Recombinant Interferon-β in the Treatment of Polycythemia Vera and Related Neoplasms: Rationales and Perspectives
Abstract
:Simple Summary
Abstract
1. Introduction
2. History of Interferon-α in MPNs
3. The History of IFN-β and Its Neglected Role in Cancer Treatment: Lessons from the IFN-α2 Era
4. Mechanisms of Action of rIFN-α and rIFN-β
5. Some Key Questions on IFN-β
5.1. Does IFN-β Have the potential to Restore Defective Tumor Immune Surveillance in MPNs by Increasing the Frequency and Functionality of Immune Cells?
5.2. Does IFN-β Have the Potential to Impact the Chronic Inflammatory State in MPNs?
5.3. How Does the Chronic Inflammatory State in MPNs Impact the Efficacy of IFN-β?
5.4. Rationales for Combination Treatment with rIFN β in MPNs? Lessons from the Combination of JAK1-2 Inhibitor (Jakavi) and Pegasys in MPNs, as well as Combinations of Tamoxifen and rIFN-β and of Tamoxifen, Retinoic Acid, and rIFN-β in Breast Cancer
6. Combination Therapy of a DNA Hypomethylator, BCL-1 Inhibitor, and rIFN-α or rIFN-β?
7. Future Research Directions
8. Conclusions and Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Spivak, J.L. Myeloproliferative Neoplasms. N. Engl. J. Med. 2017, 376, 2168–2181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Enblom, A.; Lindskog, E.; Hasselbalch, H.C.; Hersby, D.; Bak, M.; Tetu, J.; Girodon, F.; Andréasson, B. High rate of abnormal blood values and vascular complications before diagnosis of myeloproliferative neoplasms. Eur. J. Intern. Med. 2015, 26, 344–347. [Google Scholar] [CrossRef] [PubMed]
- Sørensen, A.L.; Hasselbalch, H.C. Antecedent cardiovascular disease and autoimmunity in Philadelphia-negative chronic myeloproliferative neoplasms. Leuk Res. 2016, 41, 27–35. [Google Scholar] [CrossRef]
- James, C.; Ugo, V.; Le Couédic, J.-P.; Staerk, J.; Delhommeau, F.; Lacout, C.; Garçon, L.; Raslova, H.; Berger, R.; Bennaceur-Griscelli, A.; et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 2005, 434, 1144–1148. [Google Scholar] [CrossRef] [PubMed]
- Kralovics, R.; Passamonti, F.; Buser, A.S.; Teo, S.S.; Tiedt, R.; Passweg, J.R.; Tichelli, A.; Cazzola, M.; Skoda, R.C. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N. Engl. J. Med. 2005, 352, 1779–1790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baxter, E.J.; Scott, L.M.; Campbell, P.J.; East, C.; Fourouclas, N.; Swanton, S.; Vassiliou, G.S.; Bench, A.J.; Boyd, E.M.; Curtin, N.; et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 2005, 365, 1054–1061. [Google Scholar] [CrossRef]
- Levine, R.L.; Wadleigh, M.; Cools, J.; Ebert, B.L.; Wernig, G.; Huntly, B.J.; Vassiliou, G.S.; Bench, A.J.; Boyd, E.M.; Curtin, N. Cancer Genome Project. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 2005, 7, 387–397. [Google Scholar] [CrossRef] [Green Version]
- Larsen, T.S.; Pallisgaard, N.; Møller, M.B.; Hasselbalch, H.C. The JAK2 V617F allele burden in essential thrombocythemia, polycythemia vera and primary myelofibrosis--mpact on disease phenotype. Eur. J. Haematol. 2007, 79, 508–515. [Google Scholar] [CrossRef]
- Klampfl, T.; Gisslinger, H.; Harutyunyan, A.S.; Nivarthi, H.; Rumi, E.; Milosevic, J.D.; Them, N.C.; Berg, T.; Gisslinger, B.; Pietra, D.; et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N. Engl. J. Med. 2013, 369, 2379–2390. [Google Scholar] [CrossRef] [Green Version]
- Nangalia, J.; Massie, C.E.; Baxter, E.J.; Nice, F.L.; Gundem, G.; Wedge, D.C.; Avezov, E.; Li, J.; Kollmann, K.; Kent, D.G. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N. Engl. J. Med. 2013, 369, 2391–2405. [Google Scholar] [CrossRef]
- Cazzola, M.; Kralovics, R. From Janus kinase 2 to calreticulin: The clinically relevant genomic landscape of myeloproliferative neoplasms. Blood 2014, 123, 3714–3719. [Google Scholar] [CrossRef] [PubMed]
- Skov, V. Next Generation Sequencing in MPNs. Lessons from the Past and Prospects for Use as Predictors of Prognosis and Treatment Responses. Cancers 2020, 12, 2194. [Google Scholar] [CrossRef]
- Hermouet, S.; Vilaine, M. The JAK2 46/1 haplotype: A marker of inappropriate myelomonocytic response to cytokine stimulation, leading to increased risk of inflammation, myeloid neoplasm, and impaired defense against infection? Haematologica 2011, 96, 1575–1579. [Google Scholar] [CrossRef] [PubMed]
- Hasselbalch, H.C. Perspectives on chronic inflammation in essential thrombocythemia, polycythemia vera, and myelofibrosis: Is chronic inflammation a trigger and driver of clonal evolution and development of accelerated atherosclerosis and second cancer? Blood 2012, 119, 3219–3225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasselbalch, H.C. Chronic inflammation as a promotor of mutagenesis in essential thrombocythemia, polycythemia vera and myelofibrosis. A human inflammation model for cancer development? Leuk Res. 2013, 37, 214–220. [Google Scholar] [CrossRef]
- Hermouet, S.; Hasselbalch, H.C.; Čokić, V. Mediators of Inflammation in Myeloproliferative Neoplasms: State of the Art. Mediat. Inflamm. 2015, 2015, 964613. [Google Scholar] [CrossRef] [Green Version]
- Hermouet, S.; Bigot-Corbel, E.; Gardie, B. Pathogenesis of Myeloproliferative Neoplasms: Role and Mechanisms of Chronic Inflammation. Mediat. Inflamm. 2015, 2015, 145293. [Google Scholar] [CrossRef] [Green Version]
- Hermouet, S. Pathogenesis of myeloproliferative neoplasms: More than mutations. Exp. Hematol. 2015, 43, 993–994. [Google Scholar] [CrossRef]
- Hasselbalch, H.C.; Bjørn, M.E. MPNs as Inflammatory Diseases: The Evidence, Consequences, and Perspectives. Mediat. Inflamm. 2015, 2015, 102476. [Google Scholar] [CrossRef] [Green Version]
- Bjørn, M.E.; Hasselbalch, H.C. The Role of Reactive Oxygen Species in Myelofibrosis and Related Neoplasms. Mediat. Inflamm. 2015, 2015, 648090. [Google Scholar] [CrossRef]
- Fleischman, A.G. Inflammation as a Driver of Clonal Evolution in Myeloproliferative Neoplasm. Mediat. Inflamm. 2015, 2015, 06819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koschmieder, S.; Mughal, T.I.; Hasselbalch, H.C.; Barosi, G.; Valent, P.; Kiladjian, J.J.; Jeryczynski, G.; Gisslinger, H.; Jutzi, J.S.; Pahl, H.L.; et al. Myeloproliferative neoplasms and inflammation: Whether to target the malignant clone or the inflammatory process or both. Leukemia 2016, 30, 1018–1024. [Google Scholar] [CrossRef] [PubMed]
- Lussana, F.; Rambaldi, A. Inflammation and myeloproliferative neoplasms. J. Autoimmun. 2017, 85, 58–63. [Google Scholar] [CrossRef] [PubMed]
- Andersen, M.; Sajid, Z.; Pedersen, R.K.; Gudmand-Hoeyer, J.; Ellervik, C.; Skov, V.; Kjær, L.; Pallisgaard, N.; Kruse, T.A.; Thomassen, M.; et al. Mathematical modelling as a proof of concept for MPNs as a human inflammation model for cancer development. PLoS ONE 2017, 12, e0183620. [Google Scholar] [CrossRef] [Green Version]
- Craver, B.M.; El Alaoui, K.; Scherber, R.M.; Fleischman, A.G. The Critical Role of Inflammation in the Pathogenesis and Progression of Myeloid Malignancies. Cancers 2018, 10, 104. [Google Scholar] [CrossRef] [Green Version]
- Mendez Luque, L.F.; Blackmon, A.L.; Ramanathan, G.; Fleischman, A.G. Key Role of Inflammation in Myeloproliferative Neoplasms: Instigator of Disease Initiation, Progression and Symptoms. Curr. Hematol. Malig. Rep. 2019, 14, 145–153. [Google Scholar] [CrossRef]
- Allegra, A.; Pioggia, G.; Tonacci, A.; Casciaro, M.; Musolino, C.; Gangemi, S. Synergic Crosstalk between Inflammation, Oxidative Stress, and Genomic Alterations in BCR-ABL-Negative Myeloproliferative Neoplasm. Antioxidants 2020, 9, 1037. [Google Scholar] [CrossRef]
- Chatain, N.; Koschmieder, S.; Jost, E. Role of Inflammatory Factors during Disease Pathogenesis and Stem Cell Transplantation in Myeloproliferative Neoplasms. Cancers 2020, 12, 2250. [Google Scholar] [CrossRef]
- Longhitano, L.; Li Volti, G.; Giallongo, C.; Spampinato, M.; Barbagallo, I.; Di Rosa, M.; Romano, A.; Avola, R.; Tibullo, D.; Palumbo, G.A. The Role of Inflammation and Inflammasome in Myeloproliferative Disease. J. Clin. Med. 2020, 9, 2334. [Google Scholar] [CrossRef]
- Koschmieder, S.; Chatain, N. Role of inflammation in the biology of myeloproliferative neoplasms. Blood Rev. 2020, 42, 100711. [Google Scholar] [CrossRef]
- Larsen, T.S.; Pallisgaard, N.; Moller, M.B.; Hasselbalch, H.C. Complete molecular remission of polycythemia vera during long-term treatment with pegylated interferon alpha-2b. Ann. Hematol. 2008, 87, 847–850. [Google Scholar] [CrossRef] [PubMed]
- Larsen, T.S.; Møller, M.B.; de Stricker, K.; Nørgaard, P.; Samuelsson, J.; Marcher, C.; Andersen, M.T.; Bjerrum, O.W.; Hasselbalch, H.C. Minimal residual disease and normalization of the bone marrow after long-term treatment with alpha-interferon2b in polycythemia vera. A report on molecular response patterns in seven patients in sustained complete haematological remission. Hematology 2009, 14, 331–334. [Google Scholar] [CrossRef] [PubMed]
- Hasselbalch, H.C. Myelofibrosis with myeloid metaplasia: The advanced phase of an untreated disseminated hematological cancer. Time to change our therapeutic attitude with early upfront treatment? Leuk Res. 2009, 33, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Hasselbalch, H.C.; Larsen, T.S.; Riley, C.H.; Jensen, M.K.; Kiladjian, J.J. Interferon-alpha in the treatment of Philadelphia-negative chronic myeloproliferative neoplasms. Status and perspectives. Curr. Drug Targets 2011, 12, 392–419. [Google Scholar] [CrossRef] [PubMed]
- Hasselbalch, H.C. A new era for IFN-α in the treatment of Philadelphia-negative chronic myeloproliferative neoplasms. Expert Rev. Hematol. 2011, 4, 637–655. [Google Scholar] [CrossRef] [PubMed]
- Silver, R.T.; Vandris, K.; Goldman, J.J. Recombinant interferon-α may retard progression of early primary myelofibrosis: A preliminary report. Blood 2011, 117, 6669–6672. [Google Scholar] [CrossRef] [Green Version]
- Silver, R.T.; Kiladjian, J.J.; Hasselbalch, H.C. Interferon and the treatment of polycythemia vera, essential thrombocythemia and myelofibrosis. Expert Rev. Hematol. 2013, 6, 49–58. [Google Scholar] [CrossRef]
- Larsen, T.S.; Iversen, K.F.; Hansen, E.; Mathiasen, A.B.; Marcher, C.; Frederiksen, M.; Larsen, H.; Helleberg, I.; Riley, C.H.; Bjerrum, O.W.; et al. Long term molecular responses in a cohort of Danish patients with essential thrombocythemia, polycythemia vera and myelofibrosis treated with recombinant interferon alpha. Leuk Res. 2013, 37, 1041–1045. [Google Scholar] [CrossRef]
- Bjørn, M.E.; de Stricker, K.; Kjær, L.; Ellemann, K.; Hasselbalch, H.C. Combination therapy with interferon and JAK1-2 inhibitor is feasible: Proof of concept with rapid reduction in JAKV617F allele burden in polycythemia vera. Leuk Res. Rep. 2014, 3, 73–75. [Google Scholar] [CrossRef] [Green Version]
- Hasselbalch, H.C.; Silver, R.T. Interferon in polycythemia vera and related neoplasms. Can it become the treatment of choice without a randomized trial? Exp. Rev. Hematol. 2015, 8, 439–445. [Google Scholar] [CrossRef]
- Silver, R.T.; Hasselbalch, H.C. Optimal therapy for polycythemia vera and essential thrombocythemia: Preferred use of interferon therapy based on phase 2 trials. Hematology 2016, 21, 387–391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Utke Rank, C.; Weis Bjerrum, O.; Larsen, T.S.; Kjær, L.; de Stricker, K.; Riley, C.H.; Hasselbalch, H.C. Minimal residual disease after long-term interferon-alpha2 treatment: A report on hematological, molecular and histomorphological response patterns in 10 patients with essential thrombocythemia and polycythemia vera. Leuk Lymphoma 2016, 57, 348–354. [Google Scholar] [CrossRef] [PubMed]
- Kiladjian, J.J.; Giraudier, S.; Cassinat, B. Interferon-alpha for the therapy of myeloproliferative neoplasms: Targeting the malignant clone. Leukemia 2016, 30, 776–781. [Google Scholar] [CrossRef] [PubMed]
- Bjørn, M.E.; Hasselbalch, H.C. Minimal residual disease or cure in MPNs? Rationales and perspectives on combination therapy with interferon-alpha2 and ruxolitinib. Expert Rev. Hematol. 2017, 10, 393–404. [Google Scholar] [CrossRef] [PubMed]
- Mikkelsen, S.U.; Kjaer, L.; Bjørn, M.E.; Knudsen, T.A.; Sørensen, A.L.; Andersen, C.B.L. Safety and efficacy of combination therapy of interferon-α2 and ruxolitinib in polycythemia vera and myelofibrosis. Cancer Med. 2018, 7, 3571–3581. [Google Scholar] [CrossRef]
- Hasselbalch, H.C.; Holmström, M.O. Perspectives on interferon-alpha in the treatment of polycythemia vera and related myeloproliferative neoplasms: Minimal residual disease and cure? Semin Immunopathol. 2019, 41, 5–19. [Google Scholar] [CrossRef] [Green Version]
- Sørensen, A.L.; Mikkelsen, S.U.; Knudsen, T.A.; Bjørn, M.E.; Andersen, C.L.; Bjerrum, O.W.; Brochmann, N.; Patel, D.A.; Gjerdrum, L.M.R.; El Fassi, D.; et al. Ruxolitinib and interferon-α2 combination therapy for patients with polycythemia vera or myelofibrosis: A phase II study. Haematologica 2020, 105, 2262–2272. [Google Scholar] [CrossRef] [Green Version]
- Silver, R.T. Combination therapy with interferon and ruxolitinib for polycythemia vera and myelofibrosis: Are two drugs better than one? Haematologica 2020, 105, 2190–2191. [Google Scholar] [CrossRef]
- How, J.; Hobbs, G. Use of Interferon Alfa in the Treatment of Myeloproliferative Neoplasms: Perspectives and Review of the Literature. Cancers 2020, 12, 1954. [Google Scholar] [CrossRef]
- Pedersen, R.K.; Andersen, M.; Knudsen, T.A.; Sajiid, Z.; Gudmand-Hoeyer, J.; Dam, M.J.B.; Skov, V.; Kjaer, L.; Ellervik, C.; Larsen, T.S.; et al. Data-driven analysis of JAKV617F kinetics during interferon-alpha2 treatment of patients with polycythemia vera and related neoplasms. Cancer Med. 2020, 9, 2039–2051. [Google Scholar] [CrossRef]
- Abu-Zeinah, G.; Krichevsky, S.; Cruz, T.; Hoberman, G.; Jaber, D.; Savage, N.; Sosner, C.; Ritchie, E.K.; Scandura, J.M.; Silver, R.T. Interferon-alpha for treating polycythemia vera yields improved myelofibrosis-free and overall survival. Leukemia 2021, 35, 2592–2601. [Google Scholar] [CrossRef] [PubMed]
- Abu-Zeinah, G.; Silver, R.T.; Abu-Zeinah, K.; Scandura, J.M. Normal life expectancy for polycythemia vera (PV) patients is possible. Leukemia 2022, 36, 569–572. [Google Scholar] [CrossRef] [PubMed]
- Hasselbalch, H.C.; Elvers, M.; Schafer, A.I. The pathobiology of thrombosis, microvascular disease, and hemorrhage in the myeloproliferative neoplasms. Blood 2021, 137, 2152–2160. [Google Scholar] [CrossRef] [PubMed]
- Hasselbalch, H.C.; Silver, R.T. New Perspectives of Interferon-alpha2 and Inflammation in Treating Philadelphia-negative Chronic Myeloproliferative Neoplasms. Hemasphere 2021, 5, e645. [Google Scholar] [CrossRef]
- Spivak, J.L.; Hasselbalch, H.C. Hydroxycarbamide: A user’s guide for chronic myeloproliferative disorders. Expert Rev. Anticancer Ther. 2011, 11, 403–414. [Google Scholar] [CrossRef] [Green Version]
- Barbui, T.; Tefferi, A.; Vannucchi, A.M.; Passamonti, F.; Silver, R.T.; Hoffman, R.; Verstovsek, S.; Mesa, R.; Kiladjian, J.J.; Hehlmann, R.; et al. Philadelphia chromosome-negative classical myeloproliferative neoplasms: Revised management recommendations from European LeukemiaNet. Leukemia 2018, 32, 1057–1069. [Google Scholar] [CrossRef] [Green Version]
- Kiladjian, J.J.; Chevret, S.; Dosquet, C.; Chomienne, C.; Rain, J.D. Treatment of polycythemia vera with hydroxyurea and pipobroman: Final results of a randomized trial initiated in 1980. J. Clin. Oncol. 2011, 29, 3907–3913. [Google Scholar] [CrossRef]
- Kissova, J.; Ovesna, P.; Penka, M.; Bulikova, A.; Kiss, I. Second malignancies in Philadelphia-negative myeloproliferative neoplasms- single-center experience. Anticancer Res. 2014, 34, 2489–2496. [Google Scholar]
- Hansen, I.O.; Sørensen, A.L.; Hasselbalch, H.C. Second malignancies in hydroxyurea and interferon-treated Philadelphia-negative myeloproliferative neoplasms. Eur. J. Haematol. 2017, 98, 75–84. [Google Scholar] [CrossRef]
- Birgegård, G.; Folkvaljon, F.; Garmo, H.; Holmberg, L.; Besses, C.; Griesshammer, M.; Gugliotta, L.; Wu, J.; Achenbach, H.; Kiladjian, J.J.; et al. Leukemic transformation and second cancers in 3649 patients with high-risk essential thrombocythemia in the EXELS study. Leuk Res. 2018, 74, 105–109. [Google Scholar] [CrossRef] [Green Version]
- Birgegård, G.; Besses, C.; Griesshammer, M.; Gugliotta, L.; Harrison, C.N.; Wu, M.H.J.; Achenbach, H.; Kiladjian, J.J. Treatment of essential thrombocythemia in Europe: A prospective long-term observational study of 3649 high-risk patients in the Evaluation of Anagrelide Efficacy and Long-term Safety study. Haematologica 2018, 103, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Marchioli, R.; Finazzi, G.; Landolfi, R.; Kutti, J.; Gisslinger, H.; Patrono, C.; Marilus, R.; Villegas, A.; Tognoni, G.; Barbui, T. Vascular and neoplastic risk in a large cohort of patients with polycythemia vera. J. Clin. Oncol. 2005, 23, 2224–2232. [Google Scholar] [CrossRef] [PubMed]
- Carobbio, A.; Thiele, J.; Passamonti, F.; Rumi, E.; Ruggeri, M.; Rodeghiero, F.; Randi, M.L.; Bertozzi, I.; Vannucchi, A.M.; Antonioli, E.; et al. Risk factors for arterial and venous thrombosis in WHO-defined essential thrombocythemia: An international study of 891 patients. Blood 2011, 117, 5857–5859. [Google Scholar] [CrossRef]
- Barbui, T.; Finazzi, G.; Falanga, A. Myeloproliferative neoplasms and thrombosis. Blood 2013, 122, 2176–2184. [Google Scholar] [CrossRef]
- Vannucchi, A.M.; Guglielmelli, P. JAK2 mutation-related disease and thrombosis. Semin Thromb. Hemost. 2013, 39, 496–506. [Google Scholar] [PubMed]
- Hultcrantz, M.; Björkholm, M.; Dickman, P.W.; Landgren, O.; Derolf, Å.R.; Kristinsson, S.Y.; Andersson, T.M.L. Risk for Arterial and Venous Thrombosis in Patients with Myeloproliferative Neoplasms: A Population-Based Cohort Study. Ann Intern Med. 2018, 168, 317–325. [Google Scholar] [CrossRef]
- Moliterno, A.R.; Ginzburg, Y.Z.; Hoffman, R. Clinical insights into the origins of thrombosis in myeloproliferative neoplasms. Blood 2021, 137, 1145–1153. [Google Scholar] [CrossRef]
- Linkesch, W.; Gisslinger, H.; Ludwig, H.; Flener, R.; Sinzinger, H. Therapy with interferon (recombinant IFN-alpha-2C) in myeloproliferative diseases with severe thrombocytosis. Acta Med. Austriaca 1985, 12, 123–127. [Google Scholar]
- Ludwig, H.; Linkesch, W.; Gisslinger, H.; Fritz, E.; Sinzinger, H.; Radaszkiewicz, T.; Chott, A.; Flener, R.; Micksche, M. Interferon alfa corrects thrombocytosis in patients with myeloproliferative disorders. Cancer Immunol. Immunother. 1987, 5, 266–273. [Google Scholar] [CrossRef]
- Silver, R.T. Recombinant interferon-alpha for treatment of polycythaemia vera. Lancet 1988, 2, 403. [Google Scholar] [CrossRef]
- Gilbert, H.S. Long term treatment of myeloproliferative disease with interferon-alpha-2b: Feasibility and efficacy. Cancer 1998, 83, 1205–1213. [Google Scholar] [CrossRef]
- Silver, R.T. Long-term effects of the treatment of polycythemia vera with recombinant interferon-alpha. Cancer 2006, 107, 451–458. [Google Scholar] [CrossRef] [PubMed]
- Samuelsson, J.; Hasselbalch, H.; Bruserod, O.; Temerinac, S.; Brandberg, Y.; Merup, M.; Linder, O.; Bjorkholm, M.; Pahl, H.L.; Birgegard, G. Nordic Study Group for Myeloproliferative Disorders. A phase II trial of pegylated interferon alpha-2b therapy for polycythemia vera and essential thrombocythemia. Feasibility, clinical and biologic effects, and impact on quality of life. Cancer 2006, 106, 2397–2405. [Google Scholar] [CrossRef] [PubMed]
- Kiladjian, J.J.; Cassinat, B.; Turlure, P.; Cambier, N.; Roussel, M.; Bellucci, S.; Menot, M.L.; Massonnet, G.; Dutel, J.L.; Ghomari, K.; et al. High molecular response rate of polycythemia vera patients treated with pegylated interferon alpha-2a. Blood 2006, 108, 2037–2040. [Google Scholar] [CrossRef]
- Kiladjian, J.J.; Cassinat, B.; Chevret, S.; Turlure, P.; Cambier, N.; Roussel, M.; Bellucci, S.; Grandchamp, B.; Chomienne, C.; Fenaux, P. Pegylated interferon-alfa-2a induces complete haematological and molecular responses with low toxicity in polycythemia vera. Blood 2008, 112, 3065–3072. [Google Scholar] [CrossRef]
- Kiladjian, J.J.; Chomienne, C.; Fenaux, P. Interferon-alpha therapy in bcr-abl-negative myeloproliferative neoplasms. Leukemia 2008, 22, 1990–1998. [Google Scholar] [CrossRef] [Green Version]
- Quintás-Cardama, A.; Kantarjian, H.; Manshouri, T.; Luthra, R.; Estrov, Z.; Pierce, S.; Richie, M.A.; Borthakur, G.; Konopleva, M.; Cortes, J.; et al. Pegylated interferon alfa-2a yields high rates of hematologic and molecular response in patients with advanced essential thrombocythemia and polycythemia vera. J. Clin. Oncol. 2009, 27, 5418–5424. [Google Scholar] [CrossRef] [Green Version]
- Kiladjian, J.J.; Mesa, R.A.; Hoffman, R. The renaissance of interferon therapy for the treatment of myeloid malignancies. Blood 2011, 117, 4706–4715. [Google Scholar] [CrossRef] [Green Version]
- Gowin, K.; Thapaliya, P.; Samuelson, J.; Harrison, C.; Radia, D.; Andreasson, B.; Mascarenhas, J.; Rambaldi, A.; Barbui, T.; Rea, C.J.; et al. Experience with pegylated interferon α-2a in advanced myeloproliferative neoplasms in an international cohort of 118 patients. Haematologica 2012, 97, 1570–1573. [Google Scholar] [CrossRef] [Green Version]
- Kuriakose, E.; Vandris, K.; Wang, Y.L.; Chow, W.; Jones, A.V.; Christos, P.; Cross, N.C.; Silver, R.T. Decrease in JAK2 V617F allele burden is not a prerequisite to clinical response in patients with polycythemia vera. Haematologica 2012, 97, 538–542. [Google Scholar] [CrossRef] [Green Version]
- Stein, B.L.; Tiu, R.V. Biological rationale and clinical use of interferon in the classical BCR-ABL-negative myeloproliferative neoplasms. J. Interferon Cytokine Res. 2013, 33, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Quintas-Cardama, A.; Abdel-Wahab, O.; Manshouri, T.; Kilpivaara, O.; Cortes, J.; Roupie, A.L.; Zhang, S.J.; Harris, D.; Estrov, Z.; Kantarjian, H.; et al. Molecular analysis of patients with polycythemia vera or essential thrombocythemia receiving pegylated interferon alpha-2a. Blood 2013, 122, 893–901. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.T.; Zeng, Q.C.; Zhao, W.H.; Li, B.S.; Chen, R.L. Interferon-alpha2b gains high sustained response therapy for advanced essential thrombocythemia and polycythemia vera with JAK2V617F positive mutation. Leuk Res. 2014, 38, 1177–1183. [Google Scholar] [CrossRef]
- Gisslinger, H.; Zagrijtschuk, O.; Buxhofer-Ausch, V.; Thaler, J.; Schloegl, E.; Gastl, G.A.; Wolf, D.; Kralovics, R.; Gisslinger, B.; Strecker, K.; et al. Ropeginterferon alfa-2b, a novel IFNα-2b, induces high response rates with low toxicity in patients with polycythemia vera. Blood 2015, 126, 1762–1769. [Google Scholar] [CrossRef] [PubMed]
- Them, N.C.; Bagienski, K.; Berg, T.; Gisslinger, B.; Schalling, M.; Chen, D.; Buxhofer-Ausch, V.; Thaler, J.; Schloegl, E.; Gastl, G.A.; et al. Molecular responses and chromosomal aberrations in patients with polycythemia vera treated with peg-proline-interferonalpha-2b. Am. J. Hematol. 2015, 90, 288–294. [Google Scholar] [CrossRef] [Green Version]
- Verger, E.; Cassinat, B.; Chauveau, A.; Dosquet, C.; Giraudier, S.; Schlageter, M.H.; Ianotto, J.C.; Yassin, M.A.; Al-Dewik, N.; Carillo, S.; et al. Clinical and molecular response to interferon-alpha therapy in essential thrombocythemia patients with CALR mutations. Blood 2015, 126, 2585–2591. [Google Scholar] [CrossRef] [Green Version]
- King, K.Y.; Matatall, K.A.; Shen, C.C.; Goodell, M.A.; Swierczek, S.I.; Prchal, J.T. Comparative long-term effects of interferon α and hydroxyurea on human hematopoietic progenitor cells. Exp. Hematol. 2015, 43, 912–918. [Google Scholar] [CrossRef] [Green Version]
- Kovacsovics-Bankowski, M.; Kelley, T.W.; Efimova, O.; Kim, S.J.; Wilson, A.; Swierczek, S.; Prchal, J. Changes in peripheral blood lymphocytes in polycythemia vera and essential thrombocythemia patients treated with pegylated-interferon alpha and correlation with JAK2V617F allelic burden. Exp. Hematol. Oncol. 2016, 5, 28. [Google Scholar] [CrossRef] [Green Version]
- Kjær, L.; Cordua, S.; Holmstrom, M.O.; Thomassen, M.; Kruse, T.A.; Pallisgaard, N.; Larsen, T.S.; de Stricker, K.; Skov, V.; Hasselbalch, H.C. Differential Dynamics of CALR Mutant Allele Burden in Myeloproliferative Neoplasms during Interferon Alfa Treatment. PLoS ONE 2016, 11, e0165336. [Google Scholar] [CrossRef] [Green Version]
- O’Neill, C.; Siddiqi, I.; Brynes, R.K.; Vergara-Lluri, M.; Moschiano, E.; O’Connell, C. Pegylated interferon for the treatment of early myelofibrosis: Correlation of serial laboratory studies with response to therapy. Ann. Hematol. 2016, 95, 733–738. [Google Scholar] [CrossRef]
- Masarova, L.; Yin, C.C.; Cortes, J.E.; Konopleva, M.; Borthakur, G.; Newberry, K.J.; Kantarjian, H.M.; Bueso-Ramos, C.E.; Verstovsek, S. Histomorphological responses after therapy with pegylated interferon-alpha2a in patients with essential thrombocythemia (ET) and polycythemia vera (PV). Exp. Hematol. Oncol. 2017, 6, 30. [Google Scholar] [CrossRef] [PubMed]
- Masarova, L.; Patel, K.P.; Newberry, K.J.; Cortes, J.E.; Borthakur, G.; Konopleva, M.; Estrov, Z.; Kantarjian, H.M.; Verstovsek, S. Pegylated interferon alfa-2a in patients with essential thrombocythemia or polycythemia vera: A post-hoc, median 83 month follow-up of an open-label, phase 2 trial. Lancet Haematol. 2017, 4, e165–e175. [Google Scholar] [CrossRef]
- Crisa, E.; Cerrano, M.; Beggiato, E.; Benevolo, G.; Lanzarone, G.; Manzini, P.M.; Borchiellini, A.; Riera, L.; Boccadoro, M.; Ferrero, D. Can pegylated interferon improve the outcome of polycythemia vera patients. J. Hematol. Oncol. 2017, 10, 15. [Google Scholar] [CrossRef] [Green Version]
- Foucar, C.E.; Stein, B.L. Contemporary Use of Interferon Therapy in the Myeloproliferative Neoplasms. Curr. Hematol. Mailg. Rep. 2017, 12, 406–414. [Google Scholar] [CrossRef]
- Gowin, K.; Jain, T.; Kosiorek, H.; Tibes, R.; Camoriano, J.; Palmer, J.; Mesa, R. Pegylated interferon alpha-2a is clinically effective and tolerable in myeloproliferative neoplasm patients treated off clinical trial. Leuk Res. 2017, 54, 73–77. [Google Scholar] [CrossRef] [PubMed]
- Tashi, T.; Swierczek, S.; Kim, S.J.; Salama, M.E.; Song, J.; Heikal, N.; King, K.Y.; Hickman, K.; Litton, S.; Prchal, J.T. Pegylated interferon Alfa-2a and hydroxyurea in polycythemia vera and essential thrombocythemia: Differential cellular and molecular responses. Leukemia 2018, 32, 1830–1833. [Google Scholar] [CrossRef] [PubMed]
- Lindgren, M.; Samuelsson, J.; Nilsson, L.; Knutsen, H.; Ghanima, W.; Westin, J.; Johansson, P.L.; Andreasson, B. Genetic variation in IL28B (IFNL3) and response to interferon-alpha treatment in myeloproliferative neoplasms. Eur. J. Haematol. 2018, 100, 419–425. [Google Scholar] [CrossRef]
- Yacoub, A.; Mascarenhas, J.; Kosiorek, H.; Prchal, J.T.; Berenzon, D.; Baer, M.R.; Ritchie, E.; Silver, R.T.; Kessler, C.; Winton, E.; et al. Pegylated interferon alfa-2a for polycythemia vera or essential thrombocythemia resistant or intolerant to hydroxyurea. Blood 2019, 134, 1498–1509. [Google Scholar] [CrossRef] [Green Version]
- Gisslinger, H.; Klade, C.; Georgiev, P.; Krochmalczyk, D.; Gercheva-Kyuchukova, L.; Egyed, M.; Rossiev, V.; Dulicek, P.; Illes, A.; Pylypenko, H.; et al. PROUD-PV Study Group. Ropeginterferon alfa-2b versus standard therapy for polycythaemia vera (PROUD-PV and CONTINUATION-PV): A randomised, non-inferiority, phase 3 trial and its extension study. Lancet Haematol. 2020, 7, e196–e208. [Google Scholar] [CrossRef]
- Faille, D.; Lamrani, L.; Loyau, S.; Huisse, M.G.; Bourrienne, M.C.; Alkhaier, S.; Cassinat, B.; Boulaftali, Y.; Debus, J.; Jandrot-Perrus, M.; et al. Interferon Alpha Therapy Increases Pro-Thrombotic Biomarkers in Patients with Myeloproliferative Neoplasms. Cancers 2020, 12, 992. [Google Scholar] [CrossRef] [Green Version]
- Barbui, T.; Vannucchi, A.M.; De Stefano, V.; Masciulli, A.; Carobbio, A.; Ferrari, A.; Ghirardi, A.; Rossi, E.; Ciceri, F.; Bonifacio, M.; et al. Ropeginterferon alfa-2b versus phlebotomy in low-risk patients with polycythaemia vera (Low-PV study): A multi-centre, randomised phase 2 trial. Lancet Haematol. 2021, 8, e175–e184, Erratum in: Lancet Haematol. 2021, 8, e170. [Google Scholar] [CrossRef]
- Knudsen, T.A.; Skov, V.; Stevenson, K.; Werner, L.; Duke, W.; Laurore, C.; Gibson, C.J.; Nag, A.; Thorner, A.R.; Wollison, B.; et al. Genomic Profiling of a Randomized Trial of r-IFNα vs. HU in MPNs Reveals Mutation-Specific Patterns of Response. Blood Adv. 2022, 6, 2107–2119. [Google Scholar] [CrossRef] [PubMed]
- Mascarenhas, J.; Kosiorek, H.; Prchal, J.T.; Rambaldi, A.; Berenzon, D.; Yacoub, A.; Harrison, C.N.; McMullin, M.F.; Vannucchi, A.M.; Ewing, J. A randomized study phase 3 trial of interferon alfa-2a vs hydroxyurea in polycythemia vera and essential thrombocythemia. Blood 2022, 139, 2931–2941. [Google Scholar] [CrossRef] [PubMed]
- Noseworthy, J.H.; Lucchinetti, C.; Rodriguez, M.; Weinshenker, B.G. Multiple sclerosis. N. Engl. J. Med. 2000, 343, 938–952. [Google Scholar] [CrossRef]
- Rudick, R.A.; Goelz, S.E. Beta-interferon for multiple sclerosis. Exp. Cell Res. 2011, 317, 1301–1311. [Google Scholar] [CrossRef]
- Loma, I.; Heyman, R. Multiple sclerosis: Pathogenesis and treatment. Curr. Neuropharmacol. 2011, 9, 409–416. [Google Scholar] [CrossRef]
- Carrasco-Campos, M.I.; Pérez-Ramírez, C.; Macías-Cortés, E.; Puerta-García, E.; Sánchez-Pozo, A.; Arnal-García, C.; Barrero-Hernández, F.J.; Calleja-Hernández, M.Á.; Jiménez-Morales, A.; Cañadas-Garre, M. Pharmacogenetic Predictors of Response to Interferon Beta Therapy in Multiple Sclerosis. Mol. Neurobiol. 2021, 58, 4716–4726. [Google Scholar] [CrossRef]
- Müller, U.; Steinhoff, U.; Reis, L.F.; Hemmi, S.; Pavlovic, J.; Zinkernagel, R.M.; Aguet, M. Functional role of type I and type II interferons in antiviral defense. Science 1994, 264, 1918–1921. [Google Scholar] [CrossRef]
- Samuel, C.E. Antiviral actions of interferons. Clin. Microbiol. Rev. 2001, 14, 778–809. [Google Scholar] [CrossRef] [Green Version]
- Lin, F.C.; Young, H.A. Interferons: Success in anti-viral immunotherapy. Cytokine Growth Factor Rev. 2014, 25, 369–376. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, H.H.; Schneider, W.M.; Rice, C.M. Interferons and viruses: An evolutionary arms race of molecular interactions. Trends Immunol. 2015, 36, 124–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, B.X.; Fish, E.N. Global virus outbreaks: Interferons as 1st responders. Semin Immunol. 2019, 43, 101300. [Google Scholar] [CrossRef] [PubMed]
- Schreiber, G. The Role of Type I Interferons in the Pathogenesis and Treatment of COVID-19. Front. Immunol. 2020, 11, 595739. [Google Scholar] [CrossRef] [PubMed]
- Hasselbalch, H.C.; Skov, V.; Kjær, L.; Ellervik, C.; Poulsen, A.; Poulsen, T.D.; Nielsen, C.H. COVID-19 as a mediator of interferon deficiency and hyperinflammation: Rationale for the use of JAK1/2 inhibitors in combination with interferon. Cytokine Growth Factor Rev. 2021, 60, 28–45. [Google Scholar] [CrossRef]
- Ramasamy, S.; Subbian, S. Critical Determinants of Cytokine Storm and Type I Interferon Response in COVID-19 Pathogenesis. Clin. Microbiol. Rev. 2021, 34, e00299-20. [Google Scholar] [CrossRef]
- Qin, X.Q.; Tao, N.; Dergay, A.; Moy, P.; Fawell, S.; Davis, A.; Wilson, J.M.; Barsoum, J. Interferon-beta gene therapy inhibits tumor formation and causes regression of established tumors in immune-deficient mice. Proc. Natl. Acad. Sci. USA 1998, 95, 14411–14416. [Google Scholar] [CrossRef] [Green Version]
- Ryuke, Y.; Mizuno, M.; Natsume, A.; Suzuki, O.; Nobayashi, M.; Kageshita, T.; Matsumoto, K.; Saida, T.; Yoshida, J. Growth inhibition of subcutaneous mouse melanoma and induction of natural killer cells by liposome-mediated interferon-beta gene therapy. Melanoma Res. 2003, 13, 349–356. [Google Scholar] [CrossRef]
- Zitvogel, L.; Galluzzi, L.; Kepp, O.; Smyth, M.J.; Kroemer, G. Type I interferons in anticancer immunity. Nat. Rev. Immunol. 2015, 15, 405–414. [Google Scholar] [CrossRef]
- Gajewski, T.F.; Corrales, L. New perspectives on type I IFNs in cancer. Cytokine Growth Factor Rev. 2015, 26, 175–178. [Google Scholar] [CrossRef] [Green Version]
- Bracci, L.; Sistigu, A.; Proietti, E.; Moschella, F. The added value of type I interferons to cytotoxic treatments of cancer. Cytokine Growth Factor Rev. 2017, 36, 89–97. [Google Scholar] [CrossRef]
- Muller, L.; Aigner, P.; Stoiber, D. Type I interferons and natural killer cell regulation in cancer. Front. Immunol. 2017, 8, 304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sprooten, J.; Agostinis, P.; Garg, A.D. Type I interferons and dendritic cells in cancer immunotherapy. Int. Rev. Cell Mol. Biol. 2019, 348, 217–262. [Google Scholar] [PubMed]
- Lazear, H.M.; Schoggins, J.W.; Diamond, M.S. Shared and Distinct Functions of Type I and Type III Interferons. Immunity 2019, 50, 907–923. [Google Scholar] [CrossRef] [PubMed]
- Borden, E.C. Interferons α and β in cancer: Therapeutic opportunities from new insights. Nat. Rev. Drug Discov. 2019, 18, 219–234. [Google Scholar] [CrossRef]
- Temizoz, B.; Ishii, K.J. Type I and II interferons toward ideal vaccine and immunotherapy. Expert Rev. Vaccines 2021, 28, 527–544. [Google Scholar] [CrossRef]
- Qiu, Y.; Su, M.; Liu, L.; Tang, Y.; Pan, Y.; Sun, J. Clinical Application of Cytokines in Cancer Immunotherapy. Drug Des. Devel. Ther. 2021, 15, 2269–2287. [Google Scholar] [CrossRef]
- Grimaldi, L.M.E.; Zappala, G.; Iemolo, F.; Castellano, A.E.; Ruggieri, S.; Bruno, G.; Paolillo, A. A pilot study on the use of interferon beta-1a in early Alzheimer’s disease subjects. J. Neuroinflammation 2014, 11, 30. [Google Scholar] [CrossRef] [Green Version]
- Mudò, G.; Frinchi, M.; Nuzzo, D.; Scaduto, P.; Plescia, F.; Massenti, M.F.; Di Carlo, M.; Cannizzaro, C.; Cassata, G.; Cicero, L.; et al. Anti-inflammatory and cognitive effects of interferon-β1a (IFNβ1a) in a rat model of Alzheimer’s disease. J. Neuroinflammation 2019, 16, 44. [Google Scholar] [CrossRef] [Green Version]
- Hasselbalch, H.C.; Skov, V.; Kjær, L.; Sørensen, T.L.; Ellervik, C.; Wienecke, T. Myeloproliferative blood cancers as a human neuroinflammation model for development of Alzheimer’s disease: Evidences and perspectives. J. Neuroinflammation 2020, 17, 248. [Google Scholar] [CrossRef]
- Isaacs, A.; Lindenmann, J.; Virus interference, I. The interferon. Proc. R. Soc. Lond. B Biol. Sci. 1957, 147, 258–267. [Google Scholar]
- Pestka, S.; Krause, C.D.; Walter, M.R. Interferons, interferon-like cytokines, and their receptors. Immunol. Rev. 2004, 202, 8–32. [Google Scholar] [CrossRef] [PubMed]
- Krause, C.D.; Pestka, S. Evolution of the class 2 cytokines and receptors, and discovery of new friends and relatives. Pharmacol. Ther. 2005, 106, 299–346. [Google Scholar] [CrossRef] [PubMed]
- Platanias, L.C. Mechanisms of type-I- and type-II-interferon mediated signalling. Nat. Rev. Immunol. 2005, 5, 375–386. [Google Scholar] [CrossRef] [PubMed]
- deWeerd, N.A.; Samarajiwa, S.A.; Hertzog, P.J. Type I interferon receptors: Biochemistry and biological functions. J. Biol. Chem. 2007, 282, 20053–20057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pestka, S. The interferons: 50 years after their discovery, there is much more to learn. J. Biol. Chem. 2007, 282, 20047–20051. [Google Scholar] [CrossRef] [Green Version]
- Cantell, K.; Hirvonen, S.; Kauppinen, H.L.; Myllyla, G. Production of interferon in human leukocytes from normal donors with the use of Sendai virus. Methods Enzymol. 1981, 78, 29–38. [Google Scholar] [PubMed]
- Mellstedt, H.; Bjorkholm, M.; Johansson, B.; Ahre, A.; Holm, G.; Strander, H. Interferon therapy in myelomatosis. Lancet 1979, 313, 245–247. [Google Scholar] [CrossRef]
- Talpaz, M.; Mavligit, G.; Keating, M.; Walters, R.S.; Gutterman, J.U. Human leukocyte interferon to control thrombocytosis in chronic myelogenous leukemia. Ann. Intern. Med. 1983, 99, 789–792. [Google Scholar] [CrossRef]
- Sacchi, S.; Leono, P.; Liberati, M.; Riccardi, A.; Tabilio, A.; Tartoni, P.; Messora, C.; Vecchi, A.; Bensi, L.; Rupoli, S.; et al. A prospective comparison between treatment with phlebotomy alone and interferon-alpha in patients with polycythemia vera. Ann. Hematol. 1994, 68, 247–250. [Google Scholar] [CrossRef]
- Merup, M.; Tornebohm-Roche, E.; Engman, K.; Paul, C. Human leucocyte interferon-alpha therapy can induce a second response in treatment of thrombocytosis in patients with neutralising antibodies to recombinant interferon-alpha2a. Eur. J. Cancer 1994, 30A, 1729–1730. [Google Scholar] [CrossRef]
- Stasi, R.; Brunetti, M.; Bussa, S.; Venditti, A.; Del Poeta, G.; Conforti, M.; Scimò, M.T.; Cudillo, L.; Adorno, G.; Cecconi, M.; et al. Efficacy and safety of human leucocyte interferon-alpha treatment in patients younger than 60 years of age with polycythemia vera. J. Intern. Med. 1997, 242, 143–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kujawski, L.A.; Talpaz, M. The role of interferon-alpha in the treatment of chronic myeloid leukemia. Cytokine Growth Factor Rev. 2007, 18, 459–471. [Google Scholar] [CrossRef] [PubMed]
- Guilhot, F.; Roy, L.; Saulnier, P.J.; Guilhot, J.; Barra, A.; Gombert, J.M.; Turhan, A. Immunotherapy of chronic myelogenous leukemia. Leuk. Lymphoma 2008, 49, 629–634. [Google Scholar] [CrossRef] [PubMed]
- Essers, M.A.G.; Offner, S.; Blanco-Bose, W.E.; Waibler, Z.; Kalinke, U.; Duchosal, M.A.; Trumpp, A. IFNa activates dormant haematopoietic stem cells in vivo. Nature 2009, 458, 904–908. [Google Scholar] [CrossRef]
- Trumpp, A.; Essers, M.; Wilson, A. Awakening dormant haematopoietic stem cells. Nat. Rev. Immunol. 2010, 10, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Simonsson, B.; Gedde-Dahl, T.; Markevarn, B.; Remes, K.; Stentoft, J.; Almqvist, A.; Björeman, M.; Flogegård, M.; Koskenvesa, P.; Lindblom, A.; et al. Combination of pegylated IFN-α2b with imatinib increases molecular response rates in patients with low- or intermediate-risk chronic myeloid leukemia. Blood 2011, 118, 3228–3235. [Google Scholar] [CrossRef]
- Simonsson, B.; Hjorth-Hansen, H.; Bjerrum, O.W.; Porkka, K. Interferon alpha for treatment of chronic myeloid leukemia. Curr. Drug Targets 2011, 12, 420–428. [Google Scholar] [CrossRef]
- Talpaz, M.; Mercer, J.; Hehlmann, R. The interferon-alpha revival in CML. Ann. Hematol. 2015, 94 (Suppl. 2), S195–S207. [Google Scholar] [CrossRef]
- Cayssials, E.; Guilhot, F. Beyond tyrosine kinase inhibitors: Combinations and other agents. Best Pract. Res. Clin. Haematol. 2016, 29, 271–283. [Google Scholar] [CrossRef]
- Holmström, M.O.; Hasselbalch, H.C. Cancer immune therapy for myeloid malignancies: Present and future. Semin Immunopathol. 2019, 41, 97–109. [Google Scholar] [CrossRef]
- Holmström, M.O.; Hasselbalch, H.C.; Andersen, M.H. Cancer Immune Therapy for Philadelphia Chromosome-Negative Chronic Myeloproliferative Neoplasms. Cancers 2020, 12, 1763. [Google Scholar] [CrossRef]
- Gresser, I.; Bourali, C. Exogenous interferon and inducers of interferon in the treatment Balb-c mice inoculated with RC19 tumour cells. Nature 1969, 223, 844–845. [Google Scholar] [CrossRef] [PubMed]
- Belardelli, F.; Ferrantini, M.; Proietti, E.; Kirkwood, J.M. Interferon-alpha in tumor immunity and immunotherapy. Cytokine Growth Factor Rev. 2002, 13, 119–134. [Google Scholar] [CrossRef]
- Platanias, L.C.; Uddin, S.; Domanski, P.; Colamonici, O.C. Differences in Interferon α and β Signaling. J. Biol. Chem. 1996, 271, 23630–23633. [Google Scholar] [CrossRef] [Green Version]
- Lavoie, T.B.; Kalie, E.; Crisafulli-Cabatu, S.; Abramovich, R.; DiGioia, G.; Moolchan, K.; Pestka, S.; Schreiber, G. Binding and activity of all human alpha interferon subtypes. Cytokine 2011, 56, 282–289. [Google Scholar] [CrossRef]
- Schreiber, G. The molecular basis for differential type I interferon signaling. J. Biol. Chem. 2017, 292, 7285–7294. [Google Scholar] [CrossRef] [Green Version]
- Weinstock-Guttman, B.; Ransohoff, R.M.; Kinkel, R.P.; Rudick, R.A. The interferons: Biological effects, mechanisms of action, and use in multiple sclerosis. Ann. Neurol. 1995, 37, 7–15. [Google Scholar] [CrossRef]
- Kötter, I.; Günaydin, I.; Zierhut, M.; Stübiger, N. The use of interferon alpha in Behçet disease: Review of the literature. Semin Arthritis Rheum. 2004, 33, 320–335. [Google Scholar] [CrossRef] [PubMed]
- Tweezer-Zaks, N.; Rabinovich, E.; Lidar, M.; Livneh, A. Interferon-α as a treatment modality for colchicine-resistant familial Mediterranean fever. J. Rheumatol. 2008, 35, 1362–1365. [Google Scholar]
- Guarda, G.; Braun, M.; Staehli, F.; Tardivel, A.; Mattmann, C.; Förster, I.; Farlik, M.; Decker, T.; Du Pasquier, R.A.; Romero, P.; et al. Type I Interferon Inhibits Interleukin-1 Production and Inflammasome Activation. Immunity 2011, 34, 213–223. [Google Scholar] [CrossRef] [Green Version]
- Greiner, J.W.; Hand, P.H.; Noguchi, P.; Fisher, P.B.; Pestka, S.; Schlom, J. Enhanced expression of surface tumor-associated antigens on human breast and colon tumor cells after recombinant human leukocyte alpha-interferon treatment. Cancer Res. 1984, 44, 3208–3214. [Google Scholar] [PubMed]
- Propper, D.J.; Chao, D.; Braybrooke, J.P.; Bahl, P.; Thavasu, P.; Balkwill, F.; Turley, H.; Dobbs, N.; Gatter, K.; Talbot, D.C.; et al. Low-dose IFN-γ induces tumor MHC expression in metastatic malignant melanoma. Clin. Cancer Res. 2003, 9, 84–92. [Google Scholar] [PubMed]
- Parker, B.S.; Rautela, J.; Hertzog, P.J. Antitumour actions of interferons: Implications for cancer therapy. Nat. Rev. Cancer. 2016, 16, 131–144. [Google Scholar] [CrossRef]
- Schiavoni, G.; Mattei, F.; Gabriele, L. Type I interferons as stimulators of DC-mediated crosspriming: Impact on anti-tumor response. Front. Immunol. 2013, 4, 483. [Google Scholar] [CrossRef] [PubMed]
- Joffre, O.P.; Segura, E.; Savina, A.; Amigorena, S. Cross-presentation by dendritic cells. Nat. Rev. Immunol. 2012, 12, 557–569. [Google Scholar] [CrossRef]
- Curtsinger, J.M.; Mescher, M.F. Inflammatory cytokines as a third signal for T cell activation. Curr. Opin. Immunol. 2010, 22, 333–340. [Google Scholar] [CrossRef] [Green Version]
- Fuertes, M.B.; Kacha, A.K.; Kline, J.; Woo, S.-R.; Kranz, D.M.; Murphy, K.M.; Gajewski, T.F. Host type I IFN signals are required for antitumor CD8+ T cell responses through CD8{alpha}+ dendritic cells. J. Exp. Med. 2011, 208, 2005–2016. [Google Scholar] [CrossRef] [Green Version]
- Pace, L.; Vitale, S.; Dettori, B.; Palombi, C.; La Sorsa, V.; Belardelli, F.; Proietti, E.; Doria, G. APC activation by IFN-alpha decreases regulatory T cell and enhances Th cell functions. J. Immunol. 2010, 184, 5969–5979. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, S.; Koch, M.A.; Pepper, M.; Campbell, D.J. Type I interferons directly inhibit regulatory T cells to allow optimal antiviral T cell responses during acute LCMV infection. J. Exp. Med. 2014, 211, 961–974. [Google Scholar] [CrossRef] [Green Version]
- Khaled, Y.S.; Ammori, B.J.; Elkord, E. Myeloid-derived suppressor cells in cancer: Recent progress and prospects. Immunol. Cell Biol. 2013, 91, 493–502. [Google Scholar] [CrossRef]
- De Sanctis, F.; Solito, S.; Ugel, S.; Molon, B.; Bronte, V.; Marigo, I. MDSCs in cancer: Conceiving new prognostic and therapeutic targets. Biochim. Biophys. Acta 2016, 1865, 35–48. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Ye, Y.; Liu, P.; Yu, W.; Wei, F.; Li, H.; Yu, J. Suppression of T cells by myeloid-derived suppressor cells in cancer. Hum. Immunol. 2017, 78, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Sui, H.; Zhao, S.; Gao, X.; Su, Y.; Qu, P. Immunotherapy Targeting Myeloid-Derived Suppressor Cells (MDSCs) in Tumor Microenvironment. Front Immunol. 2021, 11, 585214. [Google Scholar] [CrossRef]
- Huang, Y.; Blatt, L.M.; Taylor, M.W. Type 1 interferon as an anti-inflammatory agent: Inhibition of lipopolysaccharide-induced interleukin-1 beta and induction of interleukin-1 receptor antagonist. J. Interferon Cytokine Res. 1995, 15, 317–321. [Google Scholar] [CrossRef]
- Coclet-Ninin, J.; Dayer, J.M.; Burger, D. Interferon-beta not only inhibits interleukin-1beta and tumor necrosis factor-alpha but stimulates interleukin- 1 receptor antagonist production in human peripheral blood mononuclear cells. Eur. Cytokine Netw. 1997, 8, 345–349. [Google Scholar]
- Zang, Y.C.; Skinner, S.M.; Robinson, R.R.; Li, S.; Rivera, V.M.; Hutton, G.J.; Zhang, J.Z. Regulation of differentiation and functional properties of monocytes and monocyte-derived dendritic cells by interferon beta in multiple sclerosis. Mult. Scler. 2004, 10, 499–506. [Google Scholar] [CrossRef] [PubMed]
- Billiau, A. Anti-inflammatory properties of Type I interferons. Antiviral Res. 2006, 71, 108–116. [Google Scholar] [CrossRef]
- Masters, S.L.; Mielke, L.A.; Cornish, A.L.; Sutton, C.E.; O’Donnell, J.; Cengia, L.H.; Roberts, A.W.; Wicks, I.P.; Mills, K.H.; Croker, B.A. Regulation of interleukin-1beta by interferon-gamma is species specific limited by suppressor of cytokine signalling 1 and influences interleukin-17 production. EMBO Rep. 2010, 11, 640–646. [Google Scholar] [CrossRef] [Green Version]
- HuangFu, W.-C.; Qian, J.; Liu, C.; Liu, J.; Lokshin, A.E.; Baker, D.P.; Rui, H.; Fuchs, S.Y. Inflammatory signaling compromises cell responses to interferon. Oncogene 2012, 31, 161–172. [Google Scholar] [CrossRef] [Green Version]
- Messina, J.L.; Yu, H.; Riker, A.I.; Munster, P.N.; Jove, R.I.; Daud, A.I. Activated STAT-3 in melanoma. Cancer Control 2008, 15, 196–201. [Google Scholar] [CrossRef] [Green Version]
- Bona, D.D.; Cippitelli, M.; Fionda, C.; Camma, C.; Licata, A.; Santoni, A.; Craxi, A. Oxidative stress inhibits IFN-α-induced antiviral gene expression by blocking the JAK-STAT pathway. J. Hepatol. 2006, 45, 271–279. [Google Scholar] [CrossRef] [PubMed]
- Hasselbalch, H.C. The role of cytokines in the initiation and progression of myelofibrosis. Cytokine Growth Factor Rev. 2013, 24, 133–145. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Aguilera, A.; Arranz, L.; Martın-Perez, D.; García-García, A.; Stavropoulou, V.; Kubovcakova, L.; Isern, J.; Martín-Salamanca, S.; Langa, X.; Skoda, R.C.; et al. Estrogen Signaling Selectively Induces Apoptosis of Hematopoietic Progenitors and Myeloid Neoplasms without Harming Steady-State Hematopoiesis. Cell Stem Cell 2014, 15, 791–804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osborne, C.K. Tamoxifen in the treatment of breast cancer. N. Engl. J. Med. 1998, 339, 1609–1618. [Google Scholar] [CrossRef]
- Harrison, C.; Baxter, J.E.; Boucher, R.H.; McKerrell, T.; Jackson, A.; Fletcher, R.S.; Mead, A.J.; Knapper, S.; Ewing, J.; Butt, N.M.; et al. Effects of Tamoxifen on the Mutant Allele Burden and Disease Course in Patients with Myeloproliferative Neoplasms—Results of the Tamarin Study. In Proceedings of the 62th ASH Annual Meeting and Exposition 2020, San Diego, CA, USA, 5–8 December 2020. [Google Scholar]
- Sica, G.; Natoli, V.; Stella, C.; Del Bianco, S. Effect of natural beta-interferon on cell proliferation and steroid receptor level in human breast cancer cells. Cancer 1987, 60, 2419–2423. [Google Scholar] [CrossRef]
- Coradini, D.; Biffi, A.; Pirronello, E.; Di Fronzo, G. The effect of alpha-, beta- and gamma-interferon on the growth of breast cancer cell lines. Anticancer Res. 1994, 14, 1779–1784. [Google Scholar]
- van den Berg, H.W.; Leahey, W.J.; Lynch, M.; Clarke, R.; Nelson, J. Recombinant human interferon alpha increases oestrogen receptor expression in human breast cancer cells (ZR-75-1) and sensitizes them to the anti-proliferative effects of tamoxifen. Br. J. Cancer 1987, 55, 255–257. [Google Scholar] [CrossRef] [Green Version]
- Sica, G.; Angelucci, C.; Iacopino, F.; Lama, G.; Della Cuna, G.R.; Serlupi-Crescenzi, O.; Donini, S. Effect of natural beta-interferon on estrogen receptor mRNA of breast cancer cells. Anticancer Res. 1992, 12, 2061–2064. [Google Scholar]
- Buzzi, F.; Brugia, M.; Rossi, G.; Giustini, L.; Scoponi, C.; Sica, G. Combination of beta-interferon and tamoxifen as a new way to overcome clinical resistance to tamoxifen in advanced breast cancer. Anticancer Res. 1992, 12, 869–871. [Google Scholar]
- Buzzi, E.; Brugia, M.; Trippa, F.; Rossi, G.; Trivisonne, R.; Giustini, L.; Pinaglia, D.; Capparella, V.; Sica, G. Natural interferon-beta and tamoxifen in hormone-resistant patients with advanced breast cancer. Anticancer Res. 1995, 15, 2187–2190. [Google Scholar]
- Repetto, L.; Giannessi, P.G.; Campora, E.; Pronzato, P.; Vigani, A.; Naso, C.; Spinelli, I.; Conte, P.F.; Rosso, R. Tamoxifen and interferon-beta for the treatment of metastatic breast cancer. Breast Cancer Res. Treat. 1996, 39, 235–238. [Google Scholar] [CrossRef] [PubMed]
- Coradini, D.; Biffi, A.; Pirronello, E.; Di Fronzo, G. Tamoxifen and beta-interferon: Effect of simultaneous or sequential treatment on breast cancer cell lines. Anticancer Res. 1995, 15, 315–319. [Google Scholar] [PubMed]
- Lindner, D.J.; Kolla, V.; Kalvakolanu, D.V.; Borden, E.C. Tamoxifen enhances interferon-regulated gene expression in breast cancer cells. Mol. Cell Biochem. 1997, 167, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Gibson, D.F.C.; Johnson, D.A.; Goldstein, D.; Langan-Fahey, S.M.; Borden, E.C.; Jordan, V.C. Human recombinant IFN-beta ser and Tamoxifen: Growth suppressive effects for the human breast carcinoma MCF-7 grown in the athymic mouse. Breast Cancer Res. Treat 1993, 25, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Kolla, V.; Lindner, D.J.; Weihua, X.; Borden, E.C.; Kalvakolanu, D.V. Modulation of interferon inducible gene expression by retinoic acid: Upregulation of stat1 protein in IFN unresponsive cells. J. Biol. Chem. 1996, 271, 10508–10514. [Google Scholar] [CrossRef] [Green Version]
- Recchia, F.; Sica, G.; de Filippis, S.; Discepoli, S.; Rea, S.; Torchio, P.; Frati, L. Interferon-beta, retinoids, and tamoxifen in the treatment of metastatic breast cancer: A phase II study. J. Interferon Cytokine Res. 1995, 15, 605–610. [Google Scholar] [CrossRef]
- Recchia, F.; Rea, S.; Pompili, P.; Casucci, D.; Rea, M.J.; Rizzo, F.; Gulino, A.; Frati, L. Beta-interferon, retinoids and tamoxifen as maintenance therapy in metastatic breast cancer. A pilot study. Clin Ter. 1995, 146, 603–610. [Google Scholar]
- Recchia, F.; Rea, S.; De Filippis, S.; Rosselli, M.; Corrao, G.; Gulino, A.; Sica, G. Beta-interferon, retinoids and tamoxifen combination in advanced breast cancer. Clin Ter. 1998, 149, 203–208. [Google Scholar]
- Recchia, F.; Frati, L.; Rea, S.; Torchio, P.; Sica, G. Minimal residual disease in metastatic breast cancer: Treatment with IFN-beta, retinoids, and tamoxifen. J. Interferon Cytokine Res. 1998, 18, 41–47. [Google Scholar] [CrossRef]
- Chiesa, M.D. Tamoxifen versus tamoxifen plus 13-cis-retinoic acid versus tamoxifen plus interferon alpha-2a as first-line endocrine treatments in advanced breast cancer: Updated results of a phase II, prospective, randomised, multicentre trial. Acta Biomed. 2007, 78, 204–209. [Google Scholar]
- Recchia, F.; Sica, G.; Candeloro, G.; Necozione, S.; Bisegna, R.; Bratta, M.; Rea, S. Beta-interferon, retinoids and tamoxifen in metastatic breast cancer: Long-term follow-up of a phase II study. Oncol Rep. 2009, 21, 1011–1016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thepot, S.; Itzykson, R.; Seegers, V.; Raffoux, E.; Quesnel, B.; Chait, Y.; Sorin, L.; Dreyfus, F.; Cluzeau, T.; Delaunay, J.; et al. Treatment of progression of Philadelphia-negative myeloproliferative neoplasms to myelodysplastic syndrome or acute myeloid leukemia by azacitidine: A report on 54 cases on the behalf of the Groupe Francophone des Myelodysplasies (GFM). Blood 2010, 116, 3735–3742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Assi, R.; Kantarjian, H.M.; Garcia-Manero, G.; Cortes, J.E.; Pemmaraju, N.; Wang, X.; Nogueras-Gonzalez, G.; Jabbour, E.; Bose, P.; Kadia, T.; et al. A phase II trial of ruxolitinib in combination with azacytidine in myelodysplastic syndrome/myeloproliferative neoplasms. Am. J. Hematol. 2018, 93, 277–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiappinelli, K.B.; Strissel, P.L.; Desrichard, A.; Li, H.; Henke, C.; Akman, B.; Hein, A.; Rote, N.S.; Cope, L.M.; Snyder, A.; et al. Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell 2015, 162, 974–986. [Google Scholar] [CrossRef] [Green Version]
- Roulois, D.; Loo Yau, H.; Singhania, R.; Wang, Y.; Danesh, A.; Shen, S.Y.; Han, H.; Liang, G.; Jones, P.A.; Pugh, T.J.; et al. DNA-demethylating agents target colorectal cancer cells by inducing viral mimicry by endogenous transcripts. Cell 2015, 162, 961–973. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.B.; Khan, D.H.; Hurren, R.; Xu, M.; Na, Y.; Kang, H.; Mirali, S.; Wang, X.; Gronda, M.; Jitkova, Y.; et al. Venetoclax enhances T cell-mediated antileukemic activity by increasing ROS production. Blood 2021, 138, 234–245. [Google Scholar] [CrossRef]
- Bruins, W.S.C.; Zweegman, S.; Mutis, T.; van de Donk, N.W.C.J. Targeted Therapy with Immunoconjugates for Multiple Myeloma. Front Immunol. 2020, 11, 1155. [Google Scholar] [CrossRef]
- Swan, D.; Routledge, D.; Harrison, S. The evolving status of immunotherapies in multiple myeloma: The future role of bispecific antibodies. Br. J. Haematol. 2022, 196, 488–506. [Google Scholar] [CrossRef]
- Wanve, M.; Kaur, H.; Sarmah, D.; Saraf, J.; Pravalika, K.; Vats, K.; Kalia, K.; Borah, A.; Yavagal, D.R.; Dave, K.R.; et al. Therapeutic spectrum of interferon-β in ischemic stroke. J. Neurosci. Res. 2019, 97, 116–127. [Google Scholar] [CrossRef]
Impact Upon | rIFN-α2 | rIFN-β | Comments/Questions |
---|---|---|---|
Disease-Initiating/ Propagating Mechanisms | |||
Type I Interferon Deficiency | Does treatment with type I IFNs restore the IFN deficiency state in elderly MPN-patients, in whom age-related type I IFN deficiency is prevalent? | ||
Hyperinflammation | Does treatment with type I IFNs decrease the chronic inflammatory state in MPNs, thereby decreasing the inflammatory drive on the malignant clone? Does the anti-inflammatory potential of rIFN-α2 or rIFN-β protect against progressive COVID-19 infection due to their impact on the hyperinflammatory state and the inflammation-mediated in vivo activation of leukocytes, platelets, and endothelial cells? | ||
Granulocytosis Monocytosis Thrombocytosis | Treatment with rIFN-α2 decreases granulocytosis, monocytosis, and thrombocytosis in MPNs. rIFN-β has been shown to possess antiproliferative capabilities. Thus, the toxicity profile of rIFN-β includes granulocytopenia, monocytopenia, and thrombocytopenia, as shown in several multiple sclerosis studies. Therefore, rIFN-β can likely reduce granulocytosis, monocytosis, and thrombocytosis in MPNs. Does type I rIFN therapy protect against progressive COVID-19 infection due to its impact on granulocyte counts and inflammation-mediated in vivo activation of leukocytes, platelets, and endothelial cells? | ||
Thrombosis | Does treatment with rIFN-α2 or rIFN-β reduce the risk of thrombosis? | ||
NETosis | Does treatment with rIFN-α2 or rIFN-β inhibit NETosis formation? |
Biomarker | Impact | Comments |
---|---|---|
Viral Replication | rIFN-α2 and rIFN-β are highly potent antiviral agents [108,109,110,111,112,113,114,115,130,131,132,133,134,135,136] | |
Type 1 IFN Deficiency | rIFNs restore the IFN deficiency state, thereby impairing viral replication and viral shedding [108,109,110,111,112,113,114,115] | |
Immune Response | rIFNs strongly boost virtually all immune cells (e.g., dendritic cells, B cells, T cells, NK cells), thereby impairing viral replication and viral shedding [108,109,110,111,112,113,114,115,118,119,120,121,122,123,124,125,126,130,131,132,133,134,135,136,153] | |
Hyperinflammation | Through the impairment of viral replication, rIFNs alleviate the primary trigger and driver of the cytokine storm; this holds true in the early disease stage. If administered during the cytokine storm, rIFNs may “fuel the fire” and aggravate clinical deterioration, although this issue is controversial [108,109,110,111,112,113,114,115] | |
Thrombosis Risk | ? | rIFN-α2 normo- or downregulates upregulated thromboinflammatory genes, including PAD4, which mediates NETosis (to be submitted) |
Clinical Improvement | ||
COVID-19 | Several studies have reported clinical improvement during treatment with either rIFN-α2 or rIFN-β [112,113,114,115] | |
Chronic Blood Cancers (ET, PV, and Myelofibrosis) (MPNs) | Excellent safety and efficacy profiles: rIFN-α2 normalizes elevated cell counts within weeks to months, which can be explained by several mechanisms, including directly targeting the malignant stem cells (or targeting SARS-CoV-2 in COVID-19) in concert with boosting of immune cells and upregulation of downregulated (inflammation-mediated?) HLA genes [22,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102] | |
Hepatitis B and C | Excellent safety and efficacy profiles: For decades, rIFN-α2 (rIFN-α2a or rIFN-α2b) has been one of the standard treatments for hepatitis B and C [108,109,110] | |
Multiple Sclerosis | Excellent safety and efficacy profiles: For decades, rIFN-β has been one of the standard treatments for MS [104,105,106,107] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hasselbalch, H.; Skov, V.; Kjær, L.; Larsen, M.K.; Knudsen, T.A.; Lucijanić, M.; Kusec, R. Recombinant Interferon-β in the Treatment of Polycythemia Vera and Related Neoplasms: Rationales and Perspectives. Cancers 2022, 14, 5495. https://doi.org/10.3390/cancers14225495
Hasselbalch H, Skov V, Kjær L, Larsen MK, Knudsen TA, Lucijanić M, Kusec R. Recombinant Interferon-β in the Treatment of Polycythemia Vera and Related Neoplasms: Rationales and Perspectives. Cancers. 2022; 14(22):5495. https://doi.org/10.3390/cancers14225495
Chicago/Turabian StyleHasselbalch, Hans, Vibe Skov, Lasse Kjær, Morten Kranker Larsen, Trine A. Knudsen, Marko Lucijanić, and Rajko Kusec. 2022. "Recombinant Interferon-β in the Treatment of Polycythemia Vera and Related Neoplasms: Rationales and Perspectives" Cancers 14, no. 22: 5495. https://doi.org/10.3390/cancers14225495
APA StyleHasselbalch, H., Skov, V., Kjær, L., Larsen, M. K., Knudsen, T. A., Lucijanić, M., & Kusec, R. (2022). Recombinant Interferon-β in the Treatment of Polycythemia Vera and Related Neoplasms: Rationales and Perspectives. Cancers, 14(22), 5495. https://doi.org/10.3390/cancers14225495