The Glasgow Prognostic Score Predicts Survival Outcomes in Neuroendocrine Neoplasms of the Gastro–Entero–Pancreatic (GEP-NEN) System
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Baseline Clinicopathological Characteristics
2.2. Prognostic Risk Scores/Ratios
2.3. Treatment and Responses
2.4. Ethics Statement
2.5. Statistics
3. Results
3.1. Clinicopathological Characteristics
3.2. Prognostic Scoring Systems
3.3. Treatment Characteristics
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Scherubl, H.; Streller, B.; Stabenow, R.; Herbst, H.; Hopfner, M.; Schwertner, C.; Steinberg, J.; Eick, J.; Ring, W.; Tiwari, K.; et al. Clinically detected gastroenteropancreatic neuroendocrine tumors are on the rise: Epidemiological changes in Germany. World J. Gastroenterol. 2013, 19, 9012–9019. [Google Scholar] [CrossRef] [PubMed]
- Dasari, A.; Shen, C.; Halperin, D.; Zhao, B.; Zhou, S.; Xu, Y.; Shih, T.; Yao, J.C. Trends in the Incidence, Prevalence, and Survival Outcomes in Patients With Neuroendocrine Tumors in the United States. JAMA Oncol. 2017, 3, 1335–1342. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Dasari, A. Epidemiology, Incidence, and Prevalence of Neuroendocrine Neoplasms: Are There Global Differences? Curr. Oncol. Rep. 2021, 23, 43. [Google Scholar] [CrossRef]
- Kasper, D.L.; Fauci, A.S.; Hauser, S.L. Harrisons Innere Medizin 1 Innere Medizin, 19. Auflage, in Zusammenarbeit mit der Charité ed.; ABW Wissenschaftsverlag: Berlin, Germany, 2016. [Google Scholar]
- Taal, B.G.; Visser, O. Epidemiology of neuroendocrine tumours. Neuroendocrinology 2004, 80 (Suppl. 1), 3–7. [Google Scholar] [CrossRef]
- Kumar, V.; Abbas, A.K.; Aster, J.C.; Perkins, J.A.; Robbins, S.L.; Cotran, R.S. Robbins and Cotran Pathologic Basis of Disease, 9th ed.; Elsevier: Saunders, PA, USA, 2015. [Google Scholar]
- Rinke, A.; Wiedenmann, B.; Auernhammer, C.; Bartenstein, P.; Bartsch, D.K.; Begum, N.; Faiss, S.; Fottner, C.; Gebauer, B.; Goretzki, P. S2k-Leitlinie Neuroendokrine Tumore. Z. Für Gastroenterol. 2018, 56, 583–681. [Google Scholar] [CrossRef] [Green Version]
- Sorbye, H.; Strosberg, J.; Baudin, E.; Klimstra, D.S.; Yao, J.C. Gastroenteropancreatic high-grade neuroendocrine carcinoma. Cancer 2014, 120, 2814–2823. [Google Scholar] [CrossRef] [PubMed]
- Modlin, I.M.; Lye, K.D.; Kidd, M. A 5-decade analysis of 13,715 carcinoid tumors. Cancer 2003, 97, 934–959. [Google Scholar] [CrossRef] [PubMed]
- Godwin, J.D., II. Carcinoid tumors. An analysis of 2837 cases. Cancer 1975, 36, 560–569. [Google Scholar] [CrossRef]
- Yao, J.C.; Hassan, M.; Phan, A.; Dagohoy, C.; Leary, C.; Mares, J.E.; Abdalla, E.K.; Fleming, J.B.; Vauthey, J.N.; Rashid, A.; et al. One hundred years after “carcinoid”: Epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. J. Clin. Oncol. 2008, 26, 3063–3072. [Google Scholar] [CrossRef] [Green Version]
- Pavel, M.; Oberg, K.; Falconi, M.; Krenning, E.P.; Sundin, A.; Perren, A.; Berruti, A.; Esmo Guidelines Committee. Gastroenteropancreatic neuroendocrine neoplasms: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2020, 31, 844–860. [Google Scholar] [CrossRef]
- Nagtegaal, I.D.; Odze, R.D.; Klimstra, D.; Paradis, V.; Rugge, M.; Schirmacher, P.; Washington, K.M.; Carneiro, F.; Cree, I.A.; WHO Classification of Tumours Editorial Board. The 2019 WHO classification of tumours of the digestive system. Histopathology 2020, 76, 182–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klimstra, D.S. Pathology reporting of neuroendocrine tumors: Essential elements for accurate diagnosis, classification, and staging. In Seminars in Oncology; WB Saunders: Philadelphia, PA, USA, 2013; Volume 40, pp. 23–36. [Google Scholar] [CrossRef]
- Kloppel, G.; Rindi, G.; Perren, A.; Komminoth, P.; Klimstra, D.S. The ENETS and AJCC/UICC TNM classifications of the neuroendocrine tumors of the gastrointestinal tract and the pancreas: A statement. Virchows Arch. 2010, 456, 595–597. [Google Scholar] [CrossRef] [PubMed]
- Lamarca, A.; Elliott, E.; Barriuso, J.; Backen, A.; McNamara, M.G.; Hubner, R.; Valle, J.W. Chemotherapy for advanced non-pancreatic well-differentiated neuroendocrine tumours of the gastrointestinal tract, a systematic review and meta-analysis: A lost cause? Cancer Treat. Rev. 2016, 44, 26–41. [Google Scholar] [CrossRef]
- Heetfeld, M.; Chougnet, C.N.; Olsen, I.H.; Rinke, A.; Borbath, I.; Crespo, G.; Barriuso, J.; Pavel, M.; O’Toole, D.; Walter, T.; et al. Characteristics and treatment of patients with G3 gastroenteropancreatic neuroendocrine neoplasms. Endocr. Relat. Cancer 2015, 22, 657–664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia-Carbonero, R.; Sorbye, H.; Baudin, E.; Raymond, E.; Wiedenmann, B.; Niederle, B.; Sedlackova, E.; Toumpanakis, C.; Anlauf, M.; Cwikla, J.B.; et al. ENETS Consensus Guidelines for High-Grade Gastroenteropancreatic Neuroendocrine Tumors and Neuroendocrine Carcinomas. Neuroendocrinology 2016, 103, 186–194. [Google Scholar] [CrossRef] [Green Version]
- Yao, J.C.; Lombard-Bohas, C.; Baudin, E.; Kvols, L.K.; Rougier, P.; Ruszniewski, P.; Hoosen, S.; St Peter, J.; Haas, T.; Lebwohl, D.; et al. Daily oral everolimus activity in patients with metastatic pancreatic neuroendocrine tumors after failure of cytotoxic chemotherapy: A phase II trial. J. Clin. Oncol. 2010, 28, 69–76. [Google Scholar] [CrossRef]
- Yao, J.C.; Shah, M.H.; Ito, T.; Bohas, C.L.; Wolin, E.M.; van Cutsem, E.; Hobday, T.J.; Okusaka, T.; Capdevila, J.; de Vries, E.G.; et al. Everolimus for advanced pancreatic neuroendocrine tumors. N. Engl. J. Med. 2011, 364, 514–523. [Google Scholar] [CrossRef] [Green Version]
- Yao, J.C.; Fazio, N.; Singh, S.; Buzzoni, R.; Carnaghi, C.; Wolin, E.; Tomasek, J.; Raderer, M.; Lahner, H.; Voi, M.; et al. Everolimus for the treatment of advanced, non-functional neuroendocrine tumours of the lung or gastrointestinal tract (RADIANT-4): A randomised, placebo-controlled, phase 3 study. Lancet 2016, 387, 968–977. [Google Scholar] [CrossRef]
- Pellat, A.; Dreyer, C.; Couffignal, C.; Walter, T.; Lombard-Bohas, C.; Niccoli, P.; Seitz, J.F.; Hentic, O.; Andre, T.; Coriat, R.; et al. Clinical and Biomarker Evaluations of Sunitinib in Patients with Grade 3 Digestive Neuroendocrine Neoplasms. Neuroendocrinology 2018, 107, 24–31. [Google Scholar] [CrossRef]
- Xu, J.; Shen, L.; Zhou, Z.; Li, J.; Bai, C.; Chi, Y.; Li, Z.; Xu, N.; Jia, R.; Li, E.; et al. Efficacy and safety of surufatinib in patients with well-differentiated advanced extrapancreatic neuroendocrine tumors (NETs): Results from the randomized phase III study (SANET-ep). Ann. Oncol. 2019, 30, v911. [Google Scholar] [CrossRef]
- Kulke, M.H.; Horsch, D.; Caplin, M.E.; Anthony, L.B.; Bergsland, E.; Oberg, K.; Welin, S.; Warner, R.R.; Lombard-Bohas, C.; Kunz, P.L.; et al. Telotristat Ethyl, a Tryptophan Hydroxylase Inhibitor for the Treatment of Carcinoid Syndrome. J. Clin. Oncol. 2017, 35, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Modlin, I.M.; Pavel, M.; Kidd, M.; Gustafsson, B.I. Review article: Somatostatin analogues in the treatment of gastroenteropancreatic neuroendocrine (carcinoid) tumours. Aliment. Pharmacol. Ther. 2010, 31, 169–188. [Google Scholar] [CrossRef] [PubMed]
- Oberg, K. Interferon in the management of neuroendocrine GEP-tumors: A review. Digestion 2000, 62 (Suppl. 1), 92–97. [Google Scholar] [CrossRef]
- Bushnell, D.L., Jr.; O’Dorisio, T.M.; O’Dorisio, M.S.; Menda, Y.; Hicks, R.J.; van Cutsem, E.; Baulieu, J.L.; Borson-Chazot, F.; Anthony, L.; Benson, A.B.; et al. 90Y-edotreotide for metastatic carcinoid refractory to octreotide. J. Clin. Oncol. 2010, 28, 1652–1659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strosberg, J.; Wolin, E.; Chasen, B.; Kulke, M.; Bushnell, D.; Caplin, M.; Baum, R.P.; Kunz, P.; Hobday, T.; Hendifar, A.; et al. Health-Related Quality of Life in Patients With Progressive Midgut Neuroendocrine Tumors Treated With (177)Lu-Dotatate in the Phase III NETTER-1 Trial. J. Clin. Oncol. 2018, 36, 2578–2584. [Google Scholar] [CrossRef] [PubMed]
- Sorbye, H.; Welin, S.; Langer, S.W.; Vestermark, L.W.; Holt, N.; Osterlund, P.; Dueland, S.; Hofsli, E.; Guren, M.G.; Ohrling, K.; et al. Predictive and prognostic factors for treatment and survival in 305 patients with advanced gastrointestinal neuroendocrine carcinoma (WHO G3): The NORDIC NEC study. Ann. Oncol. 2013, 24, 152–160. [Google Scholar] [CrossRef]
- Childs, A.; Kirkwood, A.; Edeline, J.; Luong, T.V.; Watkins, J.; Lamarca, A.; Alrifai, D.; Nsiah-Sarbeng, P.; Gillmore, R.; Mayer, A.; et al. Ki-67 index and response to chemotherapy in patients with neuroendocrine tumours. Endocr. Relat. Cancer 2016, 23, 563–570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamarca, A.; Walter, T.; Pavel, M.; Borbath, I.; Freis, P.; Nunez, B.; Childs, A.; McNamara, M.G.; Hubner, R.A.; Garcia-Carbonero, R.; et al. Design and Validation of the GI-NEC Score to Prognosticate Overall Survival in Patients With High-Grade Gastrointestinal Neuroendocrine Carcinomas. J. Natl. Cancer Inst. 2017, 109, djw277. [Google Scholar] [CrossRef] [Green Version]
- Witte, H.; Biersack, H.; Kopelke, S.; Rades, D.; Merz, H.; Bernard, V.; Lehnert, H.; Fetscher, S.; Gebauer, N. The Glasgow prognostic score at diagnosis is an independent predictor of survival in advanced stage classical Hodgkin lymphoma. Br. J. Haematol. 2019, 184, 869–873. [Google Scholar] [CrossRef]
- Witte, H.M.; Bonorden, B.; Riecke, A.; Biersack, H.; Steinestel, K.; Merz, H.; Feller, A.C.; Bernard, V.; Fetscher, S.; von Bubnoff, N.; et al. The Glasgow Prognostic Score at Diagnosis Is a Predictor of Clinical Outcome in Patients with Multiple Myeloma Undergoing Autologous Haematopoietic Stem Cell Transplantation. Cancers 2020, 12, 921. [Google Scholar] [CrossRef] [Green Version]
- Olschewski, V.; Witte, H.M.; Bernard, V.; Steinestel, K.; Peter, W.; Merz, H.; Rieken, J.; Biersack, H.; von Bubnoff, N.; Feller, A.C.; et al. Systemic Inflammation and Tumour-Infiltrating T-Cell Receptor Repertoire Diversity Are Predictive of Clinical Outcome in High-Grade B-Cell Lymphoma with MYC and BCL2 and/or BCL6 Rearrangements. Cancers 2021, 13, 887. [Google Scholar] [CrossRef] [PubMed]
- Gebauer, N.; Mengler, B.; Kopelke, S.; Frydrychowicz, A.; Furschke, A.; Hackenbroch, C.; Bauer, A.; Riecke, A.; von Bubnoff, N.; Fetscher, S.; et al. Prognostic impact of nutritional and inflammation-based risk scores in follicular lymphoma in the era of anti-CD20 targeted treatment strategies. J. Cancer Res. Clin. Oncol. 2021, 148, 1789–1801. [Google Scholar] [CrossRef] [PubMed]
- Dolan, R.D.; McSorley, S.T.; Park, J.H.; Watt, D.G.; Roxburgh, C.S.; Horgan, P.G.; McMillan, D.C. The prognostic value of systemic inflammation in patients undergoing surgery for colon cancer: Comparison of composite ratios and cumulative scores. Br. J. Cancer 2018, 119, 40–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Proctor, M.J.; Morrison, D.S.; Talwar, D.; Balmer, S.M.; O’Reilly, D.S.; Foulis, A.K.; Horgan, P.G.; McMillan, D.C. An inflammation-based prognostic score (mGPS) predicts cancer survival independent of tumour site: A Glasgow Inflammation Outcome Study. Br. J. Cancer 2011, 104, 726–734. [Google Scholar] [CrossRef] [Green Version]
- Shiba, H.; Misawa, T.; Fujiwara, Y.; Futagawa, Y.; Furukawa, K.; Haruki, K.; Iwase, R.; Iida, T.; Yanaga, K. Glasgow prognostic score predicts outcome after surgical resection of gallbladder cancer. World J. Surg. 2015, 39, 753–758. [Google Scholar] [CrossRef] [PubMed]
- Moriwaki, T.; Ishige, K.; Araki, M.; Yoshida, S.; Nishi, M.; Sato, M.; Yamada, T.; Yamamoto, Y.; Ozeki, M.; Ishida, H.; et al. Glasgow Prognostic Score predicts poor prognosis among advanced biliary tract cancer patients with good performance status. Med. Oncol. 2014, 31, 287. [Google Scholar] [CrossRef]
- Al Murri, A.M.; Bartlett, J.M.; Canney, P.A.; Doughty, J.C.; Wilson, C.; McMillan, D.C. Evaluation of an inflammation-based prognostic score (GPS) in patients with metastatic breast cancer. Br. J. Cancer 2006, 94, 227–230. [Google Scholar] [CrossRef] [Green Version]
- He, L.; Li, H.; Cai, J.; Chen, L.; Yao, J.; Zhang, Y.; Xu, W.; Geng, L.; Yang, M.; Chen, P.; et al. Prognostic Value of the Glasgow Prognostic Score or Modified Glasgow Prognostic Score for Patients with Colorectal Cancer Receiving Various Treatments: A Systematic Review and Meta-Analysis. Cell Physiol. Biochem. 2018, 51, 1237–1249. [Google Scholar] [CrossRef]
- Hao, X.; Wei, Y.; Wei, X.; Zhou, L.; Wei, Q.; Zhang, Y.; Huang, W.; Feng, R. Glasgow prognostic score is superior to other inflammation-based scores in predicting survival of diffuse large B-cell lymphoma. Oncotarget 2017, 8, 76740–76748. [Google Scholar] [CrossRef]
- Abdelmalak, R.; Lythgoe, M.P.; Evans, J.; Flynn, M.; Waters, J.; Webb, A.; Pinato, D.J.; Sharma, R. Exploration of Novel Prognostic Markers in Grade 3 Neuroendocrine Neoplasia. Cancers 2021, 13, 4232. [Google Scholar] [CrossRef]
- Shimada, H.; Takiguchi, N.; Kainuma, O.; Soda, H.; Ikeda, A.; Cho, A.; Miyazaki, A.; Gunji, H.; Yamamoto, H.; Nagata, M. High preoperative neutrophil-lymphocyte ratio predicts poor survival in patients with gastric cancer. Gastric Cancer 2010, 13, 170–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azab, B.; Shah, N.; Radbel, J.; Tan, P.; Bhatt, V.; Vonfrolio, S.; Habeshy, A.; Picon, A.; Bloom, S. Pretreatment neutrophil/lymphocyte ratio is superior to platelet/lymphocyte ratio as a predictor of long-term mortality in breast cancer patients. Med. Oncol. 2013, 30, 432. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Yin, C.; Guo, G.; Jiang, C.; Wang, F.; Qiu, H.; Chen, X.; Rong, R.; Zhang, B.; Xia, L. Initial neutrophil lymphocyte ratio is superior to platelet lymphocyte ratio as an adverse prognostic and predictive factor in metastatic colorectal cancer. Med. Oncol. 2013, 30, 439. [Google Scholar] [CrossRef]
- Smith, R.A.; Bosonnet, L.; Raraty, M.; Sutton, R.; Neoptolemos, J.P.; Campbell, F.; Ghaneh, P. Preoperative platelet-lymphocyte ratio is an independent significant prognostic marker in resected pancreatic ductal adenocarcinoma. Am. J. Surg. 2009, 197, 466–472. [Google Scholar] [CrossRef] [PubMed]
- Watt, D.G.; Proctor, M.J.; Park, J.H.; Horgan, P.G.; McMillan, D.C. The Neutrophil-Platelet Score (NPS) Predicts Survival in Primary Operable Colorectal Cancer and a Variety of Common Cancers. PLoS ONE 2015, 10, e0142159. [Google Scholar] [CrossRef] [Green Version]
- Kasymjanova, G.; MacDonald, N.; Agulnik, J.S.; Cohen, V.; Pepe, C.; Kreisman, H.; Sharma, R.; Small, D. The predictive value of pre-treatment inflammatory markers in advanced non-small-cell lung cancer. Curr. Oncol. 2010, 17, 52–58. [Google Scholar] [CrossRef] [Green Version]
- Dolan, R.D.; Lim, J.; McSorley, S.T.; Horgan, P.G.; McMillan, D.C. The role of the systemic inflammatory response in predicting outcomes in patients with operable cancer: Systematic review and meta-analysis. Sci. Rep. 2017, 7, 16717. [Google Scholar] [CrossRef] [Green Version]
- Eisenhauer, E.A.; Therasse, P.; Bogaerts, J.; Schwartz, L.H.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.; Gwyther, S.; Mooney, M.; et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur. J. Cancer 2009, 45, 228–247. [Google Scholar] [CrossRef]
- Kaba, H.; Fukuda, H.; Yamamoto, S.; Ohashi, Y. Reliability at the National Cancer Institute-Common Toxicity Criteria version 2.0. Gan Kagaku Ryoho 2004, 31, 1187–1192. [Google Scholar]
- Budczies, J.; Klauschen, F.; Sinn, B.V.; Gyorffy, B.; Schmitt, W.D.; Darb-Esfahani, S.; Denkert, C. Cutoff Finder: A comprehensive and straightforward Web application enabling rapid biomarker cutoff optimization. PLoS ONE 2012, 7, e51862. [Google Scholar] [CrossRef]
- Heller, G.; Mo, Q. Estimating the concordance probability in a survival analysis with a discrete number of risk groups. Lifetime Data Analysis 2015, 22, 263–279. [Google Scholar] [CrossRef] [Green Version]
- Akaike, H. A New Look at the Statistical Model Identification. In Selected Papers of Hirotugu Akaike; IEEE: Piscataway, NJ, USA, 1974; pp. 215–222. [Google Scholar] [CrossRef]
- Zou, J.; Li, Q.; Kou, F.; Zhu, Y.; Lu, M.; Li, J.; Lu, Z.; Shen, L. Prognostic value of inflammation-based markers in advanced or metastatic neuroendocrine tumours. Curr. Oncol. 2019, 26, e30–e38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yue, L.; Lu, Y.; Li, Y.; Wang, Y. Prognostic Value of C-Reactive Protein to Albumin Ratio in Gastric Cancer: A Meta-Analysis. Nutr. Cancer 2021, 73, 1864–1871. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Bao, J.; Zhu, Z.Y.; Jin, M.X. Prognostic nutritional index as a prognostic factor in lung cancer patients receiving chemotherapy: A systematic review and meta-analysis. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 5636–5652. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, K.; Toshimitsu, K.; Matano, M.; Fujita, M.; Fujii, M.; Togasaki, K.; Ebisudani, T.; Shimokawa, M.; Takano, A.; Takahashi, S.; et al. An Organoid Biobank of Neuroendocrine Neoplasms Enables Genotype-Phenotype Mapping. Cell 2020, 183, 1420–1435.e1421. [Google Scholar] [CrossRef] [PubMed]
- Van Riet, J.; van de Werken, H.J.G.; Cuppen, E.; Eskens, F.; Tesselaar, M.; van Veenendaal, L.M.; Klumpen, H.J.; Dercksen, M.W.; Valk, G.D.; Lolkema, M.P.; et al. The genomic landscape of 85 advanced neuroendocrine neoplasms reveals subtype-heterogeneity and potential therapeutic targets. Nat. Commun. 2021, 12, 4612. [Google Scholar] [CrossRef]
Ratio/Score | Ratio/Score |
---|---|
NLR | |
Neutrophil count:lymphocyte count | ≤3 |
Neutrophil count:lymphocyte count | 3–5 |
Neutrophil count:lymphocyte count | >5 |
NLS | |
Neutrophil count ≤ 7.5 × 109/L and lymphocyte count ≥ 1.5 × 109/L | 0 |
Neutrophil count > 7.5 × 109/L and lymphocyte count ≥ 1.5 × 109/L | 1 |
Neutrophil count ≤ 7.5 × 109/L and lymphocyte count < 1.5 × 109/L | 1 |
Neutrophil count > 7.5 × 109/L and lymphocyte count < 1.5 × 109/L | 2 |
PLR | |
Platelet count:lymphocyte count | ≤150 |
Platelet count:lymphocyte count | >150 |
PLS | |
Platelet count ≤ 400 × 109/L and lymphocyte count ≥ 1.5 × 109/L | 0 |
Platelet count > 400 × 109/L and lymphocyte count ≥ 1.5 × 109/L | 1 |
Platelet count ≤ 400 × 109/L and lymphocyte count < 1.5 × 109/L | 1 |
Platelet count > 400 × 109/L and lymphocyte count < 1.5 × 109/L | 2 |
PI | |
White blood cell count ≤ 10 × 109/L and C-reactive protein ≤ 10 mg/L | 0 |
White blood cell count ≤ 10 × 109/L and C-reactive protein > 10 mg/L | 1 |
White blood cell count > 10 × 109/L and C-reactive protein ≤ 10 mg/L | 1 |
White blood cell count > 10 × 109/L and C-reactive protein > 10 mg/L | 2 |
PNI | |
Albumin (g/L) + 5 × (lymphocyte count (109/L)) | ≤50 |
Albumin (g/L) + 5 × (lymphocyte count (109/L)) | >50 |
NPS | |
Neutrophil count ≤ 7.5 × 109/L and platelet count < 400 × 109/L | 0 |
Neutrophil count > 7.5 × 109/L and platelet count < 400 × 109/L | 1 |
Neutrophil count ≤ 7.5 × 109/L and platelet count > 400 × 109/L | 1 |
Neutrophil count > 7.5 × 109/L and platelet count > 400 × 109/L | 2 |
CAR | |
C-reactive protein:albumin | ≤0.22 |
C-reactive protein:albumin | >0.22 |
GPS | |
C-reactive protein ≤ 10 mg/L and albumin ≥ 35 g/L | 0 |
C-reactive protein > 10 mg/L or albumin < 35 g/L | 1 |
C-reactive protein > 10 mg/L and albumin < 35 g/L | 2 |
GPS | Overall Study Group (n = 102) | Group I GPS 0 (n = 59) | Group II GPS 1 (n = 26) | Group III GPS 2 (n = 17) |
---|---|---|---|---|
Male/female | 56/46 | 34/25 | 14/12 | 8/9 |
Median age (range), years | 62 (18–95) | 59 (18–85) | 65 (36–95) | 60 (23–81) |
BMI (median, range) | 26.9 (16.9–40.8) | 28.0 (16.9–38.0) | 26.0 (18.0–40.8) | 26.0 (18.0–37.1) |
Weight disorder | ||||
Cachexia (BMI < 20 kg/m2) | 9/71 (12.7%) | 4/39 (10.3%) | 4/19 (21.1%) | 1/10 (10.0%) |
Obesity (BMI > 30 kg/m2) | 20/71 (28.2%) | 14/39 (35.9%) | 3/19 (15.8%) | 3/10 (30.0%) |
ECOG PS | ||||
0–1 | 82 (80.4%) | 52 (88.1%) | 19 (73.1%) | 11 (64.7%) |
2–4 | 20 (19.6%) | 7 (11.9%) | 7 (26.9%) | 6 (35.3%) |
CCI (Median, range) | 6 (0–13) | 5 (0–12) | 7.5 (2–11) | 7 (4–13) |
B-symptoms | ||||
No | 77 (75.5%) | 49 (83.1%) | 17 (65.4%) | 11 (64.7%) |
Yes | 25 (24.5%) | 10 (16.9%) | 9 (34.6%) | 6 (35.3%) |
Primary sites | ||||
Pancreatic | 41 (40.2%) | 27 (45.8%) | 9 (34.6%) | 5 (29.4%) |
Intestine | 44 (43.1%) | 24 (40.7%) | 13 (50.0%) | 7 (41.2%) |
- Gastric | 7 (6.9%) | 4 (6.8%) | 1 (3.8%) | 2 (11.8%) |
- Jejunoileal | 25 (24.5%) | 15 (25.4%) | 7 (26.9%) | 3 (17.6%) |
- Appendix | 5 (4.9%) | 4 (6.8%) | 1 (3.8%) | - |
- Colon | 3 (2.9%) | 1 (1.7%) | 1 (3.8%) | 1 (5.9%) |
- Rectum | 4 (3.9%) | - | 3 (11.5%) | 1 (5.9%) |
Unknown Primary | 17 (16.7%) | 8 (13.5%) | 4 (15.4%) | 5 (29.4%) |
Multifocal | 11 (10.8%) | 6 (10.1%) | 3 (11.5%) | 2 (11.7%) |
Metastasis | ||||
Yes | 53 (51.9%) | 23 (39.0%) | 17 (65.4%) | 13 (76.5%) |
Carcinoid Syndrome | ||||
No | 83 (81.4%) | 47 (79.7%) | 20 (76.9%) | 16 (94.1%) |
Yes | 19 (18.6%) | 12 (20.3%) | 6 (23.1%) | 1 (5.9%) |
Albumin (g/L) (median, range) | ||||
≥35 g/L | 71 (69.6%) | 55 (93.2%) | 15 (57.7%) | 1 (5.9%) |
<35 g/L | 31 (30.4%) | 4 (6.8%) | 11 (42.3%) | 16 (94.1%) |
CRP (mg/dL) (median, range) | ||||
≤10 mg/dL | 72 (70.6%) | 58 (98.3%) | 13 (50.0%) | 1 (5.9%) |
>10 mg/dL | 30 (29.4%) | 1 (1.7%) | 13 (50.0%) | 16 (94.1%) |
Chromogranin A median (range) | 179 (29–56,200) | 155 (29–13,600) | 209 (41.2–8856) | 196 (45–56,200) |
Histological Grading | ||||
NET (G1) | 24 (24.7%) | 18 (32.7%) | 4 (16.0%) | 2 (11.8%) |
NET (G2) | 49 (50.5%) | 30 (54.5%) | 14 (56.0%) | 5 (29.4%) |
NET(G3) | 6 (5.9%) | 3 (5.1%) | 1 (3.8) | 2 (11.8%) |
Ki-67 (median, range) | 5% (1–40%) | 4% (1–30%) | 5% (1–20%) | 5% (1–40%) |
NEC | 20 (19.6%) | 5 (8.5%) | 7 (26.9%) | 8 (47.1%) |
- Small cell type | 17 (16.7%) | 5 (8.5%) | 5 (19.2%) | 7 (41.2%) |
- Large cell type | 3 (2.9%) | - | 2 (7.7%) | 1 (5.9%) |
Ki-67 (median, range) | 80% (40–90%) | 80% (60–80%) | 80% (40–80%) | 75% (40–90%) |
SSTR2 | ||||
Negative | 30 (41.1%) | 15 (34.9%) | 8 (40.0%) | 7 (70.0%) |
Positive | 43 (58.9%) | 28 (65.1%) | 12 (60.0%) | 3 (30.0%) |
UICC | ||||
I | 14 (13.7%) | 11 (18.6%) | 3 (11.5%) | - |
II | 11 (10.8%) | 9 (15.3%) | 2 (7.7%) | - |
III | 24 (23.5%) | 16 (27.1%) | 5 (19.2%) | 3 (17.6%) |
IV | 53 (51.9%) | 23 (39.0%) | 16 (61.5%) | 14 (82.4%) |
n (%) | Median (Range) | Median (Range) | |
---|---|---|---|
NLR | Neutrophils (×109/L) | Lymphocytes (×109/L) | |
<3 | 42 (41.6%) | 4.1 (2.4–6.6) | 2.1 (1.3–6.2) |
3–5 | 30 (29.7%) | 4.9 (2.9–10.2) | 1.4 (0.6–2.9) |
>5 | 29 (28.7%) | 8.7 (4.9–19.7) | 0.9 (0.4–2.7) |
NLS | |||
0 | 39 (38.6%) | 4.8 (2.4–7.4) | 2.1 (1.5–6.2) |
1 | 45 (44.6%) | 4.9 (2.5–15.1) | 1.3 (0.5–2.9) |
2 | 17 (16.8%) | 9.5 (7.9–19.7) | 0.8 (0.4–1.4) |
NPS | Neutrophils (×109/L) | Platelets (×109/L) | |
0 | 74 (73.3%) | 4.5 (2.4–7.4) | 250 (127–396) |
1 | 23 (22.7%) | 9.0 (4.1–19.7) | 277 (137–595) |
2 | 4 (3.9%) | 9.4 (7.6–15.1) | 425 (406–555) |
PLR | Platelets (×109/L) | Lymphocytes (×109/L) | |
≤150 | 42 (41.6%) | 233 (124–406) | 2.1 (0.9–6.2) |
>150 | 59 (58.4%) | 267 (137–595) | 1.2 (0.4–2.9) |
PLS | |||
0 | 40 39.6%) | 267 (168–378) | 2.1 (1.5–6.2) |
1 | 60 (59.4%) | 250 (127–595) | 1.2 (0.4–2.9) |
2 | 1 (0.9%) | - | - |
CAR | Albumin (g/L) | CRP (mg/dL) | |
≤0.22 | 67 (65.7%) | 40 (30–51) | 2.0 (0.0–9.4) |
>0.22 | 35 (34.3%) | 35 (18–46) | 26.5 (6.0–242.0) |
GPS | |||
0 | 59 57.8%) | 40 (31–51) | 2.0 (0.0–8.1) |
1 | 26 (25.5%) | 36 (25–46) | 9.9 (0.3–98.4) |
2 | 17 (16.7%) | 31 (18–35) | 40.7 (10.0–242.0) |
PNI | Albumin (g/L) | Lymphocytes (×109/L) | |
≥50 | 34 (33.7%) | 45 (31–51) | 1.9 (0.8–6.2) |
<50 | 67 (66.3%) | 36 (18–44) | 1.2 (0.4–2.9) |
PI | WBC (×109/L) | CRP (mg/dL) | |
0 | 63 (61.7%) | 7.0 (4.1–10.8) | 2.2 (0.0–40.7) |
1 | 27 (26.5%) | 9.9 (4.8–17.8) | 11.7 (0.6–186.0) |
2 | 12 (11.7%) | 12.5 (10.1–22.3) | 36.6 (12.6–242.0) |
Univariate Analysis | ||||
---|---|---|---|---|
PFS | OS | |||
Prognostic Factor | p-Value | HR (95% CI) | p-Value | HR (95% CI) |
GPS | <0.0001 | 4.479 (2.302–8.716) | <0.0001 | 6.153 (3.181–11.90) |
CRP | 0.005 | 1.009 (1.003–1.016) | 0.016 | 1.008 (1.001–1.014) |
Albumin | 0.08 | 0.950 (0.898–1.006) | 0.013 | 0.931 (0.881–0.985) |
NLR | 0.493 | 1.016 (0.972–1.061) | 0.096 | 1.032 (0.994–1.071) |
PLR | 0.741 | 0.999 (0.007–1.002) | 0.268 | 1.001 (0.991–1.003) |
PNI | 0.065 | 0.963 (0.924–1.002) | 0.005 | 0.942 (0.904–0.982) |
PI | 0.02 | 1.675 (1.093–2.566) | 0.02 | 1.663 (1.083–2.552) |
Age > 60 years | 0.237 | 1.455 (0.782–2.707) | 0.078 | 1.793 (0.938–3.430) |
ECOG PS ≥ 2 | 0.08 | 1.860 (0.911–3.800) | <0.0001 | 3.668 (1.935–6.950) |
CCI > 3 | 0.004 | 4.608 (1.638–12.97) | 0.006 | 7.418 (1.786–30.81) |
UICC IV | <0.0001 | 1.698 (0.903–3.194) | <0.0001 | 1.292 (0.689–2.424) |
NEC (G3) | 0.0004 | 3.168 (1.161–8.646) | <0.0001 | 3.817 (1.548–9.412) |
Univariate Analysis OS | Multivariate Analysis OS | ||
---|---|---|---|
Prognostic Factor | p-Value | p-Value | HR (95% CI) |
GPS | <0.0001 | <0.0001 | 3.459 (1.263–6.322) |
PI * | 0.02 | 0.690 | 2.344 (1.513–8.436) |
PNI ** | 0.005 | 0.409 | 0.851(0.535–4.331) |
ECOG | <0.0001 | 0.042 | 1.667 (0.828–4.189) |
CCI > 3 | 0.006 | 0.530 | 0.715 (0.299–6.299) |
UICC IV | <0.0001 | 0.001 | 1.155 (0.870–1.399) |
NEC (G3) | <0.0001 | 0.004 | 1.271 (0.930–1.661) |
Univariate Analysis PFS | Multivariate Analysis PFS | ||
p-Value | p-Value | HR (95% CI) | |
GPS | <0.0001 | 0.002 | 2.119 (0.944–4.265) |
PI * | 0.02 | 0.518 | 2.775 (1.984–4.372) |
PNI ** | 0.065 | 0.644 | 1.384 (1.015–1.855) |
ECOG | 0.08 | 0.453 | 2.248 (1.433–3.556) |
CCI > 3 | 0.004 | 0.092 | 4.210 (1.936–6.501) |
UICC IV | <0.0001 | 0.067 | 1.582 (1.214–2.737) |
NEC (G3) | 0.0004 | 0.081 | 1.322 (0.862–2.453) |
Characteristics | Overall Study Group (n = 102) | GPS 0 (n = 59) | GPS 1 (n = 26) | GPS 2 (n = 17) |
---|---|---|---|---|
G1–G2 GEP-NEN 1st line treatment (n = 76) | ||||
Surgical resection | 52 | 38 | 11 | 3 |
- curative | 37 | 30 | 5 | 2 |
- palliative | 15 | 8 | 6 | 1 |
Chemotherapy | 8 | 5 | - | 3 |
Targeted therapy | - | - | - | - |
Radiation therapy | 1 | - | 1 | - |
PRRT | 12 | 7 | 5 | - |
Somatostatin analogues | 22 | 11 | 8 | 3 |
Refusal | 4 | 1 | 1 | 2 |
G3 GEP-NEN 1st line treatment (n = 6) | ||||
Surgical resection | 1 | - | 1 | - |
- curative | 1 | - | 1 | - |
Chemotherapy | 3 | 1 | - | 2 |
Targeted therapy | 1 | 1 | - | - |
PRRT | 1 | 1 | - | - |
Somatostatin analogues | 2 | 1 | - | 1 |
GEP-NEC 1st line treatment (n = 20) | ||||
Surgical resection | 12 | 3 | 5 | 4 |
- curative | 4 | - | 3 | 1 |
- palliative | 8 | 3 | 2 | 3 |
Chemotherapy | 14 | 5 | 6 | 3 |
Targeted therapy | 1 | 1 | - | - |
Radiation therapy | 1 | - | - | 1 |
Refusal | 3 | - | 2 | 1 |
Best response (RECIST v1.1) | ||||
CR | 36 | 28 | 6 | 2 |
PR | 30 | 11 | 10 | 9 |
SD | 19 | 11 | 6 | 2 |
PD | 7 | 2 | 4 | 1 |
Watch & wait | 10 | 7 | - | 3 |
Dfd | 39 | 17 | 10 | 12 |
Toxicity profile (NCI CTC) | ||||
Cytopenia grad III/IV | 5 | 2 | 2 | 1 |
Emesis | 5 | - | 3 | 2 |
Pneumonitis | 1 | 1 | - | - |
Nephrotoxicity | 2 | - | - | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gebauer, N.; Ziehm, M.; Gebauer, J.; Riecke, A.; Meyhöfer, S.; Kulemann, B.; von Bubnoff, N.; Steinestel, K.; Bauer, A.; Witte, H.M. The Glasgow Prognostic Score Predicts Survival Outcomes in Neuroendocrine Neoplasms of the Gastro–Entero–Pancreatic (GEP-NEN) System. Cancers 2022, 14, 5465. https://doi.org/10.3390/cancers14215465
Gebauer N, Ziehm M, Gebauer J, Riecke A, Meyhöfer S, Kulemann B, von Bubnoff N, Steinestel K, Bauer A, Witte HM. The Glasgow Prognostic Score Predicts Survival Outcomes in Neuroendocrine Neoplasms of the Gastro–Entero–Pancreatic (GEP-NEN) System. Cancers. 2022; 14(21):5465. https://doi.org/10.3390/cancers14215465
Chicago/Turabian StyleGebauer, Niklas, Maria Ziehm, Judith Gebauer, Armin Riecke, Sebastian Meyhöfer, Birte Kulemann, Nikolas von Bubnoff, Konrad Steinestel, Arthur Bauer, and Hanno M. Witte. 2022. "The Glasgow Prognostic Score Predicts Survival Outcomes in Neuroendocrine Neoplasms of the Gastro–Entero–Pancreatic (GEP-NEN) System" Cancers 14, no. 21: 5465. https://doi.org/10.3390/cancers14215465
APA StyleGebauer, N., Ziehm, M., Gebauer, J., Riecke, A., Meyhöfer, S., Kulemann, B., von Bubnoff, N., Steinestel, K., Bauer, A., & Witte, H. M. (2022). The Glasgow Prognostic Score Predicts Survival Outcomes in Neuroendocrine Neoplasms of the Gastro–Entero–Pancreatic (GEP-NEN) System. Cancers, 14(21), 5465. https://doi.org/10.3390/cancers14215465