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Simple Summary: There is growing evidence for the essential prognostic role of systemic inflam-
mation within the tumor microenvironment (TME) and the nutritional status in cancer patients.
Inflammation-based risk scores such as the Glasgow-Prognostic-Score (GPS), composed of C-reactive
protein (CRP) and albumin levels at initial diagnosis, were shown to reflect the TME. This manuscript
compares the prognostic impact of several well-established risk scores and ratios in the spectrum of
neuroendocrine neoplasms of the gastro-entero-pancreatic (GEP-NEN) system. Our results highlight
the prognostic capability of the GPS across the entire spectrum in GEP-NEN irrespective of histo-
logical grading or UICC stages and suggest its integration into more comprehensive models of risk
stratification in the era of precision oncology.

Abstract: Background: Across a variety of solid tumors, prognostic implications of nutritional and
inflammation-based risk scores have been identified as a complementary resource of risk stratification.
Methods: In this retrospective study, we performed a comparative analysis of several established risk
scores and ratios, such as the Glasgow Prognostic Score (GPS), in neuroendocrine neoplasms of the
gastro–entero–pancreatic (GEP-NEN) system with respect to their prognostic capabilities. Clinico-
pathological and treatment-related data for 102 GEP-NEN patients administered to the participating
institutions between 2011 and 2021 were collected. Scores/ratios significantly associated with overall
or progression-free survival (OS, PFS) upon univariate analysis were subsequently included in a
Cox-proportional hazard model for the multivariate analysis. Results: The median age was 62 years
(range 18–95 years) and the median follow-up period spanned 51 months. Pancreatic or intestinal
localization at the initial diagnosis were present in 41 (40.2%) and 44 (43.1%) cases, respectively. In
17 patients (16.7%), the primary manifestation could not be ascertained (NNUP; neuroendocrine
neoplasms of unknown primary). Histological grading (HG) revealed 24/102 (23.5%) NET/NEC
(poorly differentiated; high grade G3) and 78/102 (76.5%) NET (highly or moderately differenti-
ated; low–high grade G1–G2). In total, 53/102 (51.9%) patients presented with metastatic disease
(UICC IV), 11/102 (10.7%) patients presented with multifocal disease, and 56/102 (54.9%) patients
underwent a primary surgical or endoscopic approach, whereas 28 (27.5%) patients received systemic
cytoreductive treatment. The univariate analysis revealed the GPS and PI (prognostic index), as well
as UICC-stage IV, HG, and the Charlson comorbidity index (CCI) to predict both the PFS and OS in
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GEP-NEN patients. However, the calculation of the survival did not separate GPS subgroups at lower
risk (GPS 0 versus GPS 1). Upon the subsequent multivariate analysis, GPS was the only independent
predictor of both OS (p < 0.0001; HR = 3.459, 95% CI = 1.263–6.322) and PFS (p < 0.003; HR = 2.119,
95% CI = 0.944–4.265). Conclusion: In line with previous results for other entities, the present study
revealed the GPS at baseline to be the only independent predictor of survival across all stages of
GEP-NEN, and thus supports its clinical utility for risk stratification in this group of patients.

Keywords: inflammation; risk scores; neuroendocrine neoplasms; GEP-NEN; CRP; albumin

1. Introduction

At an incidence of 3.5:100,000 neuroendocrine neoplasms of the gastro–entero–pancreatic
system (GEP-NEN) constitute a rare subgroup of solid, gastrointestinal tumors [1,2]. How-
ever, in recent years, the incidence of GEP-NEN has increased due to continued improve-
ments in endoscopic, radiologic, and histopathologic diagnostics [3,4]. The heterogeneous
group of GEP-NEN arise from cells related to the diffuse neuroendocrine system [5]. These
cells exhibit typical features of endocrine and neuronal cells [6,7]. In the majority of cases,
the proliferation of GEP-NEN cells is low to moderate [4,8]. The most frequent primary
sites of GEP-NEN affect the pancreas (23%) and the gastrointestinal (GI) tract, including the
stomach (6.5%), the jejunum (2.5%), ileum (21.0%), the appendix (6.8%), the colon (12.1%),
and rectum (19.1%) [3,9]. Because of the slow and masked progression of the disease,
loco-regional or hepatic metastases can be detected in up to 50% of cases at the initial
diagnosis [4]. However, metastatic disease is more common in neuroendocrine carcinoma
(NEC) of the gastro–entero–pancreatic system (GEP-NEC) rather than in GEP-NET. In
pancreatic NEN, the rate of primary metastatic disease is 71.9% [10]. The functional activity
in GEP-NEN is of clinical relevance in a notable subset of cases. Carcinoid syndrome,
presenting with flush, diarrhea, abdominal cramps, and carcinoid-related heart disease
(right-accentuated myocardial fibrosis), reflects the most frequent functional GEP-NEN
manifestation [4,7,11]. The underlying pathophysiological mechanism is based on the
secretion of serotonin (GI-symptoms), histamine, and/or bradykinin (flush) originating
from GEP-NEN cells and avoiding hepatic inactivation [4].

Treatment guidance is based on histological grading and staging results [7,12]. His-
tological grading (grade 1–3) is determined by the current version of the World Health
Organization (WHO) classification of digestive system tumors and factors in the Ki-67
proliferation index or the mitotic count, alongside the morphological degree of cellular dif-
ferentiation (neuroendocrine tumor/NET (G1–G3) versus neuroendocrine carcinoma/NEC
(G3)) [13]. Staging results are classified using the ENETS (European Neuroendocrine Tumor
Society) TNM classification system and subsequently translated into the current UICC
(Union for International Cancer Control) staging system [14,15].

The spectrum of therapeutic options is exhaustive. In localized stages, endoscopic
or surgical resection displays the only therapeutic approach with a curative intent [7,12].
Surgical approaches also play a role in terms of disease control if tumors are function-
ally active or if they cause disruptive secondary organ infiltration [7]. Moreover, surgical
resection should be considered in G1–G2 tumors presenting with hepatic metastasis [7]. Re-
sponse rates to systemic chemotherapy in advanced stage (UICC IV) G3 NEN/NEC remain
poor [16–18]. However, a 5-fluorouracil or platin-based chemotherapeutic regimen reflects
an option with palliative intent [12,18]. In some subgroups, targeted therapeutics such as
mTOR-inhibitors (everolimus) or tyrosine-kinase inhibitors (sunitinib or surufatinib) have
demonstrated a promising efficacy [19–23]. Nuclear medical approaches such as peptide
receptor radionuclide therapy (PRRT) or I-131-MIBG therapy, as well as interventional radi-
ologic approaches (transarterial chemoembolization/TACE or radioembolization/selective
internal radiation therapy (RE/SIRT)) and other pharmacological options containing so-
matostatin analogues (SSA; e.g., octreotide or lanreotide), interferon-alpha or serotonin
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synthesis inhibitors (e.g., telotristat) complete the field of treatment options [12,24–28]. In
the case of unresectable, disseminated liver metastasis driving the prognosis in a NEN
patient, selective internal radiation therapy (SIRT) can be preferred to TACE. For selected
cases with diffuse metastasis of the liver and/or unsuccessful pharmacological efforts in
terms of the control of functionally active tumors, liver transplantation reflects an ultimate
treatment option [12]. However, treatment guidance is challenging and the preferable
therapeutic approach should be determined in an interdisciplinary context.

As the optimal treatment guidance displays such a challenging process, it is of major
importance to reliably identify GEP-NEN patients at risk. Several potential risk factors
predicting adverse outcomes in GEP-NEN patients have been reported in the literature
so far. These include the performance status at the initial diagnosis, advanced age, and
elevated serum levels of the lactate dehydrogenase (LDH), as well as platelets, primary
sites, and tumor size [29]. The cut-off values of Ki-67 for optimal risk stratification are
discussed conversely [29–31]. Among a large spectrum of solid tumors and hematolog-
ical malignancies, it has been shown that the Glasgow Prognostic Score (GPS) reflects a
representative and handy tool to identify cancer patients at risk for both early progression
and all-cause mortality [32–42]. GPS examines two essential mechanisms of tumor growth,
progression and aggressiveness. The first is systemic inflammation (via the C-reactive
protein) and the second is the nutritional status of a cancer patient (via albumin) at the
initial diagnosis [35]. In recent years, the impressive predictive capabilities of both factors
have been demonstrated in cancer patients. A recent study demonstrated the prognostic
impact of a modified GPS in high grade GEP-NEN (G3) [43]. Unfortunately, the majority
of studies investigating the predictors of survival in GEP-NEN exclusively included high-
grade tumors. Here, we assessed the prognostic capabilities of GPS within the spectrum of
several well established and validated nutritional- and/or inflammation-based risk scores
or ratios in terms of optimal risk stratification across all stages and grades of GEP-NEN.

2. Methods

This retrospective multicenter study investigated the prognostic capabilities of several
established and validated risk scores/ratios in GEP-NEN patients at the initial diagnosis.
We screened all GEP-NEN patients that underwent surgical/endoscopic and/or cytore-
ductive treatment in one of the participating institutions (University Hospital Schleswig-
Holstein (UKSH) Campus Lübeck and German Armed Forces Hospital Ulm) between
2011 and 2021. Initial screening in our institutional hospital information system (HIS)
identified 144 patients diagnosed with GEP-NEN. Patients with insufficient follow-up
(17 patients referred to other institutions within 30 days after initial diagnosis and sub-
sequent loss of follow-up in 25 cases) were excluded. Moreover, paragangliomas and
phaeochromocytomas were excluded as well. Staging was carried out in accordance with
current ‘Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften
e.V.’ (AWMF) guidelines [7].

2.1. Baseline Clinicopathological Characteristics

Clinical information was collected from the original electronic patient files. Besides
sex and age, data collection included the evaluation of the Eastern Cooperative Oncol-
ogy Group Performance Status (ECOG-PS), staging data with primary localization and
localization of metastases where available, results from histopathological assessments in-
cluding morphological pattern and immunohistochemical staining, laboratory data from
initial diagnosis (see Section 2.2), and the further course of the disease, the presence of
carcinoid syndrome, treatment modalities (first, second, and third line where available),
and responses, as well as the pattern of relapse and survival data.

2.2. Prognostic Risk Scores/Ratios

The scores/ratios considered for the present study contained inflammatory and/or
nutritional features such as the serological levels of different immune cells such as neu-
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trophils and lymphocytes. Therefore, laboratory data incorporated parameters from the
baseline differential blood count, the inflammation related parameter serum levels of al-
bumin (g/dL), and the C-reactive protein (CRP; mg/dL), as well as the serological tumor
marker chromogranin A. The composition of all of the scores and ratios is outlined in
Table 1. Our calculations included the widely accepted neutrophil–lymphocyte ratio (NLR)
and the platelet–lymphocyte ratio (PLR) [44–47]. Related scores that have been calculated
were the neutrophil–lymphocyte score (NLS), the platelet–lymphocyte score (PLS), and
the neutrophil–platelet score (NPS) [48]. Furthermore, the prognostic nutritional index
(PNI) takes into account the patient’s nutritional status in terms of the serum albumin
(PNI = albumin + 0.005 × total lymphocyte count) [36]. The prognostic index (PI) incor-
porates the white blood cell count (>10 × 109/L) and the CRP (>10 mg/dL) reflecting
the acute phase [49]. Considering both the acute phase and the nutritional aspect, for
GPS calculation, a CRP > 10 mg/dL and/or an albumin value of <35 g/L counted as one
point, resulting in three different subgroups (group I: 0 points; group II: 1 point; group III:
2 points) [33]. We also performed the calculation of the CRP–albumin ratio (CAR) [50].

Table 1. Systemic-inflammation-based prognostic ratios and scores.

Ratio/Score Ratio/Score

NLR
Neutrophil count:lymphocyte count ≤3
Neutrophil count:lymphocyte count 3–5
Neutrophil count:lymphocyte count >5

NLS
Neutrophil count ≤ 7.5 × 109/L and lymphocyte count ≥ 1.5 × 109/L 0
Neutrophil count > 7.5 × 109/L and lymphocyte count ≥ 1.5 × 109/L 1
Neutrophil count ≤ 7.5 × 109/L and lymphocyte count < 1.5 × 109/L 1
Neutrophil count > 7.5 × 109/L and lymphocyte count < 1.5 × 109/L 2

PLR
Platelet count:lymphocyte count ≤150
Platelet count:lymphocyte count >150

PLS
Platelet count ≤ 400 × 109/L and lymphocyte count ≥ 1.5 × 109/L 0
Platelet count > 400 × 109/L and lymphocyte count ≥ 1.5 × 109/L 1
Platelet count ≤ 400 × 109/L and lymphocyte count < 1.5 × 109/L 1
Platelet count > 400 × 109/L and lymphocyte count < 1.5 × 109/L 2

PI
White blood cell count ≤ 10 × 109/L and C-reactive protein ≤ 10 mg/L 0
White blood cell count ≤ 10 × 109/L and C-reactive protein > 10 mg/L 1
White blood cell count > 10 × 109/L and C-reactive protein ≤ 10 mg/L 1
White blood cell count > 10 × 109/L and C-reactive protein > 10 mg/L 2

PNI
Albumin (g/L) + 5 × (lymphocyte count (109/L)) ≤50
Albumin (g/L) + 5 × (lymphocyte count (109/L)) >50

NPS
Neutrophil count ≤ 7.5 × 109/L and platelet count < 400 × 109/L 0
Neutrophil count > 7.5 × 109/L and platelet count < 400 × 109/L 1
Neutrophil count ≤ 7.5 × 109/L and platelet count > 400 × 109/L 1
Neutrophil count > 7.5 × 109/L and platelet count > 400 × 109/L 2

CAR
C-reactive protein:albumin ≤0.22
C-reactive protein:albumin >0.22

GPS
C-reactive protein ≤ 10 mg/L and albumin ≥ 35 g/L 0

C-reactive protein > 10 mg/L or albumin < 35 g/L 1
C-reactive protein > 10 mg/L and albumin < 35 g/L 2

NLR, neutrophil–lymphocyte ratio; NLS, neutrophil–lymphocyte score; CAR, C-reactive protein albumin ratio;
GPS, Glasgow Prognostic Score; NPS, neutrophil–platelet score; PLR, platelet–lymphocyte ratio; PLS, platelet–
lymphocyte score.
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2.3. Treatment and Responses

Stage-adapted treatment decisions were made on the basis of the interdisciplinary
tumor board consensus for neuroendocrine neoplasms at UKSH Campus Lübeck (ENETS
CoE) with current ENETS guidelines serving as an institutional standard [7]. Treatment
response was defined in accordance with the established Response Evaluation Criteria
in Solid Tumors (RECIST) v1.1 [51]. Progression-free and overall survival (PFS and OS)
were calculated from the date of the initial diagnosis. Toxicity profiles were conducted
in accordance with the National Cancer Institute Common Toxicity Criteria (NCI CTC;
version 2.0) [52].

2.4. Ethics Statement

This retrospective study was approved by the ethics committee of the University of
Luebeck (reference number 18-041) and was conducted in accordance with the Declara-
tion of Helsinki. Written informed consent referred to routine diagnostics and academic
assessment of the biopsy specimen, and the transfer of clinical data was obtained from
all patients.

2.5. Statistics

All of the statistical analyses were conducted using GraphPad PRISM 9 (GraphPad
Software Inc., San Diego, CA, USA), SPSS 26 (IBM, Armonk, NY, USA), and R v4.0.2. The
Kolmogorov–Smirnov test was performed to assess the normality of distribution. Survival
(PFS and OS) was estimated using the Kaplan–Meier method and the univariate log-rank
test. A confirmatory univariate Cox analysis was subsequently performed. A subsequent
multivariate proportional hazard model (Cox proportional hazard) was conducted for
characteristics exhibiting a trend towards statistical significance (p < 0.07) that were found
to be associated with OS or PFS upon both univariate analyses. However, the significance
level was defined at p < 0.05. Cut-off values for NLR, CAR, and PNI were selected from
previously published data investigating the prognostic impact of such scores across a
variety of cancer patients. Moreover, cut-off value confirmation was performed utilizing
a receiver operating characteristic (ROC) analysis proposed by Budczies et al. [53]. The
Mann–Whitney U test and the Chi-squared test were used to assess differences between
GEP-NEN subgroups, as appropriate. Pearson’s correlation was calculated in order to
anticipate the non-linear relations between variables. Comparative analysis regarding
the prognostic impact of the GPS and the CAR was performed by estimating the Harrel’s
concordance index (c-index) and the corrected Akaike’s information criterion (cAIC) in
order to identify the most qualified risk score considering both the acute phase and the
nutritional aspect [54,55].

3. Results
3.1. Clinicopathological Characteristics

The clinicopathological features of the study group are outlined in Table 2. The median
age at initial diagnosis was 62 years (range 18–95) and gender distribution within the study
cohort was balanced (male 54.9%)/female 45.1%). Because of the heterogeneity of the study
population as well as short follow-up periods in a relevant subset of patients without any re-
lapse or death event (n = 22; 21.6%), the median follow-up was 25.0 months (1–165 months)
and the median body mass index (BMI) was 26.89 kg/m2 (range 16.96–40.79 kg/m2). More-
over, 29 (40.8%; information was available in 71 patients) patients had significant weight
disorders (cachexia (BMI < 20 kg/m2) = 9; obesity (BMI > 30 kg/m2) = 20). Decrease in
medical fitness was present in 20 patients (19.6%) (elevated ECOG-PS ≥ 2). The pancreas
(n = 41; 40.2%) and the intestine (n = 44; 43.1%; please see Table 2 for specific primary tumor
sites) were the most frequent primary tumors in the present cohort. Further, 17 patients
(16.7%) had a neuroendocrine neoplasm of an unknown primary (NNUP). Among the
entire study cohort, 20 patients with GEP-NEC were included. Staging revealed metastatic
disease in 53 patients (51.9%), most of whom had liver metastases. Multilocal disease was
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present in 11 cases (10.8%) at the initial diagnosis. The GPS was positively associated with
histological grading (Table 2). The minority of patients experienced carcinoid syndrome
(18.6%) or B-symptoms (24.5%). The median Ki-67 was 10.0%. In GEP-NEC, the median
Ki-67 was 80% and in GEP-NET it was 5%. Additionally, the Ki-67 was positively correlated
with histological grading and GPS. Figure 1 visualizes the distribution of the relevant
clinicopathological characteristics in the GPS subgroups.

Table 2. Baseline clinicopathological characteristics in the current study cohort.

GPS Overall Study Group
(n = 102)

Group I
GPS 0

(n = 59)

Group II
GPS 1

(n = 26)

Group III
GPS 2

(n = 17)

Male/female 56/46 34/25 14/12 8/9

Median age (range), years 62 (18–95) 59 (18–85) 65 (36–95) 60 (23–81)

BMI (median, range) 26.9 (16.9–40.8) 28.0 (16.9–38.0) 26.0 (18.0–40.8) 26.0 (18.0–37.1)

Weight disorder
Cachexia (BMI < 20 kg/m2) 9/71 (12.7%) 4/39 (10.3%) 4/19 (21.1%) 1/10 (10.0%)
Obesity (BMI > 30 kg/m2) 20/71 (28.2%) 14/39 (35.9%) 3/19 (15.8%) 3/10 (30.0%)

ECOG PS

0–1 82 (80.4%) 52 (88.1%) 19 (73.1%) 11 (64.7%)

2–4 20 (19.6%) 7 (11.9%) 7 (26.9%) 6 (35.3%)

CCI (Median, range) 6 (0–13) 5 (0–12) 7.5 (2–11) 7 (4–13)

B-symptoms

No 77 (75.5%) 49 (83.1%) 17 (65.4%) 11 (64.7%)

Yes 25 (24.5%) 10 (16.9%) 9 (34.6%) 6 (35.3%)

Primary sites

Pancreatic 41 (40.2%) 27 (45.8%) 9 (34.6%) 5 (29.4%)

Intestine 44 (43.1%) 24 (40.7%) 13 (50.0%) 7 (41.2%)
- Gastric 7 (6.9%) 4 (6.8%) 1 (3.8%) 2 (11.8%)
- Jejunoileal 25 (24.5%) 15 (25.4%) 7 (26.9%) 3 (17.6%)
- Appendix 5 (4.9%) 4 (6.8%) 1 (3.8%) -
- Colon 3 (2.9%) 1 (1.7%) 1 (3.8%) 1 (5.9%)
- Rectum 4 (3.9%) - 3 (11.5%) 1 (5.9%)

Unknown Primary 17 (16.7%) 8 (13.5%) 4 (15.4%) 5 (29.4%)

Multifocal 11 (10.8%) 6 (10.1%) 3 (11.5%) 2 (11.7%)

Metastasis

Yes 53 (51.9%) 23 (39.0%) 17 (65.4%) 13 (76.5%)

Carcinoid Syndrome

No 83 (81.4%) 47 (79.7%) 20 (76.9%) 16 (94.1%)

Yes 19 (18.6%) 12 (20.3%) 6 (23.1%) 1 (5.9%)

Albumin (g/L) (median, range)

≥35 g/L 71 (69.6%) 55 (93.2%) 15 (57.7%) 1 (5.9%)

<35 g/L 31 (30.4%) 4 (6.8%) 11 (42.3%) 16 (94.1%)

CRP (mg/dL) (median, range)

≤10 mg/dL 72 (70.6%) 58 (98.3%) 13 (50.0%) 1 (5.9%)

>10 mg/dL 30 (29.4%) 1 (1.7%) 13 (50.0%) 16 (94.1%)

Chromogranin A median (range) 179 (29–56,200) 155 (29–13,600) 209 (41.2–8856) 196 (45–56,200)
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Table 2. Cont.

GPS Overall Study Group
(n = 102)

Group I
GPS 0

(n = 59)

Group II
GPS 1

(n = 26)

Group III
GPS 2

(n = 17)

Histological Grading

NET (G1) 24 (24.7%) 18 (32.7%) 4 (16.0%) 2 (11.8%)

NET (G2) 49 (50.5%) 30 (54.5%) 14 (56.0%) 5 (29.4%)

NET(G3) 6 (5.9%) 3 (5.1%) 1 (3.8) 2 (11.8%)

Ki-67 (median, range) 5% (1–40%) 4% (1–30%) 5% (1–20%) 5% (1–40%)

NEC 20 (19.6%) 5 (8.5%) 7 (26.9%) 8 (47.1%)
- Small cell type 17 (16.7%) 5 (8.5%) 5 (19.2%) 7 (41.2%)
- Large cell type 3 (2.9%) - 2 (7.7%) 1 (5.9%)

Ki-67 (median, range) 80% (40–90%) 80% (60–80%) 80% (40–80%) 75% (40–90%)

SSTR2

Negative 30 (41.1%) 15 (34.9%) 8 (40.0%) 7 (70.0%)

Positive 43 (58.9%) 28 (65.1%) 12 (60.0%) 3 (30.0%)

UICC

I 14 (13.7%) 11 (18.6%) 3 (11.5%) -

II 11 (10.8%) 9 (15.3%) 2 (7.7%) -

III 24 (23.5%) 16 (27.1%) 5 (19.2%) 3 (17.6%)

IV 53 (51.9%) 23 (39.0%) 16 (61.5%) 14 (82.4%)

BMI, body mass index; CCI, Charlson Comorbidity Index; CRP, C-reactive protein; ECOG PS, Eastern Cooperative
Oncology Group performance status; GPS, Glasgow Prognostic Score; MEN, multiple endocrine neoplasia; NEC,
neuroendocrine carcinoma; NET, neuroendocrine tumor; NSE; neuronspecific enolase; SSTR2, somatostatin-
receptor-subtype 2; UICC, Union internationale contre le cancer.
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3.2. Prognostic Scoring Systems

The distribution of the composite scores/ratios and their component values are de-
picted in Table 3. It appears that only the minority of GEP-NEN patients initially showed
features of systemic inflammation (NLR > 5 (28.4%); NLS = 2 (16.7%); NPS = 2 (3.9%);
PLS = 2 (0.98%); PLR > 150 (57.8%); PI = 2 (11.7%); PNI > 50 (33.3%); CAR ≥ 0.22 (34.3%);
and GPS = 2 (16.7%)).

Table 3. The relationship between composite ratios and cumulative scores and their component
values in GEP-NEN (n = 102).

n (%) Median (Range) Median (Range)

NLR Neutrophils (×109/L) Lymphocytes (×109/L)

<3 42 (41.6%) 4.1 (2.4–6.6) 2.1 (1.3–6.2)

3–5 30 (29.7%) 4.9 (2.9–10.2) 1.4 (0.6–2.9)

>5 29 (28.7%) 8.7 (4.9–19.7) 0.9 (0.4–2.7)

NLS

0 39 (38.6%) 4.8 (2.4–7.4) 2.1 (1.5–6.2)

1 45 (44.6%) 4.9 (2.5–15.1) 1.3 (0.5–2.9)

2 17 (16.8%) 9.5 (7.9–19.7) 0.8 (0.4–1.4)

NPS Neutrophils (×109/L) Platelets (×109/L)

0 74 (73.3%) 4.5 (2.4–7.4) 250 (127–396)

1 23 (22.7%) 9.0 (4.1–19.7) 277 (137–595)

2 4 (3.9%) 9.4 (7.6–15.1) 425 (406–555)

PLR Platelets (×109/L) Lymphocytes (×109/L)

≤150 42 (41.6%) 233 (124–406) 2.1 (0.9–6.2)

>150 59 (58.4%) 267 (137–595) 1.2 (0.4–2.9)

PLS

0 40 39.6%) 267 (168–378) 2.1 (1.5–6.2)

1 60 (59.4%) 250 (127–595) 1.2 (0.4–2.9)

2 1 (0.9%) - -

CAR Albumin (g/L) CRP (mg/dL)

≤0.22 67 (65.7%) 40 (30–51) 2.0 (0.0–9.4)

>0.22 35 (34.3%) 35 (18–46) 26.5 (6.0–242.0)

GPS

0 59 57.8%) 40 (31–51) 2.0 (0.0–8.1)

1 26 (25.5%) 36 (25–46) 9.9 (0.3–98.4)

2 17 (16.7%) 31 (18–35) 40.7 (10.0–242.0)

PNI Albumin (g/L) Lymphocytes (×109/L)

≥50 34 (33.7%) 45 (31–51) 1.9 (0.8–6.2)

<50 67 (66.3%) 36 (18–44) 1.2 (0.4–2.9)

PI WBC (×109/L) CRP (mg/dL)

0 63 (61.7%) 7.0 (4.1–10.8) 2.2 (0.0–40.7)

1 27 (26.5%) 9.9 (4.8–17.8) 11.7 (0.6–186.0)

2 12 (11.7%) 12.5 (10.1–22.3) 36.6 (12.6–242.0)
NLR, neutrophil–lymphocyte ratio; NLS, neutrophil–lymphocyte score; NPS, neutrophil–platelet-score; PLR,
platelet–lymphocyte ratio; PLS, platelet–lymphocyte score; CAR C, reactive protein albumin ratio; CRP, C-reactive
protein; GPS, Glasgow Prognostic Score; PI, prognostic index; PNI, prognostic nutritional index; WBC, white
blood cell count.

Pearson’s correlation analysis revealed the close connection between the GPS and in-
creasing UICC stage and other inflammation and/or nutritional aspects reflecting scores/ratios
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such as the CAR, PI, NPS, PLS, NLS, NLR, and PLR. Moreover, correlations between the
GPS and the occurrence of B-symptoms were detected. More results of Pearson’s correlation
analysis are demonstrated in Figure 2.
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The univariate Cox analysis revealed the GPS, PI, CCI > 3, metastatic disease (UICC
IV), and high-grade histology (NEC G3) to potentially predict PFS and OS (Table 4). Upon
univariate analysis, CRP and albumin as individual components of the GPS and CAR were
found to significantly impact survival (CRP: p = 0.0016 (OS), p = 0.005 (PFS); albumin:
p = 0.013 (OS)), which is in concurrence with previous results investigating the impact of
nutritional- and inflammation-based risk scores in hematological malignancies.

A subsequent confirmatory multivariate analysis conducting a Cox proportional
hazard model was conducted for the characteristics, scores, or ratios that significantly
predicted either OS or PFS after the univariate analysis (Table 5). As the GPS and the CAR
incorporated serological levels of CRP and albumin, the calculation of the c-index and
the cAIC was performed to identify the superior CRP/albumin-based scoring system for
multivariate analysis. This analysis demonstrated that the GPS outperformed the CAR
(Supplementary Table S1).

The subsequent comparative multivariate analysis showed that the GPS (HR = 3.459,
95% CI = 1.263–6.322, p < 0.0001), ECOG-PS (HR = 1.667, 95% CI = 0.828–4.189, p = 0.042),
metastatic disease (UICC IV) (HR = 1.155, 95% CI = 0.870–1.399, p = 0.001), and NEC
histology (HR = 1.271, 95% CI = 0930–1.661, p = 0.002) had a significant influence on OS,
whereas only the GPS (HR = 2.119, 95% CI = 0.944–4.265, p = 0.003) significantly predicted
PFS. Consequently, GPS was identified as the exclusive independent predictor of both OS
and PFS. Moreover, subsequent multivariate analysis could not confirm the significant
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dichotomized predictive value of the PI, PNI, CCI > 3, metastatic disease (UICC IV), and
histological grading (NEC G3) from the univariate analysis.

Table 4. Progression-free and overall survival in the univariate analysis (Univariate cox analysis).

Univariate Analysis

PFS OS

Prognostic Factor p-Value HR (95% CI) p-Value HR (95% CI)

GPS <0.0001 4.479 (2.302–8.716) <0.0001 6.153 (3.181–11.90)

CRP 0.005 1.009 (1.003–1.016) 0.016 1.008 (1.001–1.014)

Albumin 0.08 0.950 (0.898–1.006) 0.013 0.931 (0.881–0.985)

NLR 0.493 1.016 (0.972–1.061) 0.096 1.032 (0.994–1.071)

PLR 0.741 0.999 (0.007–1.002) 0.268 1.001 (0.991–1.003)

PNI 0.065 0.963 (0.924–1.002) 0.005 0.942 (0.904–0.982)

PI 0.02 1.675 (1.093–2.566) 0.02 1.663 (1.083–2.552)

Age > 60 years 0.237 1.455 (0.782–2.707) 0.078 1.793 (0.938–3.430)

ECOG PS ≥ 2 0.08 1.860 (0.911–3.800) <0.0001 3.668 (1.935–6.950)

CCI > 3 0.004 4.608 (1.638–12.97) 0.006 7.418 (1.786–30.81)

UICC IV <0.0001 1.698 (0.903–3.194) <0.0001 1.292 (0.689–2.424)

NEC (G3) 0.0004 3.168 (1.161–8.646) <0.0001 3.817 (1.548–9.412)
CCI, Charlson Comorbidity Index; CRP, C-reactive protein; ECOG PS, Eastern Cooperative Oncology Group
performance status; GPS, Glasgow Prognostic Score; HR, hazard ratio; NLR, neutrophil–ratio; OS, overall survival;
PFS, progression-free survival; PI, prognostic index; PLR, platelet–lymphocyte ratio; PNI, prognostic nutritional
index; UICC, Union International Contre le Cancer. Bold values indicate statistical significance (p < 0.05) in the
univariate cox analysis.

Table 5. Overall survival and progression-free survival in the univariate analysis and consecutive
multivariate Cox proportional hazard regression.

Univariate Analysis OS Multivariate Analysis OS

Prognostic Factor p-Value p-Value HR (95% CI)

GPS <0.0001 <0.0001 3.459 (1.263–6.322)

PI * 0.02 0.690 2.344 (1.513–8.436)

PNI ** 0.005 0.409 0.851(0.535–4.331)

ECOG <0.0001 0.042 1.667 (0.828–4.189)

CCI > 3 0.006 0.530 0.715 (0.299–6.299)

UICC IV <0.0001 0.001 1.155 (0.870–1.399)

NEC (G3) <0.0001 0.004 1.271 (0.930–1.661)

Univariate Analysis PFS Multivariate Analysis PFS

p-Value p-Value HR (95% CI)

GPS <0.0001 0.002 2.119 (0.944–4.265)

PI * 0.02 0.518 2.775 (1.984–4.372)

PNI ** 0.065 0.644 1.384 (1.015–1.855)

ECOG 0.08 0.453 2.248 (1.433–3.556)

CCI > 3 0.004 0.092 4.210 (1.936–6.501)

UICC IV <0.0001 0.067 1.582 (1.214–2.737)

NEC (G3) 0.0004 0.081 1.322 (0.862–2.453)
CCI, Charlson Comorbidity Index; GPS, Glasgow Prognostic Score; OS, overall survival; PFS, progression-free
survival; PI, prognostic index; PNI, prognostic nutritional Index; UICC, Union InterNational Contre le Cancer.
* CRP > 10 mg/dL, white blood cell count > 11,000/µL, ** >50.
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The impact of GPS and CAR on OS (p = 0.003; p = 0.003) and PFS (p = 0.0085; p < 0.001)
is demonstrated by the Kaplan–Meier analysis in Figure 3. The additional Kaplan–Meier
analysis revealed that the histological grading had no impact on either PFS or OS within the
GPS subgroups, with the exception of calculating the OS in the GPS 0 subgroup (p = 0.0009).
Moreover, NNUP had a significant impact on OS (p = 0.0006) but not PFS (0.093) (Figure 3).
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Figure 3. Progression-free (A,C,E,G,I,K) and overall (B,D,F,H,J,L) survival according to the Glasgow
Prognostic Score (GPS) (log-rank GPS 0 vs. GPS 1 vs. GPS 2; (A,B)), CRP/albumin ratio (CAR)
(log-rank test; (C,D)) and primary tumor sites (log-rank test; (K,L)) in GEP-NEN patients. (E–J) The
Kaplan–Meier analysis (PFS and OS) according to the histological grading among the GPS subtypes.

Supplementary Figure S1 shows that GPS subdivided high-risk patients (GPS 2) from
low- and intermediate-risk (GPS 0/1) patients in pancreatic NEN (pan-NEN), but not in the
NEN of the small intestine (SI-NEN) (Supplementary Figure S1A–D). The high frequency
of G1 and G2 tumors (96.0%) in SI-NEN can explain the failure of risk prediction in this
NEN subtype. As expected, the present analysis found the highest frequency of high-risk
patients (GPS 2) in NECs (Supplementary Figure S1E,F).

During the follow-up period of 25.0 months in the median, the median GPS-subgroup-
related PFS was 22 months (GPS 0), 14 months (GPS 1), and 13 months (GPS 2), respectively.
In this period, 51 GEP-NEN patients experienced a relapse event (29.4%) or refractory
setting (20.6%), and 39 cancer-related deaths (38.2%) were recorded. GEP-NEN patients
with a calculated GPS of 2 had a higher relapse rate of 58.8% compared with the lower GPS
subgroups (GPS 0 = 33.9%; GPS 1 = 42.3%). Finally, the calculated two-year OS rate was
57.6% for the GPS 0 subgroup, 40.7% for the GPS 1, and 43.7% for the GPS 2 subgroup,
respectively.

3.3. Treatment Characteristics

The treatment modalities related to histological grading, associated response rates, and
the toxicity profile in the current study cohort are outlined in Table 6. Surgical resections
display the therapeutic approach that was performed the most frequently (63.7%). As
Table 6 demonstrates, in 23 cases (22.5%), surgical approaches were conducted in a palliative
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setting and in 42 cases (41.2%) the approach was performed with curative intent. However,
25 GEP-NEN patients (24.5%) received palliative chemotherapy and the target therapeutic
everolimus was administered in two cases (1.9%) in a first line setting. Of course, systemic
treatment in palliative intent was administered the most frequently in patients with NEC
(75%). The most frequent chemotherapeutic regimen was a platin-based protocol (64.0%).
Somatostatin analogues were given in the majority of cases (n = 23; 22.5%). A PRRT was
carried out in 13 cases (12.7%). Seven patients (6.9%) refused any cytoreductive treatment.
Further treatment information for relapse settings are briefly summarized in Supplementary
Tables S2 and S3 and in the Supplementary Material Section.

Table 6. First line treatment modalities of all GEP-NEN-patients included in the study.

Characteristics Overall Study Group
(n = 102)

GPS 0
(n = 59)

GPS 1
(n = 26)

GPS 2
(n = 17)

G1–G2 GEP-NEN 1st line treatment (n = 76)

Surgical resection 52 38 11 3

- curative 37 30 5 2

- palliative 15 8 6 1

Chemotherapy 8 5 - 3

Targeted therapy - - - -

Radiation therapy 1 - 1 -

PRRT 12 7 5 -

Somatostatin analogues 22 11 8 3

Refusal 4 1 1 2

G3 GEP-NEN 1st line treatment (n = 6)

Surgical resection 1 - 1 -

- curative 1 - 1 -

Chemotherapy 3 1 - 2

Targeted therapy 1 1 - -

PRRT 1 1 - -

Somatostatin analogues 2 1 - 1

GEP-NEC 1st line treatment (n = 20)

Surgical resection 12 3 5 4

- curative 4 - 3 1

- palliative 8 3 2 3

Chemotherapy 14 5 6 3

Targeted therapy 1 1 - -

Radiation therapy 1 - - 1

Refusal 3 - 2 1

Best response (RECIST v1.1)

CR 36 28 6 2

PR 30 11 10 9

SD 19 11 6 2

PD 7 2 4 1

Watch & wait 10 7 - 3

Dfd 39 17 10 12
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Table 6. Cont.

Characteristics Overall Study Group
(n = 102)

GPS 0
(n = 59)

GPS 1
(n = 26)

GPS 2
(n = 17)

Toxicity profile (NCI CTC)

Cytopenia grad III/IV 5 2 2 1

Emesis 5 - 3 2

Pneumonitis 1 1 - -

Nephrotoxicity 2 - - 1
CR, complete remission; Dfd, death from disease; GPS, Glasgow-prognostic score; NCI CTC, National Cancer
Institute Common Toxicity Criteria; PD, progressive disease; PR, partial remission; PRRT, peptide-receptor-
radionuclide-therapy; SD, stable disease; RECIST, response evaluation criteria in solid tumors.

Considering the RESIST v1.1 criteria, the overall response rate (ORR) was 70.9% (CR
and PR). The CR rate in this cohort was 38.7% (36/93) and the rate of PRs was 32.2%.
(30/93). There were progressive diseases in 7.5% of cases (7/93) without any response to
cytoreductive treatment. A watch and wait strategy was favored in eight cases (7.8%).

Although the majority of patients presented with advanced stage disease at initial
diagnosis and experienced intensive treatment strategies, the overall toxicity profile was
mild and mostly gastrointestinal in nature with emesis and/or nausea. Severe adverse
events (SAE) were recorded in 14 cases (15.1%) in the first line setting.

4. Discussion

The present study comprehensively compares nutritional and inflammatory risk
scores/ratios with respect to their prognostic capabilities in GEP-NEN patients. Espe-
cially in GEP-NEN, an extremely wide prognostic spectrum exists, depending not only
on the stage at initial diagnosis, but also on the applicability of the exhaustive therapeutic
repertoire in each individual case [29]. Accordingly, there is significant room for improve-
ment when identifying GEP-NEN patients at risk of early progression in order to provide
each patient with a suitable therapeutic strategy. Alongside a variety of several malig-
nancies, the impact of GPS and its impressive role as a complementary resource for risk
stratification has been demonstrated [33,36,38,50]. In the era of precision oncology and
comprehensive genomic analysis, risk stratification of malignant diseases has enormously
evolved in recent years. However, because of financial issues, comprehensive genomic
analyses are not available for the vast majority of tumor entities to date. Additionally,
molecular analysis is associated with a certain latency. Consecutively, simple but informa-
tive resources for risk stratification are required to identify cancer patients at risk at an
early stage. Most scores/ratios that have been created for prognostic prediction in cancer
solely consider the aspect of inflammation (NLR, NLS, NPS, PLR, PLS, and PI). Previous
studies have investigated the role of inflammation-based risk scores/ratios in advanced or
metastatic NEN, noting the prognostic role of increased CRP and white blood cell counts,
reflecting an inflamed tumor microenvironment [56]. The authors did not find merit in the
calculation of NLR and PLR for outcome prognostication. Adding the nutritional aspect to
a prognostic score/ratio extends its prognostic capability, as several studies have shown
for CAR, PNI, and GPS [57,58]. CAR and GPS can be calculated on the basis of routine
laboratory parameters. Therefore, their calculation is a readily available and extremely cost-
effective tool to predict survival in cancer patients. In their study, Dolan et al. highlighted
the superiority of scores compared with ratios for risk stratification in cancer. However,
CAR showed a promising predictive power with regard to PFS and OS [36,50]. To avoid
the redundancy of individual components and the expected loss of independency of GPS
upon further multivariate analysis, we initially compared both CRP and albumin-based
risk scores (GPS and CAR) by calculating the c-index and the cAIC. In this context, we
identified GPS to hold more accurate prognostic capabilities. This led to the exclusion of
CAR from our subsequent multivariate analysis.
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Upon comparative multivariate analysis, GPS outperformed the well-established
risk scores/ratios and clinical characteristics underlining its prognostic independence for
both PFS and OS. As previously shown, a modified GPS (mGPS) predicts prognosis in
high-grade NEN of any primary site [43]. In the mGPS, hypoalbuminemia alone does not
count as a risk factor. Just the combination with an elevated CRP defines a constellation of
higher risk. Therefore, in the present cohort, mGPS was able to identify low-risk but not
high-risk patients (Supplementary Figure S2). Here, we focused on NEN from the gastro–
entero–pancreatic system using data from molecular profiling, which highlighted distinct
genomic programming for each primary NEN site and expanded the spectrum through
all histological grades and UICC stages [59]. Our results did not confirm the prognostic
capabilities of Ki-67 at the initial diagnosis that were proposed by Abdelmalak et al. [43].
The authors suggested that the prognostic ability of mGPS may be grade-dependent in NEN,
as Zou et al. were not able to show the prognostic relevance of the mGPS among several
histological grades in their cohort [43,56]. However, in our cohort, which is of comparable
sample size (n = 102 versus n = 135), we evaluated the prognostic independence of the GPS
across a wider spectrum of inflammation and nutritional status-based risk scores/ratios.

The Kaplan–Meier survival analysis revealed significant distinction of some GPS
subgroups. The GPS did not adequately separate the OS survival curves of patients at low
(GPS 0) and intermediate (GPS 1) risk, which is in agreement with previous results [35,43].
PFS analysis demonstrated a distinction for each GPS subgroup, underlining that both
GPS components, inflammation and nutritional status, had a relevant impact on selective
GEP-NEN prognosis, but not necessarily all-cause mortality. In comparison with the
inflammation-based risk scores/ratios, these findings line up with the assumption of
previous studies that the inclusion of a second dimension allows for a clearer distinction of
risk groups across a variety of cancer subtypes [43]. Moreover, the relapse rate increased
with a higher GPS score. As a consequence, the calculation of GPS in GEP-NEN patients
can potentially influence treatment guidance in cases with several therapeutic options of
distinct intensity, as such scores reflect a relevant component to identify cancer patients at risk.

The results from the molecular profiling revealed specific genomic signatures for
pancreatic (MEN1, ATRX, and CREBBP), midgut (CDKN1B) NETs, and GEP-NEC (TP53,
RB1, KRAS, CSMD3, TRRAP, and MYC) [59,60]. For optimal risk stratification, results from
these more effortful diagnostics will be complementary to conclusions that can be drawn
from GPS calculation.

The potential limitations of the present study include its limited sample size and its
retrospective design harboring the perpetual eventuality of fragmentary data alongside
heterogeneous treatment approaches. Because of the fragmentary data sets, information on
neuron specific enolase (NSE) and the secretion of serotonin, gastrin, insulin, or glucagon
was available only in a limited subset of patients, as the measurement of hormones at
the initial diagnosis remains optional. Although we were able to evaluate the causes
of death in the majority of cases, the cause of dead remained unknown for a subset of
patients due to insufficient follow-up. Moreover, 22 patients with a short follow-up period
(<24 months) were included for a short median-follow-up of not more than 25 months.
Concurrent infections at initial diagnosis harbor the potential to distort the calculation of
the GPS. Hence, GEP-NEN patients considered for inclusion in the study were screened for
infections that possibly bias the scoring results. A period of 30 days after the initial clinical
presentation was acknowledged so as to determine an alternative date for another blood
sampling in order to exclude any relevant infection affecting the calculation of the GPS.

5. Conclusions

Present results confirm the robustness of GPS as an excellent contributor for individual
risk stratification in GEP-NEN patients independent from histologic grading. Adding
clinical insights as well as specific features from the molecular characterization of pancreatic
and midgut NETs and GEP-NEC to concepts of risk stratification in order to optimize the
personalized prediction of prognosis in the era of precision oncology should be evaluated
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in further studies. To the best of our knowledge, this is the first study that underlines the
prognostic capability of GPS among the entire spectrum of histological grading and UICC
stages in GEP-NEN/NEC. However, further studies are required to validate the present
results in a prospective setting including a larger sample size.
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treatment modalities of all GEP-NEN-patients included in the study. Table S3: Third line treatment
modalities of all GEP-NEN patients included in the study.
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