Triple Combination of Immune Checkpoint Inhibitors and BRAF/MEK Inhibitors in BRAFV600 Melanoma: Current Status and Future Perspectives
Abstract
:Simple Summary
Abstract
1. Introduction
Preclinical Evidence for Improved Antitumor Activity of Immunotherapy with BRAF and MEK Inhibitors in BRAFV600 Melanoma
2. Current Status
2.1. Published Studies in the First-Line Setting
2.1.1. Keynote-022 Study: Pembrolizumab, Dabrafenib and Trametinib
2.1.2. IMspire150 Study: Atezolizumab, Vemurafenib and Cobimetinib
2.1.3. COMBI-i Study: Spartalizumab, Dabrafenib and Trametinib
2.1.4. Toxicity Profiles
2.2. Treatment Sequence and First-Line Treatment Selection in BRAFV600 Mutant Melanoma
2.3. Treatment Sequence and Triple Combination in the Neoadjuvant Treatment of Resectable BRAFV600-Mutant Stage III Melanoma
2.4. Treatment Selection in BRAFV600-Mutant Patients with Active Brain Metastases
3. Perspective
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Larkin, J.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J.J.; Rutkowski, P.; Lao, C.D.; Cowey, C.L.; Schadendorf, D.; Wagstaff, J.; Dummer, R.; et al. Five-Year Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma. N. Engl. J. Med. 2019, 381, 1535–1546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robert, C.; Long, G.V.; Brady, B.; Dutriaux, C.; Maio, M.; Mortier, L.; Hassel, J.C.; Rutkowski, P.; McNeil, C.; Kalinka-Warzocha, E.; et al. Nivolumab in previously untreated melanoma without BRAF mutation. N. Engl. J. Med. 2015, 372, 320–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robert, C.; Grob, J.J.; Stroyakovskiy, D.; Karaszewska, B.; Hauschild, A.; Levchenko, E.; Chiarion Sileni, V.; Schachter, J.; Garbe, C.; Bondarenko, I.; et al. Five-Year Outcomes with Dabrafenib plus Trametinib in Metastatic Melanoma. N. Engl. J. Med. 2019, 381, 626–636. [Google Scholar] [CrossRef] [PubMed]
- Dummer, R.; Flaherty, K.T.; Robert, C.; Arance, A.; de Groot, J.W.B.; Garbe, C.; Gogas, H.J.; Gutzmer, R.; Krajsova, I.; Liszkay, G.; et al. COLUMBUS 5-Year Update: A Randomized, Open-Label, Phase III Trial of Encorafenib Plus Binimetinib Versus Vemurafenib or Encorafenib in Patients With BRAF V600-Mutant Melanoma. J. Clin. Oncol. 2022. [Google Scholar] [CrossRef]
- Wolchok, J.D.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J.J.; Rutkowski, P.; Lao, C.D.; Cowey, C.L.; Schadendorf, D.; Wagstaff, J.; Dummer, R.; et al. Long-Term Outcomes With Nivolumab Plus Ipilimumab or Nivolumab Alone Versus Ipilimumab in Patients With Advanced Melanoma. J. Clin. Oncol. 2022, 40, 127–137. [Google Scholar] [CrossRef]
- Ascierto, P.A.; Kirkwood, J.M.; Grob, J.J.; Simeone, E.; Grimaldi, A.M.; Maio, M.; Palmieri, G.; Testori, A.; Marincola, F.M.; Mozzillo, N. The role of BRAF V600 mutation in melanoma. J. Transl. Med. 2012, 10, 85. [Google Scholar] [CrossRef] [Green Version]
- Long, G.V.; Stroyakovskiy, D.; Gogas, H.; Levchenko, E.; de Braud, F.; Larkin, J.; Garbe, C.; Jouary, T.; Hauschild, A.; Grob, J.J.; et al. Combined BRAF and MEK inhibition versus BRAF inhibition alone in melanoma. N. Engl. J. Med. 2014, 371, 1877–1888. [Google Scholar] [CrossRef] [Green Version]
- Kakadia, S.; Yarlagadda, N.; Awad, R.; Kundranda, M.; Niu, J.; Naraev, B.; Mina, L.; Dragovich, T.; Gimbel, M.; Mahmoud, F. Mechanisms of resistance to BRAF and MEK inhibitors and clinical update of US Food and Drug Administration-approved targeted therapy in advanced melanoma. OncoTargets Ther. 2018, 11, 7095–7107. [Google Scholar] [CrossRef] [Green Version]
- Long, G.V.; Stroyakovskiy, D.; Gogas, H.; Levchenko, E.; de Braud, F.; Larkin, J.; Garbe, C.; Jouary, T.; Hauschild, A.; Grob, J.J.; et al. Dabrafenib and trametinib versus dabrafenib and placebo for Val600 BRAF-mutant melanoma: A multicentre, double-blind, phase 3 randomised controlled trial. Lancet 2015, 386, 444–451. [Google Scholar] [CrossRef]
- Khair, D.O.; Bax, H.J.; Mele, S.; Crescioli, S.; Pellizzari, G.; Khiabany, A.; Nakamura, M.; Harris, R.J.; French, E.; Hoffmann, R.M.; et al. Combining Immune Checkpoint Inhibitors: Established and Emerging Targets and Strategies to Improve Outcomes in Melanoma. Front. Immunol. 2019, 10, 453. [Google Scholar] [CrossRef]
- Dummer, R.; Ascierto, P.A.; Nathan, P.; Robert, C.; Schadendorf, D. Rationale for Immune Checkpoint Inhibitors Plus Targeted Therapy in Metastatic Melanoma: A Review. JAMA Oncol. 2020, 6, 1957–1966. [Google Scholar] [CrossRef] [PubMed]
- Sumimoto, H.; Imabayashi, F.; Iwata, T.; Kawakami, Y. The BRAF-MAPK signaling pathway is essential for cancer-immune evasion in human melanoma cells. J. Exp. Med. 2006, 203, 1651–1656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khalili, J.S.; Liu, S.; Rodriguez-Cruz, T.G.; Whittington, M.; Wardell, S.; Liu, C.; Zhang, M.; Cooper, Z.A.; Frederick, D.T.; Li, Y.; et al. Oncogenic BRAF(V600E) promotes stromal cell-mediated immunosuppression via induction of interleukin-1 in melanoma. Clin. Cancer Res. 2012, 18, 5329–5340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilmott, J.S.; Long, G.V.; Howle, J.R.; Haydu, L.E.; Sharma, R.N.; Thompson, J.F.; Kefford, R.F.; Hersey, P.; Scolyer, R.A. Selective BRAF inhibitors induce marked T-cell infiltration into human metastatic melanoma. Clin. Cancer Res. 2012, 18, 1386–1394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frederick, D.T.; Piris, A.; Cogdill, A.P.; Cooper, Z.A.; Lezcano, C.; Ferrone, C.R.; Mitra, D.; Boni, A.; Newton, L.P.; Liu, C.; et al. BRAF inhibition is associated with enhanced melanoma antigen expression and a more favorable tumor microenvironment in patients with metastatic melanoma. Clin. Cancer Res. 2013, 19, 1225–1231. [Google Scholar] [CrossRef] [Green Version]
- Long, G.V.; Wilmott, J.S.; Haydu, L.E.; Tembe, V.; Sharma, R.; Rizos, H.; Thompson, J.F.; Howle, J.; Scolyer, R.A.; Kefford, R.F. Effects of BRAF inhibitors on human melanoma tissue before treatment, early during treatment, and on progression. Pigment Cell Melanoma Res. 2013, 26, 499–508. [Google Scholar] [CrossRef]
- Larkin, J.; Ascierto, P.A.; Dreno, B.; Atkinson, V.; Liszkay, G.; Maio, M.; Mandala, M.; Demidov, L.; Stroyakovskiy, D.; Thomas, L.; et al. Combined vemurafenib and cobimetinib in BRAF-mutated melanoma. N. Engl. J. Med. 2014, 371, 1867–1876. [Google Scholar] [CrossRef] [Green Version]
- Robert, C.; Karaszewska, B.; Schachter, J.; Rutkowski, P.; Mackiewicz, A.; Stroiakovski, D.; Lichinitser, M.; Dummer, R.; Grange, F.; Mortier, L.; et al. Improved overall survival in melanoma with combined dabrafenib and trametinib. N. Engl. J. Med. 2015, 372, 30–39. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.S.; Mellman, I. Oncology meets immunology: The cancer-immunity cycle. Immunity 2013, 39, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Boni, A.; Cogdill, A.P.; Dang, P.; Udayakumar, D.; Njauw, C.N.; Sloss, C.M.; Ferrone, C.R.; Flaherty, K.T.; Lawrence, D.P.; Fisher, D.E.; et al. Selective BRAFV600E inhibition enhances T-cell recognition of melanoma without affecting lymphocyte function. Cancer Res. 2010, 70, 5213–5219. [Google Scholar] [CrossRef]
- Brea, E.J.; Oh, C.Y.; Manchado, E.; Budhu, S.; Gejman, R.S.; Mo, G.; Mondello, P.; Han, J.E.; Jarvis, C.A.; Ulmert, D.; et al. Kinase Regulation of Human MHC Class I Molecule Expression on Cancer Cells. Cancer Immunol. Res. 2016, 4, 936–947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ribas, A.; Hodi, F.S.; Callahan, M.; Konto, C.; Wolchok, J. Hepatotoxicity with combination of vemurafenib and ipilimumab. N. Engl. J. Med. 2013, 368, 1365–1366. [Google Scholar] [CrossRef] [PubMed]
- Hu-Lieskovan, S.; Mok, S.; Homet Moreno, B.; Tsoi, J.; Robert, L.; Goedert, L.; Pinheiro, E.M.; Koya, R.C.; Graeber, T.G.; Comin-Anduix, B.; et al. Improved antitumor activity of immunotherapy with BRAF and MEK inhibitors in BRAF(V600E) melanoma. Sci. Transl. Med. 2015, 7, 279ra241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deken, M.A.; Gadiot, J.; Jordanova, E.S.; Lacroix, R.; van Gool, M.; Kroon, P.; Pineda, C.; Geukes Foppen, M.H.; Scolyer, R.; Song, J.Y.; et al. Targeting the MAPK and PI3K pathways in combination with PD1 blockade in melanoma. Oncoimmunology 2016, 5, e1238557. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Liu, S.; Yang, Z.; Algazi, A.P.; Lomeli, S.H.; Wang, Y.; Othus, M.; Hong, A.; Wang, X.; Randolph, C.E.; et al. Anti-PD-1/L1 lead-in before MAPK inhibitor combination maximizes antitumor immunity and efficacy. Cancer Cell 2021, 39, 1375–1387.e1376. [Google Scholar] [CrossRef]
- Schadendorf, D.; Dummer, R.; Robert, C.; Ribas, A.; Sullivan, R.J.; Panella, T.; McKean, M.; Santos, E.S.; Brill, K.; Polli, A.; et al. STARBOARD: Encorafenib + binimetinib + pembrolizumab for first-line metastatic/unresectable BRAF V600-mutant melanoma. Future Oncol. 2022, 18, 2041–2051. [Google Scholar] [CrossRef]
- Sullivan, R.J.; Hamid, O.; Gonzalez, R.; Infante, J.R.; Patel, M.R.; Hodi, F.S.; Lewis, K.D.; Tawbi, H.A.; Hernandez, G.; Wongchenko, M.J.; et al. Atezolizumab plus cobimetinib and vemurafenib in BRAF-mutated melanoma patients. Nat. Med. 2019, 25, 929–935. [Google Scholar] [CrossRef]
- Ferrucci, P.F.; Di Giacomo, A.M.; Del Vecchio, M.; Atkinson, V.; Schmidt, H.; Schachter, J.; Queirolo, P.; Long, G.V.; Stephens, R.; Svane, I.M.; et al. KEYNOTE-022 part 3: A randomized, double-blind, phase 2 study of pembrolizumab, dabrafenib, and trametinib in BRAF-mutant melanoma. J. Immunother. Cancer 2020, 8, e001806. [Google Scholar] [CrossRef]
- Ribas, A.; Ferrucci, P.F.; Atkinson, V.; Stephens, R.; Long, G.V.; Lawrence, D.P.; Vecchio, M.D.; Hamid, O.; Schmidt, H.; Schachter, J.; et al. Pembrolizumab (pembro) plus dabrafenib (dab) and trametinib (tram) in BRAFV600E/K-mutant melanoma: Long-term follow-up of KEYNOTE-022 parts 1, 2, and 3. J. Clin. Oncol. 2022, 40, 9516. [Google Scholar] [CrossRef]
- Gutzmer, R.; Stroyakovskiy, D.; Gogas, H.; Robert, C.; Lewis, K.; Protsenko, S.; Pereira, R.P.; Eigentler, T.; Rutkowski, P.; Demidov, L.; et al. Atezolizumab, vemurafenib, and cobimetinib as first-line treatment for unresectable advanced BRAF(V600) mutation-positive melanoma (IMspire150): Primary analysis of the randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2020, 395, 1835–1844. [Google Scholar] [CrossRef]
- McArthur, G.A.; Gutzmer, R.; Stroyakovskiy, D.; Gogas, H.; Robert, C.; Protsenko, S.; Pereira, R.P.; Eigentler, T.; Rutkowski, P.; Demidov, L.V.; et al. Overall survival (OS) with first-line atezolizumab (A) or placebo (P) in combination with vemurafenib (V) and cobimetinib (C) in BRAFV600 mutation-positive advanced melanoma: Second interim OS analysis of the phase 3 IMspire150 study. J. Clin. Oncol. 2022, 40, 9547. [Google Scholar] [CrossRef]
- Dummer, R.; Long, G.V.; Robert, C.; Tawbi, H.A.; Flaherty, K.T.; Ascierto, P.A.; Nathan, P.D.; Rutkowski, P.; Leonov, O.; Dutriaux, C.; et al. Randomized Phase III Trial Evaluating Spartalizumab Plus Dabrafenib and Trametinib for BRAF V600-Mutant Unresectable or Metastatic Melanoma. J. Clin. Oncol. 2022, 40, 1428–1438. [Google Scholar] [CrossRef] [PubMed]
- Ascierto, P.A.; Ferrucci, P.F.; Fisher, R.; Del Vecchio, M.; Atkinson, V.; Schmidt, H.; Schachter, J.; Queirolo, P.; Long, G.V.; Di Giacomo, A.M.; et al. Dabrafenib, trametinib and pembrolizumab or placebo in BRAF-mutant melanoma. Nat. Med. 2019, 25, 941–946. [Google Scholar] [CrossRef] [PubMed]
- Dummer, R.; Long, G.V.; Tawbi, H.A.; Flaherty, K.; Ascierto, P.A.; Nathan, P.D.; Rutkowski, P.; Leonov, O.; Mandalà, M.; Lorigan, P.; et al. Dabrafenib (D) and trametinib (T) plus spartalizumab (S) in patients (pts) with previously untreated BRAF V600–mutant unresectable or metastatic melanoma: Three-year overall survival (OS) data from the randomized part 3 of the phase III COMBI-i trial. J. Clin. Oncol. 2022, 40, 9527. [Google Scholar] [CrossRef]
- Robert, C.; Lewis, K.D.; Gutzmer, R.; Stroyakovskiy, D.; Gogas, H.; Protsenko, S.; Pereira, R.P.; Eigentler, T.; Rutkowski, P.; Demidov, L.; et al. Biomarkers of treatment benefit with atezolizumab plus vemurafenib plus cobimetinib in BRAF(V600) mutation-positive melanoma. Ann. Oncol. 2022, 33, 544–555. [Google Scholar] [CrossRef] [PubMed]
- Nathan, P.; Grob, J.; Dummer, R.; Ascierto, P.; Ribas, A.; Robert, C.; Schadendorf, D.; Flaherty, K.; Tawbi, H.; Hauschild, A.; et al. 819P Efficacy of dabrafenib (D) trametinib (T) plus spartalizumab (S) by baseline site of metastases in patients (pts) with previously untreated BRAF V600-mutant unresectable or metastatic melanoma: Post hoc analysis of phase III COMBI-i trial. Ann. Oncol. 2022, 33, S921–S922. [Google Scholar] [CrossRef]
- Schadendorf, D.; Flaherty, K.; Tawbi, H.; Robert, C.; Nathan, P.; Dummer, R.; Long, G.; Ascierto, P.; Mandala, M.; Hauschild, A.; et al. 871P Predictive role of neutrophil-lymphocyte ratio (NLR) in patients (pts) with metastatic melanoma: A post hoc exploratory analysis from phase III COMBI-i trial. Ann. Oncol. 2022, 33, S947–S948. [Google Scholar] [CrossRef]
- Heinzerling, L.; Eigentler, T.K.; Fluck, M.; Hassel, J.C.; Heller-Schenck, D.; Leipe, J.; Pauschinger, M.; Vogel, A.; Zimmer, L.; Gutzmer, R. Tolerability of BRAF/MEK inhibitor combinations: Adverse event evaluation and management. ESMO Open 2019, 4, e000491. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.Y.; Salem, J.E.; Cohen, J.V.; Chandra, S.; Menzer, C.; Ye, F.; Zhao, S.; Das, S.; Beckermann, K.E.; Ha, L.; et al. Fatal Toxic Effects Associated With Immune Checkpoint Inhibitors: A Systematic Review and Meta-analysis. JAMA Oncol. 2018, 4, 1721–1728. [Google Scholar] [CrossRef] [Green Version]
- Dimitriou, F.; Matter, A.V.; Mangana, J.; Urosevic-Maiwald, M.; Micaletto, S.; Braun, R.P.; French, L.E.; Dummer, R. Cytokine Release Syndrome During Sequential Treatment With Immune Checkpoint Inhibitors and Kinase Inhibitors for Metastatic Melanoma. J. Immunother. 2019, 42, 29–32. [Google Scholar] [CrossRef]
- Ugurel, S.; Rohmel, J.; Ascierto, P.A.; Becker, J.C.; Flaherty, K.T.; Grob, J.J.; Hauschild, A.; Larkin, J.; Livingstone, E.; Long, G.V.; et al. Survival of patients with advanced metastatic melanoma: The impact of MAP kinase pathway inhibition and immune checkpoint inhibition—Update 2019. Eur. J. Cancer 2020, 130, 126–138. [Google Scholar] [CrossRef] [PubMed]
- Ascierto, P.A.; Mandala, M.; Ferrucci, P.F.; Guidoboni, M.; Rutkowski, P.; Ferraresi, V.; Arance, A.; Guida, M.; Maiello, E.; Gogas, H.; et al. Sequencing of Ipilimumab Plus Nivolumab and Encorafenib Plus Binimetinib for Untreated BRAF-Mutated Metastatic Melanoma (SECOMBIT): A Randomized, Three-Arm, Open-Label Phase II Trial. J. Clin. Oncol. 2022. [Google Scholar] [CrossRef] [PubMed]
- Haas, L.; Elewaut, A.; Gerard, C.L.; Umkehrer, C.; Leiendecker, L.; Pedersen, M.; Krecioch, I.; Hoffmann, D.; Novatchkova, M.; Kuttke, M.; et al. Acquired resistance to anti-MAPK targeted therapy confers an immune-evasive tumor microenvironment and cross-resistance to immunotherapy in melanoma. Nat. Cancer 2021, 2, 693–708. [Google Scholar] [CrossRef] [PubMed]
- Pires da Silva, I.; Zakria, D.; Ahmed, T.; Trojanello, C.; Dimitriou, F.; Allayous, C.; Gerard, C.; Zimmer, L.; Lo, S.; Michielin, O.; et al. Efficacy and safety of anti-PD1 monotherapy or in combination with ipilimumab after BRAF/MEK inhibitors in patients with BRAF mutant metastatic melanoma. J. Immunother. Cancer 2022, 10, e004610. [Google Scholar] [CrossRef] [PubMed]
- Atkins, M.B.; Lee, S.J.; Chmielowski, B.; Tarhini, A.A.; Cohen, G.I.; Truong, T.G.; Moon, H.H.; Davar, D.; O’Rourke, M.; Stephenson, J.J.; et al. Combination dabrafenib and trametinib versus combination nivolumab and ipilimumab for patients with advanced BRAF-mutant melanoma: The DREAMseq Trial—ECOG-ACRIN EA6134. J. Clin. Oncol. 2022. [Google Scholar] [CrossRef]
- Schadendorf, D.; Gogas, H.; Sekulovic, L.K.; Meier, F.E.; Eigentler, T.; Simon, J.-C.; Terheyden, P.A.M.; Gesierich, A.H.; Herbst, R.A.; Kähler, K.C.; et al. Efficacy and safety of sequencing with vemurafenib (V) plus cobimetinib (C) followed by atezolizumab (Atezo) in patients (pts) with advanced BRAFV600-positive melanoma: Interim analysis of the ImmunoCobiVem study. J. Clin. Oncol. 2022, 40, 9548. [Google Scholar] [CrossRef]
- Liu, J.; Blake, S.J.; Yong, M.C.; Harjunpaa, H.; Ngiow, S.F.; Takeda, K.; Young, A.; O’Donnell, J.S.; Allen, S.; Smyth, M.J.; et al. Improved Efficacy of Neoadjuvant Compared to Adjuvant Immunotherapy to Eradicate Metastatic Disease. Cancer Discov. 2016, 6, 1382–1399. [Google Scholar] [CrossRef] [Green Version]
- Oba, T.; Kajihara, R.; Yokoi, T.; Repasky, E.A.; Ito, F. Neoadjuvant In Situ Immunomodulation Enhances Systemic Antitumor Immunity against Highly Metastatic Tumors. Cancer Res. 2021, 81, 6183–6195. [Google Scholar] [CrossRef]
- Witt, R.G.; Erstad, D.J.; Wargo, J.A. Neoadjuvant therapy for melanoma: Rationale for neoadjuvant therapy and pivotal clinical trials. Ther. Adv. Med. Oncol. 2022, 14, 17588359221083052. [Google Scholar] [CrossRef]
- Amaria, R.N.; Postow, M.; Burton, E.M.; Tezlaff, M.T.; Ross, M.I.; Torres-Cabala, C.; Glitza, I.C.; Duan, F.; Milton, D.R.; Busam, K.; et al. Neoadjuvant relatlimab and nivolumab in resectable melanoma. Nature 2022, 611, 155–160. [Google Scholar] [CrossRef]
- Blank, C.; van Akkooi, A.; Rozeman, E.A.; Kvistborg, P.; van Thienen, H.V.; Stegenga, B.; Lamon, B.; Haanen, J.B.A.G.; Schumacher, T. (Neo-)adjuvant ipilimumab + nivolumab (IPI + NIVO) in palpable stage 3 melanoma–initial data from the OpACIN trial. Ann. Oncol. 2016, 27, vi575. [Google Scholar] [CrossRef]
- Rozeman, E.A.; Menzies, A.M.; van Akkooi, A.C.J.; Adhikari, C.; Bierman, C.; van de Wiel, B.A.; Scolyer, R.A.; Krijgsman, O.; Sikorska, K.; Eriksson, H.; et al. Identification of the optimal combination dosing schedule of neoadjuvant ipilimumab plus nivolumab in macroscopic stage III melanoma (OpACIN-neo): A multicentre, phase 2, randomised, controlled trial. Lancet Oncol. 2019, 20, 948–960. [Google Scholar] [CrossRef]
- Versluis, J.M.; Sikorska, K.; Rozeman, E.A.; Menzies, A.M.; Eriksson, H.; Klop, W.M.C.; Saw, R.P.M.; Wiel, B.A.v.d.; Scolyer, R.A.; van Thienen, J.V.; et al. Survival update of neoadjuvant ipilimumab + nivolumab in macroscopic stage III melanoma: The OpACIN and OpACIN-neo trials. J. Clin. Oncol. 2022, 40, 9572. [Google Scholar] [CrossRef]
- Long, G.V.; Saw, R.P.M.; Lo, S.; Nieweg, O.E.; Shannon, K.F.; Gonzalez, M.; Guminski, A.; Lee, J.H.; Lee, H.; Ferguson, P.M.; et al. Neoadjuvant dabrafenib combined with trametinib for resectable, stage IIIB-C, BRAF(V600) mutation-positive melanoma (NeoCombi): A single-arm, open-label, single-centre, phase 2 trial. Lancet Oncol. 2019, 20, 961–971. [Google Scholar] [CrossRef]
- Long, G.V.; Carlino, M.S.; Au-Yeung, G.; Spillane, A.J.; Shannon, K.F.; Gyorki, D.E.; Howle, J.R.; Ch’Ng, S.; Gonzalez, M.; Saw, R.P.M.; et al. NeoTrio: Randomized trial of neoadjuvant (NAT) pembrolizumab (Pembro) alone, in sequence (SEQ) with, or concurrent (CON) with dabrafenib plus trametinib (D+T) in resectable BRAF-mutant stage III melanoma to determine optimal combination of therapy. J. Clin. Oncol. 2022, 40, 9503. [Google Scholar] [CrossRef]
- Tawbi, H.A.; Forsyth, P.A.; Algazi, A.; Hamid, O.; Hodi, F.S.; Moschos, S.J.; Khushalani, N.I.; Lewis, K.; Lao, C.D.; Postow, M.A.; et al. Combined Nivolumab and Ipilimumab in Melanoma Metastatic to the Brain. N. Engl. J. Med. 2018, 379, 722–730. [Google Scholar] [CrossRef]
- Long, G.V.; Atkinson, V.; Lo, S.; Sandhu, S.; Guminski, A.D.; Brown, M.P.; Wilmott, J.S.; Edwards, J.; Gonzalez, M.; Scolyer, R.A.; et al. Combination nivolumab and ipilimumab or nivolumab alone in melanoma brain metastases: A multicentre randomised phase 2 study. Lancet Oncol. 2018, 19, 672–681. [Google Scholar] [CrossRef]
- Davies, M.A.; Saiag, P.; Robert, C.; Grob, J.J.; Flaherty, K.T.; Arance, A.; Chiarion-Sileni, V.; Thomas, L.; Lesimple, T.; Mortier, L.; et al. Dabrafenib plus trametinib in patients with BRAF(V600)-mutant melanoma brain metastases (COMBI-MB): A multicentre, multicohort, open-label, phase 2 trial. Lancet Oncol. 2017, 18, 863–873. [Google Scholar] [CrossRef]
- Tawbi, H.A.; Forsyth, P.A.; Hodi, F.S.; Algazi, A.P.; Hamid, O.; Lao, C.D.; Moschos, S.J.; Atkins, M.B.; Lewis, K.; Postow, M.A.; et al. Long-term outcomes of patients with active melanoma brain metastases treated with combination nivolumab plus ipilimumab (CheckMate 204): Final results of an open-label, multicentre, phase 2 study. Lancet Oncol. 2021, 22, 1692–1704. [Google Scholar] [CrossRef]
- Ascierto, P.A.; Robert, C.; Lewis, K.D.; Munhoz, R.; Liszkay, G.; Merino, L.d.l.C.; Olah, J.; Queirolo, P.; Mackiewicz, J.; Li, H.; et al. Time to central nervous system (CNS) metastases (mets) with atezolizumab (A) or placebo (P) combined with cobimetinib (C) + vemurafenib (V) in the phase III IMspire150 study. J. Clin. Oncol. 2020, 38, 10023. [Google Scholar] [CrossRef]
- Dummer, R.; Queirolo, P.; Abajo Guijarro, A.M.; Hu, Y.; Wang, D.; de Azevedo, S.J.; Robert, C.; Ascierto, P.A.; Chiarion-Sileni, V.; Pronzato, P.; et al. Atezolizumab, vemurafenib, and cobimetinib in patients with melanoma with CNS metastases (TRICOTEL): A multicentre, open-label, single-arm, phase 2 study. Lancet Oncol. 2022, 23, 1145–1155. [Google Scholar] [CrossRef]
- Ferrucci, P.F.; Gaeta, A.; Cocorocchio, E.; D’Ecclesiis, O.; Gandini, S. Meta-analysis of randomized phase II-III trials evaluating triplet combinations of immunotherapy and targeted therapy for BRAF V600-mutant unresectable or metastatic melanoma. J. Clin. Oncol. 2022, 40, 9541. [Google Scholar] [CrossRef]
- Burton, E.M.; Amaria, R.N.; Glitza, I.C.; Milton, D.R.; Diab, A.; Patel, S.P.; McQuade, J.L.; Honaker, V.; Wong, M.K.K.; Hwu, P.; et al. Phase II Study of TRIplet combination Nivolumab (N) with Dabrafenib (D) and Trametinib (T) (TRIDeNT) in patients (pts) with PD-1 naïve or refractory BRAF-mutated metastatic melanoma (MM) with or without active brain metastases. J. Clin. Oncol. 2021, 39, 9520. [Google Scholar] [CrossRef]
- van Not, O.J.; Blokx, W.A.M.; van den Eertwegh, A.J.M.; de Meza, M.M.; Haanen, J.B.; Blank, C.U.; Aarts, M.J.B.; van den Berkmortel, F.; de Groot, J.W.B.; Hospers, G.A.P.; et al. BRAF and NRAS Mutation Status and Response to Checkpoint Inhibition in Advanced Melanoma. JCO Precis. Oncol. 2022, 6, e2200018. [Google Scholar] [CrossRef]
KEYNOTE-022 | IMspire150 | COMBI-i | TRICOTEL | CheckMate-067 | COMBI-d/v | |
---|---|---|---|---|---|---|
Experimental Arm | Pembrolizumab + Dabrafenib + Trametinib | Atezolizumab + Vemurafenib + Cobimetinib | Spartalizumab + Dabrafenib + Trametinib | Atezolizumab + Vemurafenib + Cobimetinib | Ipilimumab + Nivolumab | Dabrafenib + Trametinib |
Control Arm | Dabrafenib + Trametinib | Vemurafenib + Cobimetinib | Dabrafenib + Trametinib | Atezolizumab + Cobimetinib | a. Ipilimumab b. Nivolumab | Dabrafenib |
Last Update | 22 June | 22 June | 22 June | 22 August | 21 November | 19 June |
Phase | II | III | III | II | III | III |
Number of Patients | 120 | 514 | 532 | 65 (BRAFV600), 15 (BRAFwt) | 945 | 563 |
Stage (AJCC) | III–IV | IIIC–IV | IIIC–IV | IV (M1d) | III–IV | IIIC–IV |
Active Brain Metastases | excluded | excluded | excluded | included (mandatory) | excluded | excluded |
Treatment Regimen Experimental Arm | Pembrolizumab 200 mg IV every 3 weeks + Dabrafenib 150 mg p.o. 2x/d + Trametinib 2 mg p.o. 1x/d | Cycle 1: Vemurafenib 960 mg p.o. 2x/d for 28 days + Cobimetinib 60 mg p.o. 1x/d for 21 days (7 days off) Cycle 2 onwards: Atezolizumab 840 mg IV every 2 weeks + Vemurafenib 720 mg p.o. 2x/d for 28 days + Cobimetinib 60 mg p.o. 1x/d for 21 days (7 days off) | Spartalizumab 400 mg IV every 4 weeks + Dabrafenib 150 mg p.o. 2x/d + Trametinib 2 mg p.o. 1x/d | Cycle 1: Vemurafenib 960 mg p.o. 2x/d for 28 days + Cobimetinib 60 mg p.o. 1x/d for 21 days (7 days off) Cycle 2 onwards: Atezolizumab 840 mg IV every 2 weeks + Vemurafenib 720 mg p.o. 2x/d for 28 days + Cobimetinib 60 mg p.o. 1x/d for 21 days (7 days off) | Cycle 1–4: Nivolumab 1 mg/kg BW IV + Ipilimumab 3 mg/kg BW IV every 3 weeks Cycle 5 onwards: Nivolumab 3 mg/kg BW IV every 2 weeks | Dabrafenib 150 mg p.o. 2x/d + Trametinib 2 mg p.o. 1x/d |
Treatment Regimen Control Arm | Placebo IV every 3 weeks + Dabrafenib 150 mg p.o. 2x/d + Trametinib 2 mg p.o. 1x/d | Cycle 1: Vemurafenib 960 mg p.o. 2x/d for 28 days + Cobimetinib 60 mg p.o. 1x/d for 21 days (7 days off) Cycle 2 onwards: Placebo IV every 2 weeks + Vemurafenib 960 mg p.o. 2x/d for 28 days + Cobimetinib 60 mg p.o. 1x/d for 21 days (7 days off) | Placebo IV every 4 weeks + Dabrafenib 150 mg p.o. 2x/d + Trametinib 2 mg p.o. 1x/d | Atezolizumab 840 mg IV every 2 weeks + Cobimetinib 60 mg p.o. 1x/d for 21 days (7 days off) | a. Placebo IV + Ipilimumab 3 mg/kg BW IV every 3 weeks for 4 cycles b. Placebo IV + Nivolumab 3 mg/kg BW every 3 weeks | Dabrafenib 150 mg p.o. 2x/d + Placebo p.o. 1x/d |
Median FU, months (95% CI) | 61.2 (50.7–67.5) | 29.1 (1–54) | 42.8 | 9.7 (6.3–15.0) | 80.8 (74.0–86.3) | 22 (0–76) |
ORR, % (95% CI) | 65 (52–77) | 66.7 | 68.5 (62.6–74.1) | 42 (29–54) 1 | 58 (53–64) | 68 |
Median DoR, months | 30.2 (14.1-NR) | 21 | NR (18.6-NR) | 7.4 (5.7–11.0) 1 | NR (21.0-NR) 2 | 12.9 (9.4–19.5) |
Progression-Free Survival, % (95% CI) | ||||||
Median PFS, months | 17.0 (11.3-NR) | 15.1 (11.4–18.4) | 16.2 (12.7–23.9) | 5.3 (3.8–7.2) 1 | 16.8 (8.3–32.0) 2 | 11.0 (9.5–12.8) |
1-year PFS | 62 (48.1–73.5) | - | 58 | - | - | - |
2-year PFS | 47 (33.4–58.7) | - | 44 (37–50) | - | - | 31 |
3-year PFS | - | - | - | - | 40 | 24 |
4-year PFS | - | - | - | - | - | 21 |
5-year PFS | - | - | - | - | - | 19 |
HR for PFS | 0.46 (0.29–0.75) | 0.79 (0.64–0.97) | 0.82 (0.66–1.03) | - | a. 0.44 (0.31–0.62) b. 0.62 (0.44–0.89) 2,3 | - |
Overall Survival, % (95% CI) | ||||||
Median OS, months | 46.3 (23.9-NR) | 39.0 | NR | 13.7 (9.7–19.8) | NR (50.7-NR) 2 | 25.9 (22.6–31.5) |
1-year OS | 80 (67.5–88.1) | 76.1 | - | - | - | |
2-year OS | 63 (49.4–73.9) | 62 | 67.7 (61.6–73.1) | - | - | 52 |
3-year OS | - | - | 60.1 (53.8–65.8) | - | 68 2 | 44 |
4-year OS | - | - | - | - | 62 (52–71) 2 | 37 |
5-year OS | - | - | - | - | 60 2 | 34 |
HR for OS | 0.64 (0.38–1.06) | 0.84 (0.66–1.06) | 0.80 (0.62–1.03) | - | a. 0.43 (0.30–0.60) b. 0.68 (0.46–1.02) 2,3 | - |
Discontinuation of Treatment, n (%) | 43 (72) | 115 (45) | 181 (68) | 63 (79) | - | - |
Biomarkers Associated with a Better Response to the Experimental Arm | - | PFS: elevated LDH and negative PD-L1 status, trend towards high tumor mutational burden [≥10 mutations/Mb.] [35] | PFS and OS: bone and lung involvement at baseline, high tumor load (sum of lesion diameters ≥ 66 mm at baseline or metastatic sites ≥ 3, except for patients with liver metastases) with or without elevated LDH PFS: benefit in patients with increased NLR and sum of lesion diameters compared to placebo OS: ECOG PS 1, age ≥ 65 years, negative PD-L1 status [36,37] | - | - | - |
Keynote-022 | Imspire150 | COMBI-i | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Pembrolizumab + Dabrafenib + Trametinib | Dabrafenib + Trametinib | Atezolizumab + Vemurafenib + Cobimetinib | Vemurafenib + Cobimetinib | Spartalizumab + Dabrafenib + Trametinib | Dabrafenib + Trametinib | |||||||
All | Grade ≥ 3 | All | Grade ≥ 3 | All | Grade ≥ 3 | All | Grade ≥ 3 | All | Grade ≥ 3 | All | Grade ≥ 3 | |
Treatment-related AEs | 95% | 58% | 93% | 25% | 99% | 79% | 99% | 73% | 99% | 55% | 88% | 33% |
trAEs leading to dose reduction | 27% | 15% | - | - | 88% | 49% | 73% | 37% | ||||
trAEs leading to discontinuation | 47% | 20% | 13% | 16% | 12% | 9% | 8% | 5% | ||||
Use of immune-modulatory agents to manage AEs | - | - | 63% | 51% | - | - | ||||||
Selected treatment-related AEs | ||||||||||||
Pyrexia | 71.7% | 10.0% | 68.3% | 3.3% | 39% | 1% | 26% | 1% | 66% | 5% | 44% | 3% |
Chills | 35.0% | 0.0% | 38.3% | 1.7% | - | - | - | - | 29% | 0% | 20% | <1% |
Diarrhea | 28.3% | 3.3% | 11.7% | 0.0% | 42% | 2% | 47% | 3% | 24% | <1% | 15% | 1% |
Nausea | 26.7% | 0.0% | 30.0% | 0.0% | 23% | <1% | 26% | 2% | 24% | <1% | 17% | 0% |
Skin rash | 36.7% | 5.0% | 26.7% | 0.0% | 41% | 9% | 41% | 9% | 23% | 3% | 20% | <1% |
CK elevation | - | - | - | - | 16% | 0% | 12% | <1% | 23% | 7% | 24% | 5% |
AST elevation | 20.0% | 6.7% | 20.0% | 3.3% | 34% | 13% | 23% | 9% | 21% | 3% | 14% | 1% |
ALT elevation | 20.0% | 3.3% | 16.7% | 3.3% | 30% | 8% | 20% | 4% | 18% | 3% | 13% | 2% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Welti, M.; Dimitriou, F.; Gutzmer, R.; Dummer, R. Triple Combination of Immune Checkpoint Inhibitors and BRAF/MEK Inhibitors in BRAFV600 Melanoma: Current Status and Future Perspectives. Cancers 2022, 14, 5489. https://doi.org/10.3390/cancers14225489
Welti M, Dimitriou F, Gutzmer R, Dummer R. Triple Combination of Immune Checkpoint Inhibitors and BRAF/MEK Inhibitors in BRAFV600 Melanoma: Current Status and Future Perspectives. Cancers. 2022; 14(22):5489. https://doi.org/10.3390/cancers14225489
Chicago/Turabian StyleWelti, Michèle, Florentia Dimitriou, Ralf Gutzmer, and Reinhard Dummer. 2022. "Triple Combination of Immune Checkpoint Inhibitors and BRAF/MEK Inhibitors in BRAFV600 Melanoma: Current Status and Future Perspectives" Cancers 14, no. 22: 5489. https://doi.org/10.3390/cancers14225489
APA StyleWelti, M., Dimitriou, F., Gutzmer, R., & Dummer, R. (2022). Triple Combination of Immune Checkpoint Inhibitors and BRAF/MEK Inhibitors in BRAFV600 Melanoma: Current Status and Future Perspectives. Cancers, 14(22), 5489. https://doi.org/10.3390/cancers14225489