natl. Acad. Sci. USA 2003, 100, 1438–1443. [Google Scholar] [CrossRef] [PubMed]
- Lewis, B.C.; Klimstra, D.S.; Varmus, H.E. The C-Myc and PyMT Oncogenes Induce Different Tumor Types in a Somatic Mouse Model for Pancreatic Cancer. Genes Dev. 2003, 17, 3127–3138. [Google Scholar] [CrossRef] [Green Version]
- Neumann, C.A.; Krause, D.S.; Carman, C.V.; Das, S.; Dubey, D.P.; Abraham, J.L.; Bronson, R.T.; Fujiwara, Y.; Orkin, S.H.; Van Etten, R.A. Essential Role for the Peroxiredoxin Prdx1 in Erythrocyte Antioxidant Defence and Tumour Suppression. Nature 2003, 424, 561–565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biondi, C.A.; Gartside, M.G.; Waring, P.; Loffler, K.A.; Stark, M.S.; Magnuson, M.A.; Kay, G.F.; Hayward, N.K. Conditional Inactivation of the MEN1 Gene Leads to Pancreatic and Pituitary Tumorigenesis but Does Not Affect Normal Development of These Tissues. Mol. Cell. Biol. 2004, 24, 3125–3131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loffler, K.A.; Biondi, C.A.; Gartside, M.G.; Serewko-Auret, M.M.; Duncan, R.; Tonks, I.D.; Mould, A.W.; Waring, P.; Muller, H.K.; Kay, G.F.; et al. Lack of Augmentation of Tumor Spectrum or Severity in Dual Heterozygous Men1 and Rb1 Knockout Mice. Oncogene 2007, 26, 4009–4017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harding, B.; Lemos, M.C.; Reed, A.A.C.; Walls, G.V.; Jeyabalan, J.; Bowl, M.R.; Tateossian, H.; Sullivan, N.; Hough, T.; Fraser, W.D.; et al. Multiple Endocrine Neoplasia Type 1 Knockout Mice Develop Parathyroid, Pancreatic, Pituitary and Adrenal Tumours with Hypercalcaemia, Hypophosphataemia and Hypercorticosteronaemia. Endocr. Relat. Cancer 2009, 16, 1313–1327. [Google Scholar] [CrossRef]
- Lines, K.E.; Javid, M.; Reed, A.A.C.; Walls, G.V.; Stevenson, M.; Simon, M.; Kooblall, K.G.; Piret, S.E.; Christie, P.T.; Newey, P.J.; et al. Genetic Background Influences Tumour Development in Heterozygous Men1 Knockout Mice. Endocr. Connect. 2020, 9, 426–437. [Google Scholar] [CrossRef]
- Shen, H.-C.J.; He, M.; Powell, A.; Adem, A.; Lorang, D.; Heller, C.; Grover, A.C.; Ylaya, K.; Hewitt, S.M.; Marx, S.J.; et al. Recapitulation of Pancreatic Neuroendocrine Tumors in Human Multiple Endocrine Neoplasia Type I Syndrome via Pdx1-Directed Inactivation of Men1. Cancer Res. 2009, 69, 1858–1866. [Google Scholar] [CrossRef] [Green Version]
- Shen, H.-C.J.; Adem, A.; Ylaya, K.; Wilson, A.; He, M.; Lorang, D.; Hewitt, S.M.; Pechhold, K.; Harlan, D.M.; Lubensky, I.A.; et al. Deciphering von Hippel-Lindau (VHL/Vhl)-Associated Pancreatic Manifestations by Inactivating Vhl in Specific Pancreatic Cell Populations. PLoS ONE 2009, 4, e4897. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Herrera, P.L.; Carreira, C.; Bonnavion, R.; Seigne, C.; Calender, A.; Bertolino, P.; Zhang, C.X. Alpha Cell-Specific Men1 Ablation Triggers the Transdifferentiation of Glucagon-Expressing Cells and Insulinoma Development. Gastroenterology 2010, 138, 1954–1965. [Google Scholar] [CrossRef]
- Shen, H.-C.J.; Ylaya, K.; Pechhold, K.; Wilson, A.; Adem, A.; Hewitt, S.M.; Libutti, S.K. Multiple Endocrine Neoplasia Type 1 Deletion in Pancreatic Alpha-Cells Leads to Development of Insulinomas in Mice. Endocrinology 2010, 151, 4024–4030. [Google Scholar] [CrossRef] [PubMed]
- Yu, R.; Dhall, D.; Nissen, N.N.; Zhou, C.; Ren, S.-G. Pancreatic Neuroendocrine Tumors in Glucagon Receptor-Deficient Mice. PLoS ONE 2011, 6, e23397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pei, X.-H.; Bai, F.; Li, Z.; Smith, M.D.; Whitewolf, G.; Jin, R.; Xiong, Y. Cytoplasmic CUL9/PARC Ubiquitin Ligase Is a Tumor Suppressor and Promotes P53-Dependent Apoptosis. Cancer Res. 2011, 71, 2969–2977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quinn, T.J.; Yuan, Z.; Adem, A.; Geha, R.; Vrikshajanani, C.; Koba, W.; Fine, E.; Hughes, D.T.; Schmid, H.A.; Libutti, S.K. Pasireotide (SOM230) Is Effective for the Treatment of Pancreatic Neuroendocrine Tumors (PNETs) in a Multiple Endocrine Neoplasia Type 1 (MEN1) Conditional Knockout Mouse Model. Surgery 2012, 152, 1068–1077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, M.; Couto, S.S.; Forrest, W.F.; Lima, A.; Cheng, J.H.; Molina, R.; Long, J.E.; Hamilton, P.; McNutt, A.; Kasman, I.; et al. Anti-VEGF Antibody Therapy Does Not Promote Metastasis in Genetically Engineered Mouse Tumour Models. J. Pathol. 2012, 227, 417–430. [Google Scholar] [CrossRef]
- Jones, H.B.; Reens, J.; Brocklehurst, S.R.; Betts, C.J.; Bickerton, S.; Bigley, A.L.; Jenkins, R.P.; Whalley, N.M.; Morgan, D.; Smith, D.M. Islets of Langerhans from Prohormone Convertase-2 Knockout Mice Show α-Cell Hyperplasia and Tumorigenesis with Elevated α-Cell Neogenesis. Int. J. Exp. Pathol. 2014, 95, 29–48. [Google Scholar] [CrossRef]
- Glenn, S.T.; Jones, C.A.; Sexton, S.; LeVea, C.M.; Caraker, S.M.; Hajduczok, G.; Gross, K.W. Conditional Deletion of P53 and Rb in the Renin-Expressing Compartment of the Pancreas Leads to a Highly Penetrant Metastatic Pancreatic Neuroendocrine Carcinoma. Oncogene 2014, 33, 5706–5715. [Google Scholar] [CrossRef] [Green Version]
- Takano, Y.; Kasai, K.; Takagishi, Y.; Kikumori, T.; Imai, T.; Murata, Y.; Hayashi, Y. Pancreatic Neuroendocrine Tumors in Mice Deficient in Proglucagon-Derived Peptides. PLoS ONE 2015, 10, e0133812. [Google Scholar] [CrossRef]
- Parisi, T.; Bronson, R.T.; Lees, J.A. Inactivation of the Retinoblastoma Gene Yields a Mouse Model of Malignant Colorectal Cancer. Oncogene 2015, 34, 5890–5899. [Google Scholar] [CrossRef] [Green Version]
- Azzopardi, S.; Pang, S.; Klimstra, D.S.; Du, Y.-C.N. P53 and P16Ink4a/P19Arf Loss Promotes Different Pancreatic Tumor Types from PyMT-Expressing Progenitor Cells. Neoplasia 2016, 18, 610–617. [Google Scholar] [CrossRef] [Green Version]
- Wong, C.; Tang, L.H.; Davidson, C.; Vosburgh, E.; Chen, W.; Foran, D.J.; Notterman, D.A.; Levine, A.J.; Xu, E.Y. Two Well-Differentiated Pancreatic Neuroendocrine Tumor Mouse Models. Cell Death Differ. 2020, 27, 269–283. [Google Scholar] [CrossRef] [PubMed]
- Yamauchi, Y.; Kodama, Y.; Shiokawa, M.; Kakiuchi, N.; Marui, S.; Kuwada, T.; Sogabe, Y.; Tomono, T.; Mima, A.; Morita, T.; et al. Rb and P53 Execute Distinct Roles in the Development of Pancreatic Neuroendocrine Tumors. Cancer Res. 2020, 80, 3620–3630. [Google Scholar] [CrossRef] [PubMed]
- Carter, A.M.; Kumar, N.; Herring, B.; Tan, C.; Guenter, R.; Telange, R.; Howse, W.; Viol, F.; McCaw, T.R.; Bickerton, H.H.; et al. Cdk5 Drives Formation of Heterogeneous Pancreatic Neuroendocrine Tumors. Oncogenesis 2021, 10, 83. [Google Scholar] [CrossRef] [PubMed]
- Efrat, S.; Teitelman, G.; Anwar, M.; Ruggiero, D.; Hanahan, D. Glucagon Gene Regulatory Region Directs Oncoprotein Expression to Neurons and Pancreatic a Cells. Neuron 1988, 1, 605–613. [Google Scholar] [CrossRef]
- Lee, Y.C.; Asa, S.L.; Drucker, D.J. Glucagon Gene 5’-Flanking Sequences Direct Expression of Simian Virus 40 Large T Antigen to the Intestine, Producing Carcinoma of the Large Bowel in Transgenic Mice. J. Biol. Chem. 1992, 267, 10705–10708. [Google Scholar] [CrossRef]
- Asa, S.L.; Lee, Y.C.; Drucker, D.J. Development of Colonic and Pancreatic Endocrine Tumours in Mice Expressing a Glucagon-SV40 T Antigen Transgene. Virchows Arch. 1996, 427, 595–606. [Google Scholar] [CrossRef] [PubMed]
- Williams, B.O.; Remington, L.; Albert, D.M.; Mukai, S.; Bronson, R.T.; Jacks, T. Cooperative Tumorigenic Effects of Germline Mutations in Rb and P53. Nat. Genet. 1994, 7, 480–484. [Google Scholar] [CrossRef]
- Piret, S.E.; Thakker, R.V. Mouse Models for Inherited Endocrine and Metabolic Disorders. J. Endocrinol. 2011, 211, 211–230. [Google Scholar] [CrossRef]
- Contractor, T.; Clausen, R.; Harris, G.R.; Rosenfeld, J.A.; Carpizo, D.R.; Tang, L.; Harris, C.R. IGF2 Drives Formation of Ileal Neuroendocrine Tumors in Patients and Mice. Endocr. Relat. Cancer 2020, 27, 175–186. [Google Scholar] [CrossRef]
- Lopez, M.J.; Upchurch, B.H.; Rindi, G.; Leiter, A.B. Studies in Transgenic Mice Reveal Potential Relationships between Secretin-Producing Cells and Other Endocrine Cell Types. J. Biol. Chem. 1995, 270, 885–891. [Google Scholar] [CrossRef] [Green Version]
- Asa, S.L.; Kovacs, K.; Stefaneanu, L.; Horvath, E.; Billestrup, N.; Gonzalez-Manchon, C.; Vale, W. Pituitary Adenomas in Mice Transgenic for Growth Hormone-Releasing Hormone. Endocrinology 1992, 131, 2083–2089. [Google Scholar] [CrossRef] [PubMed]
- Stefaneanu, L.; Rindi, G.; Horvath, E.; Murphy, D.; Polak, J.M.; Kovacs, K. Morphology of Adenohypophysial Tumors in Mice Transgenic for Vasopressin-SV40 Hybrid Oncogene. Endocrinology 1992, 130, 1789–1795. [Google Scholar] [CrossRef]
- Stenzel-Poore, M.P.; Cameron, V.A.; Vaughan, J.; Sawchenko, P.E.; Vale, W. Development of Cushing’s Syndrome in Corticotropin-Releasing Factor Transgenic Mice. Endocrinology 1992, 130, 3378–3386. [Google Scholar] [CrossRef] [PubMed]
- Helseth, A.; Siegal, G.P.; Haug, E.; Bautch, V.L. Transgenic Mice That Develop Pituitary Tumors. A Model for Cushing’s Disease. Am. J. Pathol. 1992, 140, 1071–1080. [Google Scholar] [PubMed]
- Low, M.J.; Liu, B.; Hammer, G.D.; Rubinstein, M.; Allen, R.G. Post-Translational Processing of Proopiomelanocortin (POMC) in Mouse Pituitary Melanotroph Tumors Induced by a POMC-Simian Virus 40 Large T Antigen Transgene. J. Biol. Chem. 1993, 268, 24967–24975. [Google Scholar] [CrossRef]
- Fero, M.L.; Rivkin, M.; Tasch, M.; Porter, P.; Carow, C.E.; Firpo, E.; Polyak, K.; Tsai, L.-H.; Broudy, V.; Perlmutter, R.M.; et al. A Syndrome of Multiorgan Hyperplasia with Features of Gigantism, Tumorigenesis, and Female Sterility in P27Kip1-Deficient Mice. Cell 1996, 85, 733–744. [Google Scholar] [CrossRef] [Green Version]
- Kiyokawa, H.; Kineman, R.D.; Manova-Todorova, K.O.; Soares, V.C.; Hoffman, E.S.; Ono, M.; Khanam, D.; Hayday, A.C.; Frohman, L.A.; Koff, A. Enhanced Growth of Mice Lacking the Cyclin-Dependent Kinase Inhibitor Function of P27Kip1. Cell 1996, 85, 721–732. [Google Scholar] [CrossRef] [Green Version]
- Nakayama, K.; Ishida, N.; Shirane, M.; Inomata, A.; Inoue, T.; Shishido, N.; Horii, I.; Loh, D.Y.; Nakayama, K. Mice Lacking P27Kip1 Display Increased Body Size, Multiple Organ Hyperplasia, Retinal Dysplasia, and Pituitary Tumors. Cell 1996, 85, 707–720. [Google Scholar] [CrossRef] [Green Version]
- Franklin, D.S.; Godfrey, V.L.; Lee, H.; Kovalev, G.I.; Schoonhoven, R.; Chen-Kiang, S.; Su, L.; Xiong, Y. CDK Inhibitors P18INK4c and P27Kip1 Mediate Two Separate Pathways to Collaboratively Suppress Pituitary Tumorigenesis. Genes Dev. 1998, 12, 2899–2911. [Google Scholar] [CrossRef] [Green Version]
- Kumar, T.R.; Graham, K.E.; Asa, S.L.; Low, M.J. Simian Virus 40 T Antigen-Induced Gonadotroph Adenomas: A Model of Human Null Cell Adenomas. Endocrinology 1998, 139, 3342–3351. [Google Scholar] [CrossRef]
- Vooijs, M.; van der Valk, M.; Riele, H.t.; Berns, A. Flp-Mediated Tissue-Specific Inactivation of the Retinoblastoma Tumor Suppressor Gene in the Mouse. Oncogene 1998, 17, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Vooijs, M.; Jonkers, J.; Lyons, S.; Berns, A. Noninvasive Imaging of Spontaneous Retinoblastoma Pathway-Dependent Tumors in Mice. Cancer Res. 2002, 62, 1862–1867. [Google Scholar] [PubMed]
- Crabtree, J.S.; Scacheri, P.C.; Ward, J.M.; Garrett-Beal, L.; Emmert-Buck, M.R.; Edgemon, K.A.; Lorang, D.; Libutti, S.K.; Chandrasekharappa, S.C.; Marx, S.J.; et al. A Mouse Model of Multiple Endocrine Neoplasia, Type 1, Develops Multiple Endocrine Tumors. Proc. Natl. Acad. Sci. USA 2001, 98, 1118–1123. [Google Scholar] [CrossRef] [Green Version]
- Biondi, C.; Gartside, M.; Tonks, I.; Paterson, C.; Hayward, N.K.; Kay, G.F. Targeting and Conditional Inactivation of the Murine Men1 Locus Using the Cre Recombinase: LoxP System. Genesis 2002, 32, 150–151. [Google Scholar] [CrossRef] [Green Version]
- Fedele, M.; Battista, S.; Kenyon, L.; Baldassarre, G.; Klein-Szanto, A.J.P.; Parlow, A.F.; Visone, R.; Pierantoni, G.M.; Outwater, E.; Santoro, M.; et al. Overexpression of the HMGA2 Gene in Transgenic Mice Leads to the Onset of Pituitary Adenomas. Oncogene 2002, 21, 3190–3198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lloyd, R.V.; Ruebel, K.H.; Zhang, S.; Jin, L. Pituitary Hyperplasia in Glycoprotein Hormone Alpha Subunit-, P18INK4C-, and P27kip-1-Null Mice: Analysis of Proteins Influencing P27kip-1 Ubiquitin Degradation. Am. J. Pathol. 2002, 160, 1171–1179. [Google Scholar] [CrossRef]
- Tsai, K.Y.; MacPherson, D.; Rubinson, D.A.; Nikitin, A.Y.; Bronson, R.; Mercer, K.L.; Crowley, D.; Jacks, T. ARF Mutation Accelerates Pituitary Tumor Development in Rb+/− Mice. Proc. Natl. Acad. Sci. USA 2002, 99, 16865–16870. [Google Scholar] [CrossRef] [Green Version]
- Crabtree, J.S.; Scacheri, P.C.; Ward, J.M.; McNally, S.R.; Swain, G.P.; Montagna, C.; Hager, J.H.; Hanahan, D.; Edlund, H.; Magnuson, M.A.; et al. Of Mice and MEN1: Insulinomas in a Conditional Mouse Knockout. Mol. Cell. Biol. 2003, 23, 6075–6085. [Google Scholar] [CrossRef] [Green Version]
- Zindy, F.; Nilsson, L.M.; Nguyen, L.; Meunier, C.; Smeyne, R.J.; Rehg, J.E.; Eberhart, C.; Sherr, C.J.; Roussel, M.F. Hemangiosarcomas, Medulloblastomas, and Other Tumors in Ink4c/P53-Null Mice. Cancer Res. 2003, 63, 5420–5427. [Google Scholar]
- Fedele, M.; Pentimalli, F.; Baldassarre, G.; Battista, S.; Klein-Szanto, A.J.; Kenyon, L.; Visone, R.; De Martino, I.; Ciarmiello, A.; Arra, C.; et al. Transgenic Mice Overexpressing the Wild-Type Form of the HMGA1 Gene Develop Mixed Growth Hormone/Prolactin Cell Pituitary Adenomas and Natural Killer Cell Lymphomas. Oncogene 2005, 24, 3427–3435. [Google Scholar] [CrossRef] [Green Version]
- Abbud, R.A.; Takumi, I.; Barker, E.M.; Ren, S.-G.; Chen, D.-Y.; Wawrowsky, K.; Melmed, S. Early Multipotential Pituitary Focal Hyperplasia in the α-Subunit of Glycoprotein Hormone-Driven Pituitary Tumor-Transforming Gene Transgenic Mice. Mol. Endocrinol. 2005, 19, 1383–1391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donangelo, I.; Gutman, S.; Horvath, E.; Kovacs, K.; Wawrowsky, K.; Mount, M.; Melmed, S. Pituitary Tumor Transforming Gene Overexpression Facilitates Pituitary Tumor Development. Endocrinology 2006, 147, 4781–4791. [Google Scholar] [CrossRef] [PubMed]
- Chesnokova, V.; Kovacs, K.; Castro, A.-V.; Zonis, S.; Melmed, S. Pituitary Hypoplasia in Pttg−/− Mice Is Protective for Rb+/− Pituitary Tumorigenesis. Mol. Endocrinol. 2005, 19, 2371–2379. [Google Scholar] [CrossRef] [Green Version]
- Sotillo, R.; Renner, O.; Dubus, P.; Ruiz-Cabello, J.; Martín-Caballero, J.; Barbacid, M.; Carnero, A.; Malumbres, M. Cooperation between Cdk4 and P27kip1 in Tumor Development: A Preclinical Model to Evaluate Cell Cycle Inhibitors with Therapeutic Activity. Cancer Res. 2005, 65, 3846–3852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guidi, C.J.; Mudhasani, R.; Hoover, K.; Koff, A.; Leav, I.; Imbalzano, A.N.; Jones, S.N. Functional Interaction of the Retinoblastoma and Ini1/Snf5 Tumor Suppressors in Cell Growth and Pituitary Tumorigenesis. Cancer Res. 2006, 66, 8076–8082. [Google Scholar] [CrossRef] [Green Version]
- Yin, Z.; Williams-Simons, L.; Parlow, A.F.; Asa, S.; Kirschner, L.S. Pituitary-Specific Knockout of the Carney Complex Gene Prkar1a Leads to Pituitary Tumorigenesis. Mol. Endocrinol. 2008, 22, 380–387. [Google Scholar] [CrossRef] [Green Version]
- Raitila, A.; Lehtonen, H.J.; Arola, J.; Heliövaara, E.; Ahlsten, M.; Georgitsi, M.; Jalanko, A.; Paetau, A.; Aaltonen, L.A.; Karhu, A. Mice with Inactivation of Aryl Hydrocarbon Receptor-Interacting Protein (Aip) Display Complete Penetrance of Pituitary Adenomas with Aberrant ARNT Expression. Am. J. Pathol. 2010, 177, 1969–1976. [Google Scholar] [CrossRef]
- Roussel-Gervais, A.; Bilodeau, S.; Vallette, S.; Berthelet, F.; Lacroix, A.; Figarella-Branger, D.; Brue, T.; Drouin, J. Cooperation between Cyclin E and P27Kip1 in Pituitary Tumorigenesis. Mol. Endocrinol. 2010, 24, 1835–1845. [Google Scholar] [CrossRef] [Green Version]
- Bai, F.; Chan, H.L.; Smith, M.D.; Kiyokawa, H.; Pei, X.-H. P19Ink4d Is a Tumor Suppressor and Controls Pituitary Anterior Lobe Cell Proliferation. Mol. Cell. Biol. 2014, 34, 2121–2134. [Google Scholar] [CrossRef] [Green Version]
- Bentley, L.; Esapa, C.T.; Nesbit, M.A.; Head, R.A.; Evans, H.; Lath, D.; Scudamore, C.L.; Hough, T.A.; Podrini, C.; Hannan, F.M.; et al. An N-Ethyl-N-Nitrosourea Induced Corticotropin-Releasing Hormone Promoter Mutation Provides a Mouse Model for Endogenous Glucocorticoid Excess. Endocrinology 2014, 155, 908–922. [Google Scholar] [CrossRef] [Green Version]
- Harvey, M.; Vogel, H.; Lee, E.Y.; Bradley, A.; Donehower, L.A. Mice Deficient in Both P53 and Rb Develop Tumors Primarily of Endocrine Origin. Cancer Res. 1995, 55, 1146–1151. [Google Scholar] [PubMed]
- Greenberg, N.M.; DeMayo, F.; Finegold, M.J.; Medina, D.; Tilley, W.D.; Aspinall, J.O.; Cunha, G.R.; Donjacour, A.A.; Matusik, R.J.; Rosen, J.M. Prostate Cancer in a Transgenic Mouse. Proc. Natl. Acad. Sci. USA 1995, 92, 3439–3443. [Google Scholar] [CrossRef]
- Gingrich, J.R.; Barrios, R.J.; Morton, R.A.; Boyce, B.F.; DeMayo, F.J.; Finegold, M.J.; Angelopoulou, R.; Rosen, J.M.; Greenberg, N.M. Metastatic Prostate Cancer in a Transgenic Mouse. Cancer Res. 1996, 56, 4096–4102. [Google Scholar] [PubMed]
- Kaplan-Lefko, P.J.; Chen, T.-M.; Ittmann, M.M.; Barrios, R.J.; Ayala, G.E.; Huss, W.J.; Maddison, L.A.; Foster, B.A.; Greenberg, N.M. Pathobiology of Autochthonous Prostate Cancer in a Pre-Clinical Transgenic Mouse Model. Prostate 2003, 55, 219–237. [Google Scholar] [CrossRef]
- Garabedian, E.M.; Humphrey, P.A.; Gordon, J.I. A Transgenic Mouse Model of Metastatic Prostate Cancer Originating from Neuroendocrine Cells. Proc. Natl. Acad. Sci. USA 1998, 95, 15382–15387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gabril, M.Y.; Onita, T.; Ji, P.G.; Sakai, H.; Chan, F.L.; Koropatnick, J.; Chin, J.L.; Moussa, M.; Xuan, J.W. Prostate Targeting: PSP94 Gene Promoter/Enhancer Region Directed Prostate Tissue-Specific Expression in a Transgenic Mouse Prostate Cancer Model. Gene Ther. 2002, 9, 1589–1599. [Google Scholar] [CrossRef]
- Gabril, M.Y.; Duan, W.; Wu, G.; Moussa, M.; Izawa, J.I.; Panchal, C.J.; Sakai, H.; Xuan, J.W. A Novel Knock-in Prostate Cancer Model Demonstrates Biology Similar to That of Human Prostate Cancer and Suitable for Preclinical Studies. Mol. Ther. 2005, 11, 348–362. [Google Scholar] [CrossRef]
- Klezovitch, O.; Chevillet, J.; Mirosevich, J.; Roberts, R.L.; Matusik, R.J.; Vasioukhin, V. Hepsin Promotes Prostate Cancer Progression and Metastasis. Cancer Cell 2004, 6, 185–195. [Google Scholar] [CrossRef] [Green Version]
- Duan, W.; Gabril, M.Y.; Moussa, M.; Chan, F.L.; Sakai, H.; Fong, G.; Xuan, J.W. Knockin of SV40 Tag Oncogene in a Mouse Adenocarcinoma of the Prostate Model Demonstrates Advantageous Features over the Transgenic Model. Oncogene 2005, 24, 1510–1524. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.; Flesken-Nikitin, A.; Corney, D.C.; Wang, W.; Goodrich, D.W.; Roy-Burman, P.; Nikitin, A.Y. Synergy of P53 and Rb Deficiency in a Conditional Mouse Model for Metastatic Prostate Cancer. Cancer Res. 2006, 66, 7889–7898. [Google Scholar] [CrossRef] [Green Version]
- Perez-Stable, C.; Altman, N.H.; Brown, J.; Harbison, M.; Cray, C.; Roos, B.A. Prostate, Adrenocortical, and Brown Adipose Tumors in Fetal Globin/T Antigen Transgenic Mice. Lab. Investig. 1996, 74, 363–373. [Google Scholar] [PubMed]
- Perez-Stable, C.; Altman, N.H.; Mehta, P.P.; Deftos, L.J.; Roos, B.A. Prostate Cancer Progression, Metastasis, and Gene Expression in Transgenic Mice. Cancer Res. 1997, 57, 900–906. [Google Scholar] [PubMed]
- Reiner, T.; de las Pozas, A.; Parrondo, R.; Perez-Stable, C. Progression of Prostate Cancer from a Subset of P63-Positive Basal Epithelial Cells in FG/Tag Transgenic Mice. Mol. Cancer Res. 2007, 5, 1171–1179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Libutti, S.K.; Crabtree, J.S.; Lorang, D.; Burns, A.L.; Mazzanti, C.; Hewitt, S.M.; O’Connor, S.; Ward, J.M.; Emmert-Buck, M.R.; Remaley, A.; et al. Parathyroid Gland-Specific Deletion of the Mouse Men1 Gene Results in Parathyroid Neoplasia and Hypercalcemic Hyperparathyroidism. Cancer Res. 2003, 63, 8022–8028. [Google Scholar] [PubMed]
- Czéh, M.; Loddenkemper, C.; Shalapour, S.; Schön, C.; Robine, S.; Goldscheid, E.; Stein, H.; Schüler, T.; Willimsky, G.; Blankenstein, T. The Immune Response to Sporadic Colorectal Cancer in a Novel Mouse Model. Oncogene 2010, 29, 6591–6602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Searle, P.F.; Thomas, D.P.; Faulkner, K.B.; Tinsley, J.M. Stomach Cancer in Transgenic Mice Expressing Human Papillomavirus Type 16 Early Region Genes from a Keratin Promoter. J. Gen. Virol. 1994, 75 Pt 5, 1125–1137. [Google Scholar] [CrossRef]
- Syder, A.J.; Karam, S.M.; Mills, J.C.; Ippolito, J.E.; Ansari, H.R.; Farook, V.; Gordon, J.I. A Transgenic Mouse Model of Metastatic Carcinoma Involving Transdifferentiation of a Gastric Epithelial Lineage Progenitor to a Neuroendocrine Phenotype. Proc. Natl. Acad. Sci. USA 2004, 101, 4471–4476. [Google Scholar] [CrossRef] [Green Version]
- Veniaminova, N.A.; Hayes, M.M.; Varney, J.M.; Merchant, J.L. Conditional Deletion of Menin Results in Antral G Cell Hyperplasia and Hypergastrinemia. Am. J. Physiol. Gastrointest. Liver Physiol. 2012, 303, G752–G764. [Google Scholar] [CrossRef] [Green Version]
- Ihler, F.; Vetter, E.V.; Pan, J.; Kammerer, R.; Debey-Pascher, S.; Schultze, J.L.; Zimmermann, W.; Enders, G. Expression of a Neuroendocrine Gene Signature in Gastric Tumor Cells from CEA 424-SV40 Large T Antigen-Transgenic Mice Depends on SV40 Large T Antigen. PLoS ONE 2012, 7, e29846. [Google Scholar] [CrossRef] [Green Version]
- Calvete, O.; Varro, A.; Pritchard, D.M.; Barroso, A.; Oteo, M.; Morcillo, M.Á.; Vargiu, P.; Dodd, S.; Garcia, M.; Reyes, J.; et al. A Knockin Mouse Model for Human ATP4aR703C Mutation Identified in Familial Gastric Neuroendocrine Tumors Recapitulates the Premalignant Condition of the Human Disease and Suggests New Therapeutic Strategies. Dis. Model. Mech. 2016, 9, 975–984. [Google Scholar] [CrossRef] [Green Version]
- Sundaresan, S.; Kang, A.J.; Hayes, M.M.; Choi, E.-Y.K.; Merchant, J.L. Deletion of Men1 and Somatostatin Induces Hypergastrinemia and Gastric Carcinoids. Gut 2017, 66, 1012–1021. [Google Scholar] [CrossRef] [PubMed]
- Michiels, F.-M.; Chappuis, S.; Caillou, B.; Pasini, A.; Talbot, M.; Monier, R.; Lenoir, G.M.; Feunteun, J.; Billaud, M. Development of Medullary Thyroid Carcinoma in Transgenic Mice Expressing the RET Protooncogene Altered by a Multiple Endocrine Neoplasia Type 2A Mutation. Proc. Natl. Acad. Sci. USA 1997, 94, 3330–3335. [Google Scholar] [CrossRef] [PubMed]
- Powell, D.J.; Russell, J.; Nibu, K.; Li, G.; Rhee, E.; Liao, M.; Goldstein, M.; Keane, W.M.; Santoro, M.; Fusco, A.; et al. The RET/PTC3 Oncogene: Metastatic Solid-Type Papillary Carcinomas in Murine Thyroids. Cancer Res. 1998, 58, 5523–5528. [Google Scholar] [PubMed]
- Cho, J.-Y.; Sagartz, J.E.; Capen, C.C.; Mazzaferri, E.L.; Jhiang, S.M. Early Cellular Abnormalities Induced by RET/PTC1 Oncogene in Thyroid-Targeted Transgenic Mice. Oncogene 1999, 18, 3659–3665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- La Perle, K.M.D.; Jhiang, S.M.; Capen, C.C. Loss of P53 Promotes Anaplasia and Local Invasion in Ret/PTC1-Induced Thyroid Carcinomas. Am. J. Pathol. 2000, 157, 671–677. [Google Scholar] [CrossRef] [Green Version]
- Acton, D.S.; Velthuyzen, D.; Lips, C.J.; Höppener, J.W. Multiple Endocrine Neoplasia Type 2B Mutation in Human RET Oncogene Induces Medullary Thyroid Carcinoma in Transgenic Mice. Oncogene 2000, 19, 3121–3125. [Google Scholar] [CrossRef] [Green Version]
- Russell, J.P.; Powell, D.J.; Cunnane, M.; Greco, A.; Portella, G.; Santoro, M.; Fusco, A.; Rothstein, J.L. The TRK-T1 Fusion Protein Induces Neoplastic Transformation of Thyroid Epithelium. Oncogene 2000, 19, 5729–5735. [Google Scholar] [CrossRef] [Green Version]
- Powell, D.J.; Russell, J.P.; Li, G.; Kuo, B.A.; Fidanza, V.; Huebner, K.; Rothstein, J.L. Altered Gene Expression in Immunogenic Poorly Differentiated Thyroid Carcinomas from RET/PTC3p53−/− Mice. Oncogene 2001, 20, 3235–3246. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, H.; Willingham, M.C.; Cheng, S. Mice with a Mutation in the Thyroid Hormone Receptor β Gene Spontaneously Develop Thyroid Carcinoma: A Mouse Model of Thyroid Carcinogenesis. Thyroid 2002, 12, 963–969. [Google Scholar] [CrossRef]
- Ribeiro-Neto, F.; Leon, A.; Urbani-Brocard, J.; Lou, L.; Nyska, A.; Altschuler, D.L. CAMP-Dependent Oncogenic Action of Rap1b in the Thyroid Gland. J. Biol. Chem. 2004, 279, 46868–46875. [Google Scholar] [CrossRef] [Green Version]
- Vitagliano, D.; Portella, G.; Troncone, G.; Francione, A.; Rossi, C.; Bruno, A.; Giorgini, A.; Coluzzi, S.; Nappi, T.C.; Rothstein, J.L.; et al. Thyroid Targeting of the N-Ras(Gln61Lys) Oncogene in Transgenic Mice Results in Follicular Tumors That Progress to Poorly Differentiated Carcinomas. Oncogene 2006, 25, 5467–5474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pestourie, C.; Thézé, B.; Kuhnast, B.; Le Helleix, S.; Gombert, K.; Dollé, F.; Tavitian, B.; Ducongé, F. PET Imaging of Medullary Thyroid Carcinoma in MEN2A Transgenic Mice Using 6-[(18)F]F-L-DOPA. Eur. J. Nucl. Med. Mol. Imaging 2010, 37, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Yeager, N.; Klein-Szanto, A.; Kimura, S.; Di Cristofano, A. Pten Loss in the Mouse Thyroid Causes Goiter and Follicular Adenomas: Insights into Thyroid Function and Cowden Disease Pathogenesis. Cancer Res. 2007, 67, 959–966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antico-Arciuch, V.G.; Dima, M.; Liao, X.-H.; Refetoff, S.; Di Cristofano, A. Cross-Talk between PI3K and Estrogen in the Mouse Thyroid Predisposes to the Development of Follicular Carcinomas with a Higher Incidence in Females. Oncogene 2010, 29, 5678–5686. [Google Scholar] [CrossRef] [Green Version]
- Chakravarty, D.; Santos, E.; Ryder, M.; Knauf, J.A.; Liao, X.-H.; West, B.L.; Bollag, G.; Kolesnick, R.; Thin, T.H.; Rosen, N.; et al. Small-Molecule MAPK Inhibitors Restore Radioiodine Incorporation in Mouse Thyroid Cancers with Conditional BRAF Activation. J. Clin. Investig. 2011, 121, 4700–4711. [Google Scholar] [CrossRef] [Green Version]
- Dobson, M.E.; Diallo-Krou, E.; Grachtchouk, V.; Yu, J.; Colby, L.A.; Wilkinson, J.E.; Giordano, T.J.; Koenig, R.J. Pioglitazone Induces a Proadipogenic Antitumor Response in Mice with PAX8-PPARγ Fusion Protein Thyroid Carcinoma. Endocrinology 2011, 152, 4455–4465. [Google Scholar] [CrossRef]
- Arciuch, V.G.A.; Russo, M.A.; Dima, M.; Kang, K.S.; Dasrath, F.; Liao, X.-H.; Refetoff, S.; Montagna, C.; Cristofano, A.D. Thyrocyte-Specific Inactivation of P53 and Pten Results in Anaplastic Thyroid Carcinomas Faithfully Recapitulating Human Tumors. Oncotarget 2011, 2, 1109–1126. [Google Scholar] [CrossRef] [Green Version]
- Pringle, D.R.; Yin, Z.; Lee, A.A.; Manchanda, P.K.; Yu, L.; Parlow, A.F.; Jarjoura, D.; Perle, K.M.D.L.; Kirschner, L.S. Thyroid-Specific Ablation of the Carney Complex Gene, PRKAR1A, Results in Hyperthyroidism and Follicular Thyroid Cancer. Endocr.-Relat. Cancer 2012, 19, 435–446. [Google Scholar] [CrossRef] [Green Version]
- Pozo, K.; Castro-Rivera, E.; Tan, C.; Plattner, F.; Schwach, G.; Siegl, V.; Meyer, D.; Guo, A.; Gundara, J.; Mettlach, G.; et al. The Role of Cdk5 in Neuroendocrine Thyroid Cancer. Cancer Cell 2013, 24, 499–511. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Zhao, L.; Park, J.W.; Willingham, M.C.; Cheng, S. Synergistic Signaling of KRAS and Thyroid Hormone Receptor β Mutants Promotes Undifferentiated Thyroid Cancer through MYC Up-Regulation. Neoplasia 2014, 16, 757–769. [Google Scholar] [CrossRef] [Green Version]
- Charles, R.-P.; Silva, J.; Iezza, G.; Phillips, W.A.; McMahon, M. Activating BRAF and PIK3CA Mutations Cooperate to Promote Anaplastic Thyroid Carcinogenesis. Mol. Cancer Res. 2014, 12, 979–986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McFadden, D.G.; Vernon, A.; Santiago, P.M.; Martinez-McFaline, R.; Bhutkar, A.; Crowley, D.M.; McMahon, M.; Sadow, P.M.; Jacks, T. P53 Constrains Progression to Anaplastic Thyroid Carcinoma in a Braf-Mutant Mouse Model of Papillary Thyroid Cancer. Proc. Natl. Acad. Sci. USA 2014, 111, E1600–E1609. [Google Scholar] [CrossRef] [PubMed]
- Shappell, S.B.; Thomas, G.V.; Roberts, R.L.; Herbert, R.; Ittmann, M.M.; Rubin, M.A.; Humphrey, P.A.; Sundberg, J.P.; Rozengurt, N.; Barrios, R.; et al. Prostate Pathology of Genetically Engineered Mice: Definitions and Classification. The Consensus Report from the Bar Harbor Meeting of the Mouse Models of Human Cancer Consortium Prostate Pathology Committee. Cancer Res. 2004, 64, 2270–2305. [Google Scholar] [CrossRef] [Green Version]
- Rickman, D.S.; Beltran, H.; Demichelis, F.; Rubin, M.A. Biology and Evolution of Poorly Differentiated Neuroendocrine Tumors. Nat. Med. 2017, 23, 664–673. [Google Scholar] [CrossRef] [PubMed]
- Berman-Booty, L.D.; Knudsen, K.E. Models of Neuroendocrine Prostate Cancer. Endocr.-Relat. Cancer 2015, 22, R33–R49. [Google Scholar] [CrossRef] [Green Version]
- Masumori, N.; Thomas, T.Z.; Chaurand, P.; Case, T.; Paul, M.; Kasper, S.; Caprioli, R.M.; Tsukamoto, T.; Shappell, S.B.; Matusik, R.J. A Probasin-Large T Antigen Transgenic Mouse Line Develops Prostate Adenocarcinoma and Neuroendocrine Carcinoma with Metastatic Potential1. Cancer Res. 2001, 61, 2239–2249. [Google Scholar]
- Bayley, J.-P.; van Minderhout, I.; Hogendoorn, P.C.W.; Cornelisse, C.J.; van der Wal, A.; Prins, F.A.; Teppema, L.; Dahan, A.; Devilee, P.; Taschner, P.E.M. Sdhd and Sdhd/H19 Knockout Mice Do Not Develop Paraganglioma or Pheochromocytoma. PLoS ONE 2009, 4, e7987. [Google Scholar] [CrossRef]
Cell Line | Source 1 | Type | # Refs | Year | References |
---|---|---|---|---|---|
KNA | AM | PCC | 3 | 1998 | [19] |
KAT45 | AM | benign | - | 1998 | [20] |
hPheo1 | AM | benign | - | 2013 | [21] |
NEC-DUE3 | An | small cell carcinoma LN met | 1 | 2018 | [22] |
NEC913, NEC1452 | AP, C | LN met | - | 2019 | [23] |
COLO320 | C | colorectal w NE features | 18 | 1979 | [24] |
LCC-18 | C | colon | 1 | 1991 | [25] |
NEC-DUE2 | C | lymph node met | 1 | 2014 | [26] |
HROC57 | C | PD large cell carcinoma | 1 | 2018 | [27] |
SS-2 | C | ascending colon carcinoma | 1 | 2019 | [28] |
EPG1 | CB | - | - | 1992 | [29] |
ECC18 | E | esophageal | 1 | 1993 | [30] |
TYUC-1 | E | small cell carcinoma | 3 | 2015 | [31] |
NEC-DUE1 | GEJ | carcinoid hepatic met | 1 | 2014 | [26] |
PTJ64p | JT | benign | - | 2013 | [32] |
OAT | L | SCLC | - | 1971 | [33] |
SHP-77 | L | SCLC | 17 | 1978 | [34] |
DMS-273 | L | SCLC | 18 | 1978 | [35] |
COR-L24 | L | SCLC | 7 | 1985 | [36] |
COR-L47 | L | SCLC | 9 | 1985 | [36] |
COR-L51 | L | SCLC | 7 | 1985 | [36] |
SCLC-21H | L | SCLC | 13 | 1987 | [37] |
CPC-N | L | SCLC | 10 | 1992 | [38] |
UMC-11 | L | carcinoid | 9 | 1992 | [39] |
NCI-H720 | L | atypical carcinoid | 13 | 1992 | [39,40] |
NCI-H727 | L | bronchial carcinoid | 23 | 1992 | [39] |
COR-L103 | L | SCLC | 3 | 1992 | [41] |
COR-L266 | L | SCLC | 1 | 1992 | [41] |
COR-L279 | L | SCLC | 12 | 1992 | [41] |
NCI-H82 | L | SCLC | 40 | 1996 | [42] |
NCI-H0446 | L | SCLC | 33 | 1996 | [42] |
NCI-H0510 | L | SCLC | 23 | 1996 | [42] |
NCI-H0524 | L | SCLC | 25 | 1996 | [42] |
NCI-H1105 | L | SCLC | 10 | 1996 | [42] |
NCI-H1436 | L | SCLC | 12 | 1996 | [42] |
NCI-H1694 | L | SCLC | 12 | 1996 | [42] |
NCI-H1930 | L | SCLC | 12 | 1996 | [42] |
NCI-H1963 | L | SCLC | 17 | 1996 | [42] |
NCI-H2029 | L | SCLC | 11 | 1996 | [42] |
NCI-H2171 | L | SCLC | 26 | 1996 | [42] |
NCI-H2196 | L | SCLC | 10 | 1996 | [42] |
HCC33 | L | SCLC | 15 | 1998 | [43] |
SCLC-J1 | L | SCLC | - | 2021 | [44] |
QGP1 | Pa | delta-islet carcinoma | 22 | 1980 | [45] |
CM | Pa | insulinoma | 5 | 1987 | [46] |
BON1 | Pa | carcinoid LN met | 12 | 1991 | [47] |
HuNET | Pa | VIP-secreting | 2 | 2001 | [48] |
A99 | Pa | small cell carcinoma | 3 | 2011 | [49] |
APL1 | Pa | pancreatic liver met | - | 2016 | [50] |
NT-3 | Pa | WD carcinoid LN met | 2 | 2018 | [51] |
NT-18P | Pa | NET | - | 2022 | [52] |
NT-18LM | Pa | liver met NT-18P | - | 2022 | [52] |
NT-36 | Pa | recurrence of NT-18P | - | 2022 | [52] |
NT-32 | Pa | pancreatic NEC | - | 2022 | [52] |
LnCaP | Pr | - | - | 1980 | [53] |
NCI-H660 | Pr | small cell prostate cancer | 15 | 1989 | [54] |
Faugeroux 2020 | Pr | treatment-induced | - | 2020 | [55] |
KUCaP13 | Pr | treatment-induced | - | 2021 | [56] |
N-TAK-1 | R | rectal carcinoma | - | 1999 | [57] |
NECS-P | R | rectal carcinoma | 1 | 2000 | [58] |
NECS-L | R | rectal carcinoma liver met | 1 | 2000 | [58] |
KRJ-I | SB | ileal carcinoid | 8 | 1996 | [59] |
CT-nu-1 | SB | atypical duodenal carcinoid | - | 1998 | [60] |
GOT1 | SB | ileal carcinoid liver met | 3 | 2001 | [61] |
CNDT2 | SB | midgut carcinoid liver met | 3 | 2007 | [62] |
P-STS | SB | ileal carcinoid primary | 4 | 2009 | [63] |
L-STS | SB | ileal carcinoid LN met | 4 | 2009 | [63] |
H-STS | SB | ileal carcinoid liver met | 3 | 2009 | [63] |
TCC-NECT-2 | SB | duodenal carcinoma | 2 | 2018 | [64] |
NT-38 | SB | duodenal NEC | - | 2022 | [52] |
MTC-F | T | MTC | 2 | 1990 | [65] |
MTC-SK | T | MTC | 6 | 1990 | [65] |
PDX Line | Host | Source 1 | Successes 2 | Attempts 2 | Year | References |
---|---|---|---|---|---|---|
NEC913, NEC1452 | spheroid | AP, C | 1 | 1 | 2019 | [23] |
CRC14 | organoid | C | 1 | 1 | 2016 | [80] |
Kawasaki 2020 | organoid | GEP-NEC | 16 | 23 | 2020 | [79] |
Kawasaki 2020 | organoid | GEP-NET | 3 | 16 | 2020 | [79] |
Kim 2019 | organoid | L | 3 | 3 | 2019 | [81] |
Gmeiner 2020 | organoid | L | 4 | 4 | 2020 | [82] |
April-Monn 2021 | organoid | Pa | 6 | 7 | 2021 | [66] |
MSK-PCa4 | organoid | Pr | 7 | 32 | 2014 | [83] |
OWCM | organoid | Pr | 4 | 25 | 2018 | [84,85,86] |
CRC19 | organoid | R | 1 | 1 | 2016 | [80] |
Dijkstra 2021 | organoid | St/C | 1 | 3 | 2021 | [87] |
ANI-27S | spheroid | U | 1 | 1 | 2017 | [88] |
PDX Line | Host | Source 1 | Successes 2 | Attempts 2 | Year | References |
---|---|---|---|---|---|---|
SJ-ACC3 | CB17 scid−/− | AC | 1 | 1 | 2013 | [95] |
HROC57 | NMRI nu/nu mice | C | 1 | 1 | 2018 | [27] |
TEG13 | athymic nude mice | E | 1 | 1 | 1995 | [96] |
Kawasaki 2020 | NOG mice | GEP-NEC | 15 | 22 | 2020 | [79] |
Tran 2022 | NSG mice | GEP-NEC | 2 | 6 | 2022 | [97] |
Yang 2016 | NOD/SCID mice | GEP-NET | 106 | 6 | 2016 | [98] |
Gaudenzi 2017 | Tg(fli1a:EGFP) y1 zebrafish | GEP-NET | 2 | 3 | 2017 | [99] |
Anderson 2015 | NOD/SCID mice | L | 8 | 12 | 2015 | [100] |
LXFS | NOG Taconic mice | L | 1 | 1 | 2021 | [101] |
HNV PDX-PNET | athymic nude mice | Pa | 1 | 1 | 2018 | [102] |
Gaudenzi 2017 | Tg(fli1a:EGFP) y1 zebrafish | Pi | 1 | 6 | 2017 | [99] |
Powers 2017 | NSG mice | PPGL | 3 | 13 | 2017 | [103] |
UCRU-PR-2 | nude mice | Pr | 1 | 1 | 1987 | [104,105,106] |
WISH-PC2 | SCID mice | Pr | 1 | 1 | 2000 | [107,108] |
WM-4A | SCID mice | Pr | 1 | 1 | 2008 | [108] |
MDA PCa | CB17 SCID mice | Pr | 5 | 11 | 2011 | [16,109,110] |
KUCaP13 | SCID mice | Pr | 1 | 1 | 2014 | [56] |
LTL | NOD/SCID mice | Pr | 7 | 18 | 2014 | [111] |
LuCaP | Nu/Nu or CB17 SCID mice | Pr | 4 | 2 | 2017 | [112] |
MURAL | NSG or NOD/SCID mice | Pr | 30 | 2 | 2018 | [113,114] |
Faugeroux 2020 | NSG mice | Pr | 7 | 15 | 2020 | [55] |
EN-1 | nude mice | SB | 1 | 1 | 1998 | [60] |
TSG15 | athymic nude mice | St | 1 | 1 | 1995 | [96] |
HuPrime GA | Balb/c nude mice | St | 20 | 2 | 2013 | [115,116] |
Model 1 | Organ 2 | Neoplasia Type | Model Type 3 | Gene (Promoter 4) | Year | References |
---|---|---|---|---|---|---|
EPAS1 | - | polyhormonal, polycythemia | transgenic | EPAS1A529V | 2019 | [148] |
Nf1+/− | AM | PCC, leukemia | heterozygous KO | NF1 | 1994 | [149] |
NF1+/− | AM | pheo | heterozygous KO | NF1 | 2016 | [92] |
NES-VHL | AM | PGL | TS inducible KO | VHL (NES) | 2017 | [150] |
SDHBf/fNF1f/fRosamt/mg/+Th-Cre | AM | PCC | multiple KO | SDHB, NF1 | 2021 | [151] |
Ink4a Arf+/+ Pten+/− Ink4a Arf+/− Pten+/− Ink4a Arf−/− Pten+/− | AM, C, L | PCC, NEC, NEPC | multiple KO | CDKN2A, ARF, PTEN | 2002 | [152] |
RET-KO | AM, T | PCC, MTC | KI | RET | 2000 | [153] |
ITF-Tag | C | NEC | transgenic | SV40-Tag (ITF) | 2004 | [144] |
CC10-hASH1 | L | SCLC, NSCLC | transgenic | ASCL1 (SCGB1A1) | 2000 | [154] |
RB-TP53-KO | L | SCLC, LCNEC | homozygous KO | RB1, TP53 | 2003 | [155] |
RB-TP53-RB1-KO | L | SCLC, LCNEC | homozygous KO | RB1, TP53, RB1 | 2010 | [156] |
RP-TP53-PTEN-KO | L | SCLC, LCNEC, NSCLC | multiple KO | RB1, TP53, PTEN | 2014 | [146] |
RIP-Tag | Pa | NET | transgenic | SV40-Tag (RIP2) | 1985 | [157] |
RIP-Tag2 (Tg(RIP1-Tag)2Dh) | Pa | NEN various | transgenic | SV40-Tag (RIP) | 1985 | [143,157,158] |
VT-C (Avp-Tag) | Pa | insulinoma | transgenic | SV40-Tag (AVP) | 1987 | [159] |
SV-202 | Pa | insulinoma | transgenic | SV40-Tag (MT) | 1989 | [160] |
ELSV (Tg(Ela-l, SV4OE)Bril8) | Pa | insulinoma, D cell hyperplasia | transgenic | SV40-Tag (EL) | 1990 | [161] |
L-PK/Tag (Tg(Pklr-Tag)Ak) | Pa | islet cell carcinoma | transgenic | SV40-Tag (L-type pyruvate kinase) | 1992 | [162] |
GP1.5 Tag, GP10.5 Tag | Pa | insulinoma, ductal hyperplasia | transgenic | SV40-Tag (GAST) | 1993 | [163] |
RIP-Tag5 (Tg(RIP1-Tag)5Dh) | Pa | insulinoma/invasive carcinoma | transgenic | SV40-Tag (RIP) | 1996 | [164] |
RIP-MyrAkt1 | Pa | NET | transgenic | MyrAKt1 (RIP) | 2001 | [165,166] |
Cdk4R24C/R24C (Cdk4tm1.1Bbd/Cdk4tm1.1Bbd) | Pa | insulinoma | homozygous KI | CDK4R24C | 2001 | [167] |
pIns-c-MycERTAM/RIP-Bcl-xL | Pa | islet cell carcinoma | TS transgenic | MYC, BCL-xl (RIP) | 2002 | [168] |
Men1T/T; Men1T/+ (Men1tm1Zqw/Men1+) | Pa | polyhormonal | heterozygous KO | MEN1 | 2003 | [169] |
Men1F/F-RipCre+ (Men1tm1.2Zqw/Men1tm1.2Zqw Tg(Ins2-cre)23Herr/0) | Pa | islet cell carcinoma | homozygous KO | MEN1 (RIP) | 2003 | [169,170] |
Gcgr−/− | Pa | glucagonoma, exocrine hyperplasia | homozygous KO | GCGR | 2003 | [171] |
elastase-tv-a; RCAS-c-myc; p16/p19−/− | Pa | NET | transgenic | MYC, INK4a/ARF (EL) | 2003 | [172] |
elastase-tv-a; RCAS-PyMT; p16/p19−/− | Pa | progenitor | transgenic | pyMT, INK4a/ARF (EL) | 2003 | [172] |
Prdx1−/− (Prdx1tm1Rave/Prdx1tm1Rave) | Pa | adenoma | homozygous KO | PRDX1 | 2003 | [173] |
Men1loxP/loxP Rip-cre+ (Men1tm1Gfk/Men1tm1Gfk Tg(Ins2cre)25Mgn) | Pa | insulinoma | TS homozygous KO | MEN1 (RIP) | 2004 | [174] |
Men1+/−; Rb1ΔX2/+ (Men1tm1.1Gfk /Men1+Rb1tm1Tyj /Rb1+) | Pa | insulinoma | heterozygous KO | MEN1 | 2007 | [175] |
RIP-MyrAkt1 (Tg(Ins2-Akt1 *)3Mbb) | Pa | insulinoma, islet cell carcinoma | transgenic | AKT1 (RIP) | 2008 | [166] |
Men1tm1Rvt/Men1+ | Pa | insulinoma | heterozygous KO | MEN1 | 2009 | [176,177] |
Pdx1-Cre; Men1f/f (Men1tm1Ctre/Men1tm1Ctre; Tg(Pdx1-cre)89.1Dam/0) | Pa | insulinoma | homozygous KO | MEN1 (PDX1) | 2009 | [178] |
Pdx1-Cre; Vhlf/f (Vhltm1Lss/Vhltm1Lss; Tg(Pdx1-cre)89.1Dam/0) | Pa | adenoma | TS homozygous KO | VHL (PDX1) | 2009 | [179] |
Men1F/F-GluCre+ | Pa | mixed | TS homozygous KO | MEN1 (RG) | 2010 | [180] |
Glu-Cre;Men1f/f | Pa | insulinoma | TS homozygous KO | MEN1 (RG) | 2010 | [181] |
RipTag-IRES-Luciferase (RTL1 ) (Tg(Ins1-Tag, -luc)1Gcr) | Pa | insulinoma/invasive carcinoma | transgenic | SV40-Tag (RIP) | 2010 | [138] |
RIP-Tag (Tg(RIP1-Tag)2Dh) | Pa | insulinoma/invasive carcinoma | transgenic | SV40-Tag (RIP) | 2010 | [140] |
Gcgr−/− (Gcgrtm1Jcp/Gcgrtm1Jcp) | Pa | glucagonoma | homozygous KO | GCGR | 2011 | [182] |
Cul9tm1.2Yxi/Cul9+ | Pa | insulinoma | heterozygous KO | CUL9 | 2011 | [183] |
PDX1-MEN | Pa | NET | TS homozygous KO | MEN1 (PDX1) | 2012 | [184] |
RIP-TβAg (Tg(Ins2-Tag*, FLPe)#Gne) | Pa | insulinoma/invasive carcinoma | transgenic | SV40-Tag (RIP) | 2012 | [185] |
Pc2−/− (Pcsk2tm1Dfs/Pcsk2tm1Dfs) | Pa | adenoma | homozygous KO | PCSK2 | 2014 | [186] |
RenCre; Tp53loxP/loxP RbloxP/loxP | Pa | glucagonoma, unrelated sarcoma | TS homozygous KO | TP53, RB1 (REN) | 2014 | [187] |
Gcggfp/gfp | Pa | islet cell carcinoma | multiple KO | GCG | 2015 | [188] |
Fabpl-Cretg/+Rbc/c (Tg(Fabp1-cre)1Jig/Rbfl/fl) | Pa | NEC | TS homozygous KO | RB1 (FABP1) | 2015 | [189] |
RIP7-rtTA; tet-o-MT; p48-Cre; p16/p19loxP/loxP | Pa | NET | transgenic | PyMT, INK4A/ARF (RIP, PTF1A) | 2016 | [190] |
RIP7-rtTA; tet-o-MT; p48-Cre;p53loxP/loxP | Pa | NET | transgenic | PyMT, TP53 (RIP, PTF1A) | 2016 | [190] |
Pdx1-tTA; tet-o-MT; p48- Cre; p16/p19lox/lox | Pa | NET | transgenic | PyMT, INK4A/ARF (PDX1, PTF1A) | 2016 | [190] |
Pdx1-tTA; tet-o-MT; p48-Cre;p53lox/lox | Pa | mixed acinar cell carcinoma/NE | transgenic | PyMT, p53 (PDX1, PTF1A) | 2016 | [190] |
Men1L/L/RIP2-CreER (Tg(Ins2-cre/ERT)1Dam/J, (RIP2-CreER), Men1tm1.1Ctre/J) | Pa | insulinoma | TS inducible KO | MEN1 (RIP2) | 2017 | [120] |
RIP-Tag (Tg(RIP1-Tag)2Dh) | Pa | pNET nonfunctional | transgenic | SV40-Tag (RIP) | 2019 | [139] |
Men1flox/flox Ptenflox/flox RIP-Cre(Men1tm1.2Ctre, Ptentm1Hwu; Ins1tm1.1(cre)Thor) | Pa | insulinoma | TS homozygous KO | MEN1, PTEN (RIP) | 2020 | [191] |
Men1flox/flox Ptenflox/flox MIP-Cre(Men1tm1.2Ctre, Ptentm1Hwu; Ins1tm1.1(cre)Thor) | Pa | insulinoma | TS homozygous KO | MEN1, PTEN (MIP) | 2020 | [191] |
Pdx1-Cre; Rbf/f | Pa | NET | TS homozygous KO | RB1 (PDX1) | 2020 | [192] |
Pdx1-Cre; Trp53R172H; Rbf/f | Pa | NET | TS homozygous KO | TP53, RB1 (PDX1) | 2020 | [192] |
INS-p25OE | Pa | NET | TS inducible KI | CDK5R1 (IN2/tetOp) | 2021 | [193] |
Glu2-Tag | Pa, C | NET | transgenic | SV40-Tag (RG) | 1988 | [194] |
RIP-Tag/RIPPyST1 | Pa, C | NET | transgenic | SV40-Tag (RIPPyST1) | 1991 | [143] |
GLUTag-Y Tg(Gcg-TAg)25Ddr | Pa, C | invasive carcinoma, glucagonoma | transgenic | SV40-Tag (RG) | 1992 | [195,196] |
TP53+/− RB+/−/TP53−/−RB+/− | Pa, Pi, T | MTC, ICC, lymphoma | multiple KO | TP53, RB1 | 1994 | [197] |
MEN1+/− | Pa, Pi, T, PT, AM | NET | heterozygous KO | MEN1 | 2011 | [198] |
RIP-Tag/RIPPyST | Pa, SB | polyhormonal invasive carcinoma | transgenic | SV40-Tag, PyST1 (RIP) | 1990 | [158] |
RIP-Tag (Tg(RIP1-Tag)2Dh) | Pa, SB | pNET and siNET | transgenic | SV40-Tag (RIP) | 2020 | [199] |
Secretin-Tag | Pa, SB, C | polyhormonal NEN | transgenic | SV40-Tag (SCT) | 1995 | [200] |
GHRH-MT | Pi | polyhormonal | transgenic | GHRH (MT) | 1992 | [201] |
AVP/SV40 | Pi | polyhormonal | transgenic | SV40 (AVP) | 1992 | [202] |
CRH-MT | Pi | corticotropinoma | transgenic | CRH (MT) | 1992 | [203] |
PyLT-1 | Pi | corticotropinoma | transgenic | PyLT (Py early region) | 1992 | [204] |
POMC-SV40 | Pi | corticotropinoma | transgenic | PyLT-SV40 (POMC) | 1993 | [205] |
Cdkn1b+/- | Pi | somatotropinoma | heterozygous KO | CDKN1B | 1996 | [206,207,208] |
p18INK4c | Pi | somatotropinoma | heterozygous KO | CDKN2C | 1998 | [209] |
p18−/− | Pi | corticotropinoma | homozygous KO | CDKN2C | 1998 | [209] |
p18−/−p27−/− | Pi | corticotropinoma | homozygous KO | CDKN2C, CDKN1B | 1998 | [209] |
hFSHB-SV40tsTag | Pi | gonadotropinoma non-functioning adenomas | transgenic | SV40-Tag (FSHb) | 1998 | [210] |
Rb−/− | Pi | - | TS KO | RB1 | 1998 | [211,212] |
Men1TSM/+ | Pi | prolactinoma | multiple KO | MEN1 | 2001 | [213,214] |
HMGA2 | Pi | polyhormonal | transgenic | HMGA2 (CMV) | 2002 | [215] |
p18/aSU | Pi | thyrotropinoma | multiple KO | TP18, αSU | 2002 | [216] |
Rb+/−; ARF−/− | Pi | - | heterozygous KO | RB1, ARF | 2002 | [217] |
Men1ΔN/ΔN; RIPcre(Men1tm1.2Ctre/Men1tm1.2Ctre Tg(Ins2-cre)25Mgn/0 Tg(Ins2-cre)1Heed/0 Tg(Ins2-cre)1Dh/0) | Pi | insulinoma | TS homozygous KO | MEN1 (RIP) | 2003 | [218] |
Ink4c/p53-null | Pi | - | homozygous KO | INK4c, ARF | 2003 | [219] |
HMGA1 | Pi | polyhormonal | transgenic | HMGA1 (CMV) | 2005 | [220] |
αGSU PTTG Rb+/− | Pi | gonadotropinoma | transgenic | PTTG (αSU), RB1 | 2005 | [221,222,223] |
Cdk4R/R; p27−/− | Pi | - | homozygous KO | CDK4R/RCDKN1B | 2005 | [224] |
Rb+/−; Ini1+/− | Pi | corticotropinoma | heterozygous KO | RB1, INI1 | 2006 | [225] |
Prkar1a+/− | Pi | somatotropinoma | TS heterozygous KO | PRKAR1c | 2008 | [226] |
Aip+/− | Pi | somatotropinoma | heterozygous KO | AIP | 2010 | [227] |
Tg-PCE; p27Kip1−/− | Pi | somatotropinoma | transgenic | CCNE1 CDKN1B | 2010 | [228] |
p19Ink4d | Pi | polyhormonal | homozygous KO | CDKN2D | 2014 | [229] |
Crh-1201 | Pi | corticotropinoma | inducible KI | CRH (mutCrh) | 2014 | [230] |
Rb?/? Tp53?/? | Pi, T, Pa | MTC, ICC | multiple KO | TP53, RB1 | 1995 | [231] |
TRAMP | Pr | NEPC | transgenic | SV40-Tag (PB) | 1995 | [232,233,234] |
CR2-Tag | Pr | NEPC, NEC | transgenic | SV40-Tag (Cryptdin-2) | 1998 | [235] |
PSP-TGMAP | Pr | NEPC, NEC | transgenic | SV40-Tag (PSP94) | 2002 | [236,237] |
12T-7f LPB-Tag/PB-Hepsin | Pr | NEPC | transgenic | SV40-Tag (PB) | 2004 | [238] |
PSP-KIMAP | Pr | NEPC | KI | SV40-Tag (PSP94) | 2005 | [237,239] |
P53PE−/−; RbPE−/− | Pr | NEPC, adenoma | homozygous KO | TP53, RB1 | 2006 | [240] |
FG-Tag | Pr, AC | NEPC, ACT | transgenic | SV40-Tag (HbF) | 1996 | [241,242,243] |
PTH-MEN | PT | - | TS homozygous KO | MEN1 (PTH) | 2003 | [244] |
Vil-Cre-ERT2 LoxP-Tag (Tg (Vil-cre) 997Gum/J) | SB, C | NEC, glandular, mixed | transgenic | SV40-Tag (stochastic) | 2010 | [245] |
INS-GAS | St | NET | transgenic | GAST (RIP) | 1993 | [141] |
bK6-HPV16e | St | NEC | transgenic | HPV-16 early region (bk6) | 1994 | [246] |
Gastrin KO | St | NET | homozygous KO | GAST | 1998 | [142] |
Atp4b-SV40 Tag | St | NEC | transgenic | SV40-Tag (ATP4b) | 2004 | [247] |
Villin-Cre; Men1loxP/loxP | St | adenoma | TS homozygous KO | MEN1 (VIL1) | 2012 | [248] |
CEA424-SV40-Tag (Tg(CEACAM5-Tag) L5496Wzm/Cnrm) | St | dysplastic, NEC | transgenic | SV40-Tag (CEA) | 2012 | [249] |
Atp4aR703C/R703C | St | dysplasia | homozygous KI | ATP4AR703C | 2016 | [250] |
VillinCre; Men1loxP/loxP; Sst−/− | St | ECL cell tumor | homozygous KO | MEN1 (VIL1) | 2017 | [251] |
CT/RET | T | MTC | transgenic | RETC634R (Ctct/cgrp/CGRP) | 1997 | [252] |
RET/PTC3 | T | PTC | TS KI | RET/Ptc3 (TG) | 1998 | [253] |
RET/PTC1 | T | PTC | TS KI | RET/PTC1 (TG) | 1999 | [254] |
ret/PTC1 TP53?/? | T | ATC | multiple KO | RET-PTC1 (TG), TP53 | 2000 | [255] |
CALC-MEN2B-RET | T | MTC | KI | RETM918T (CT/CGRP) | 2000 | [256] |
TRK-T1 | T | PTC | transgenic | TRK-T1 (TG) | 2000 | [257] |
RET/PTC3, Tp53−/− | T | ATC | homozygous KO | RET-PTC3 (TG), TP53 | 2001 | [258] |
TrRbPV-PV | T | FTC | multiple KI | TRbPV/PV (Tg) | 2002 | [259] |
Rap1bGV12-LoxP-N17 | T | FTC | transgenic | RAP1bG12V (Tg) | 2004 | [260] |
N-RASQ61K | T | PTC | transgenic | NRASQ61K (TG) | 2006 | [261] |
CT-RET | T | MTC | transgenic | RET1 (CT/CGRP) | 2010 | [262] |
PtenL/L-TPO-Cre | T | FTC | TS homozygous KO | PTEN (TPO) | 2010 | [263,264] |
BRAFV600E | T | PTC | TS inducible KI | BRAFV600E (TG) | 2011 | [265] |
Pten-PPFP | T | FTC | homozygous KO | PPFP, PTEN (TPO) | 2011 | [266] |
[Pten, p53] thyr−/− | T | ATC | TS homozygous KO | TP53, PTEN | 2011 | [267] |
R1a-TpoKO | T | FTC | TS homozygous KO | PRKAR1A (TPO) | 2012 | [268] |
p25OE | T | MTC | TS inducible KI | CDK5R1 (ENO2) | 2013 | [269] |
ThrbPV/PV; KrasG12D | T | ATC | homozygous KI | THRBPV/PV (TG) KRASG12D (TG) | 2014 | [270] |
BRAFV600E/PIK3CAH1047F | T | ATC | TS KI | BRAFV600E (TG) PIK3CAH1047R | 2014 | [271] |
BRAFV600E/PIK3CAH1047F | T | ATC | TS KI | BRAFV600E (TPO) | 2014 | [147,272] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sedlack, A.J.H.; Saleh-Anaraki, K.; Kumar, S.; Ear, P.H.; Lines, K.E.; Roper, N.; Pacak, K.; Bergsland, E.; Quelle, D.E.; Howe, J.R.; et al. Preclinical Models of Neuroendocrine Neoplasia. Cancers 2022, 14, 5646. https://doi.org/10.3390/cancers14225646
Sedlack AJH, Saleh-Anaraki K, Kumar S, Ear PH, Lines KE, Roper N, Pacak K, Bergsland E, Quelle DE, Howe JR, et al. Preclinical Models of Neuroendocrine Neoplasia. Cancers. 2022; 14(22):5646. https://doi.org/10.3390/cancers14225646
Chicago/Turabian StyleSedlack, Andrew J. H., Kimia Saleh-Anaraki, Suresh Kumar, Po Hien Ear, Kate E. Lines, Nitin Roper, Karel Pacak, Emily Bergsland, Dawn E. Quelle, James R. Howe, and et al. 2022. "Preclinical Models of Neuroendocrine Neoplasia" Cancers 14, no. 22: 5646. https://doi.org/10.3390/cancers14225646
APA StyleSedlack, A. J. H., Saleh-Anaraki, K., Kumar, S., Ear, P. H., Lines, K. E., Roper, N., Pacak, K., Bergsland, E., Quelle, D. E., Howe, J. R., Pommier, Y., & del Rivero, J. (2022). Preclinical Models of Neuroendocrine Neoplasia. Cancers, 14(22), 5646. https://doi.org/10.3390/cancers14225646