Targeted Therapies in Advanced and Metastatic Urothelial Carcinoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Next-Generation Sequencing Identifies Therapeutic Targets
3. Fibroblast Growth Factor Receptor (FGFR) Inhibition
4. Nectin-4 Targeting
5. Trophoblast Cell Surface Antigen 2 (Trop-2) Targeting
6. Human Epidermal Growth Factor 2 (HER2) Targeting
7. Transforming Growth Factor Beta (TGF-β) Inhibition
8. Phosphoinositide-3-Kinase (PI3K) Inhibition
9. Mammalian Target of Rapamycin (mTOR) Inhibition
10. Limitations of Targeted Therapy
11. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yagoda, A. Chemotherapy of Urothelial Tract Tumors. Cancer 1987, 60, 574–585. [Google Scholar] [CrossRef]
- Sternberg, C.N.; De Mulder, P.H.; Schornagel, J.H.; Théodore, C.; Fossa, S.D.; Van Oosterom, A.T.; Witjes, F.; Spina, M.; Van Groeningen, C.J.; De Balincourt, C.; et al. Randomized Phase III Trial of High–Dose-Intensity Methotrexate, Vinblastine, Doxorubicin, and Cisplatin (MVAC) Chemotherapy and Recombinant Human Granulocyte Colony-Stimulating Factor Versus Classic MVAC in Advanced Urothelial Tract Tumors: European Organization for Research and Treatment of Cancer Protocol No. 30924. J. Clin. Oncol. 2001, 19, 2638–2646. [Google Scholar] [CrossRef]
- Von Der Maase, H.; Hansen, S.W.; Roberts, J.T.; Dogliotti, L.; Oliver, T.; Moore, M.J.; Bodrogi, I.; Albers, P.; Knuth, A.; Lippert, C.M.; et al. Gemcitabine and Cisplatin Versus Methotrexate, Vinblastine, Doxorubicin, and Cisplatin in Advanced or Metastatic Bladder Cancer: Results of a Large, Randomized, Multinational, Multicenter, Phase III Study. J. Clin. Oncol. 2000, 18, 3068–3077. [Google Scholar] [CrossRef]
- Von Der Maase, H.; Sengelov, L.; Roberts, J.T.; Ricci, S.; Dogliotti, L.; Oliver, T.; Moore, M.J.; Zimmermann, A.; Arning, M. Long-Term Survival Results of a Randomized Trial Comparing Gemcitabine Plus Cisplatin, With Methotrexate, Vinblastine, Doxorubicin, Plus Cisplatin in Patients with Bladder Cancer. J. Clin. Oncol. 2005, 23, 4602–4608. [Google Scholar] [CrossRef]
- Seront, E.; Machiels, J.-P. Molecular biology and targeted therapies for urothelial carcinoma. Cancer Treat. Rev. 2015, 41, 341–353. [Google Scholar] [CrossRef]
- Dash, A.; Galsky, M.D.; Vickers, A.J.; Ms, A.M.S.; Koppie, T.M.; Dalbagni, G.; Bochner, B.H. Impact of renal impairment on eligibility for adjuvant cisplatin-based chemotherapy in patients with urothelial carcinoma of the bladder. Cancer 2006, 107, 506–513. [Google Scholar] [CrossRef]
- Alexandrov, L.B.; Nik-Zainal, S.; Wedge, D.C.; Aparicio, S.A.J.R.; Behjati, S.; Biankin, A.V.; Bignell, G.R.; Bolli, N.; Borg, A.; Børresen-Dale, A.-L.; et al. Signatures of mutational processes in human cancer. Nature 2013, 500, 415–421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Wilpe, S.; Gerretsen, E.C.F.; Van Der Heijden, A.G.; De Vries, I.J.M.; Gerritsen, W.R.; Mehra, N. Prognostic and Predictive Value of Tumor-Infiltrating Immune Cells in Urothelial Cancer of the Bladder. Cancers 2020, 12, 2692. [Google Scholar] [CrossRef]
- Powles, T.; Durán, I.; Van Der Heijden, M.S.; Loriot, Y.; Vogelzang, N.J.; De Giorgi, U.; Oudard, S.; Retz, M.M.; Castellano, D.; Bamias, A.; et al. Atezolizumab versus chemotherapy in patients with platinum-treated locally advanced or metastatic urothelial carcinoma (IMvigor211): A multicentre, open-label, phase 3 randomised controlled trial. Lancet 2018, 391, 748–757. [Google Scholar] [CrossRef]
- Bellmunt, J.; De Wit, R.; Vaughn, D.J.; Fradet, Y.; Lee, J.-L.; Fong, L.; Vogelzang, N.J.; Climent, M.A.; Petrylak, D.P.; Choueiri, T.K.; et al. Pembrolizumab as Second-Line Therapy for Advanced Urothelial Carcinoma. N. Engl. J. Med. 2017, 376, 1015–1026. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Retz, M.; Siefker-Radtke, A.; Baron, A.; Necchi, A.; Bedke, J.; Plimack, E.R.; Vaena, D.; Grimm, M.-O.; Bracarda, S.; et al. Nivolumab in metastatic urothelial carcinoma after platinum therapy (CheckMate 275): A multicentre, single-arm, phase 2 trial. Lancet Oncol. 2017, 18, 312–322. [Google Scholar] [CrossRef]
- Powles, T.; O’Donnell, P.H.; Massard, C.; Arkenau, H.-T.; Friedlander, T.W.; Hoimes, C.; Lee, J.L.; Ong, M.; Sridhar, S.S.; Vogelzang, N.J.; et al. Efficacy and Safety of Durvalumab in Locally Advanced or Metastatic Urothelial Carcinoma: Up-dated Results From A Phase 1/2 Open-Label Study. JAMA Oncol. 2017, 3, e172411. [Google Scholar] [CrossRef] [PubMed]
- Apolo, A.B.; Infante, J.R.; Balmanoukian, A.; Patel, M.R.; Wang, D.; Kelly, K.; Mega, A.E.; Britten, C.D.; Ravaud, A.; Mita, A.C.; et al. Avelumab, an Anti–Programmed Death-Ligand 1 Antibody, In Patients with Refractory Metastatic Urothelial Carcinoma: Results from a Multicenter, Phase Ib Study. J. Clin. Oncol. 2017, 35, 2117–2124. [Google Scholar] [CrossRef] [PubMed]
- Powles, T.; van der Heijden, M.S.; Castellano, D.; Galsky, M.D.; Loriot, Y.; Petrylak, D.P.; Ogawa, O.; Park, S.H.; Lee, J.-L.; De Giorgi, U.; et al. Durvalumab alone and durvalumab plus tremelimumab versus chemotherapy in previously untreated patients with unresectable, locally advanced or metastatic urothelial carcinoma (DANUBE): A randomised, open-label, multicentre, phase 3 trial. Lancet Oncol. 2020, 21, 1574–1588. [Google Scholar] [CrossRef]
- Teo, M.Y.; Iyer, G. The landscape of immunotherapy in metastatic urothelial carcinoma. Curr. Opin. Urol. 2019, 29, 643–648. [Google Scholar] [CrossRef]
- The Cancer Genome Atlas Research Network. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature 2014, 507, 315–322. [Google Scholar] [CrossRef] [Green Version]
- Robertson, A.G.; Kim, J.; Al-Ahmadie, H.; Bellmunt, J.; Guo, G.; Cherniack, A.D.; Hinoue, T.; Laird, P.W.; Hoadley, K.A.; Akbani, R.; et al. Comprehensive Molecular Characterization of Muscle-Invasive Bladder Cancer. Cell 2017, 171, 540–556.e25. [Google Scholar] [CrossRef] [Green Version]
- Kamoun, A.; de Reyniès, A.; Allory, Y.; Sjödahl, G.; Robertson, A.G.; Seiler, R.; Hoadley, K.A.; Groeneveld, C.S.; Al-Ahmadie, H.; Choi, W.; et al. A Consensus Molecular Classification of Muscle-invasive Bladder Cancer. Eur. Urol. 2020, 77, 420–433. [Google Scholar] [CrossRef]
- Loriot, Y.; Necchi, A.; Park, S.H.; Garcia-Donas, J.; Huddart, R.; Burgess, E.; Fleming, M.; Rezazadeh, A.; Mellado, B.; Varlamov, S.; et al. Erdafitinib in Locally Advanced or Metastatic Urothelial Carcinoma. N. Engl. J. Med. 2019, 381, 338–348. [Google Scholar] [CrossRef]
- Pal, S.K.; Rosenberg, J.E.; Hoffman-Censits, J.H.; Berger, R.; Quinn, D.I.; Galsky, M.D.; Wolf, J.; Dittrich, C.; Keam, B.; Delord, J.-P.; et al. Efficacy of BGJ398, a Fibroblast Growth Factor Receptor 1–3 Inhibitor, in Patients with Previously Treated Advanced Urothelial Carcinoma with FGFR3 Alterations. Cancer Discov. 2018, 8, 812–821. [Google Scholar] [CrossRef]
- Schuler, M.; Cho, B.C.; Sayehli, C.M.; Navarro, A.; Soo, R.A.; Richly, H.; Cassier, P.A.; Tai, D.; Penel, N.; Nogova, L.; et al. Rogaratinib in patients with advanced cancers selected by FGFR mRNA expression: A phase 1 dose-escalation and dose-expansion study. Lancet Oncol. 2019, 20, 1454–1466. [Google Scholar] [CrossRef]
- Sternberg, C.N.; Petrylak, D.P.; Bellmunt, J.; Nishiyama, H.; Necchi, A.; Gurney, H.; Lee, J.-L.; van der Heijden, M.S.; Rosenbaum, E.; Penel, N.; et al. FORT-1: Phase II/III Study of Rogaratinib Versus Chemotherapy in Patients with Locally Advanced or Metastatic Urothelial Carcinoma Selected Based on FGFR1/3 mRNA Expression. J. Clin. Oncol. 2022. [Google Scholar] [CrossRef] [PubMed]
- Powles, T.; Rosenberg, J.E.; Sonpavde, G.P.; Loriot, Y.; Durán, I.; Lee, J.-L.; Matsubara, N.; Vulsteke, C.; Castellano, D.; Wu, C.; et al. Enfortumab Vedotin in Previously Treated Advanced Urothelial Carcinoma. N. Engl. J. Med. 2021, 384, 1125–1135. [Google Scholar] [CrossRef]
- Rosenberg, J.E.; Flaig, T.W.; Friedlander, T.W.; Milowsky, M.I.; Srinivas, S.; Petrylak, D.P.; Merchan, J.R.; Bilen, M.A.; Carret, A.; Yuan, N.; et al. Study Ev-103: Preliminary Durability Results of Enfortumab Vedotin Plus Pembroli-zumab for Locallya Dvanced Or Metastatic Urothelial Carcinoma. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2020, 38, 441. [Google Scholar] [CrossRef]
- Grivas, P.; Tagawa, S.T.; Bellmunt, J.; de Santis, M.; Duran, I.; Goebell, P.; Necchi, A.; Sridhar, S.S.; Sternberg, C.N.; Aziz, M.U.; et al. Tropics-04: Study of Sacituzumab Govitecan in Metastatic or Locally Advanced Unresectable Urothelial Cancer That Has Progressed After Platinum and Checkpoint Inhibitor Therapy. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2021, 39, TPS498. [Google Scholar] [CrossRef]
- Galsky, M.D.; Del Conte, G.; Foti, S.; Yu, E.Y.; Machiels, J.-P.H.; Doger, B.; Necchi, A.; De Braud, F.G.; Hamilton, E.P.; Hennequin, A.; et al. Primary analysis from DS8201-A-U105: A phase 1b, two-part, open-label study of trastuzumab deruxtecan (T-DXd) with nivolumab (nivo) in patients (pts) with HER2-expressing urothelial carcinoma (UC). J. Clin. Oncol. 2022, 40, 438. [Google Scholar] [CrossRef]
- Bryce, A.H.; Kurzrock, R.; Meric-Bernstam, F.; Hurwitz, H.; Hainsworth, J.D.; Spigel, D.R.; Bose, R.; Swanton, C.; Burris, H.A.; Guo, S.; et al. Pertuzumab plus trastuzumab for HER2-positive metastatic urothelial cancer (mUC): Preliminary data from MyPathway. J. Clin. Oncol. 2017, 35, 348. [Google Scholar] [CrossRef]
- Sheng, X.; Zhou, A.-P.; Yao, X.; Shi, Y.; Luo, H.; Shi, B.; Liu, J.; Yu, G.; He, Z.; Hu, C.; et al. A phase II study of RC48-ADC in HER2-positive patients with locally advanced or metastatic urothelial carcinoma. J. Clin. Oncol. 2019, 37, 4509. [Google Scholar] [CrossRef]
- Doi, T.; Fujiwara, Y.; Koyama, T.; Ikeda, M.; Helwig, C.; Watanabe, M.; Vugmeyster, Y.; Kudo, M. Phase I Study of the Bifunctional Fusion Protein Bintrafusp Alfa in Asian Patients with Advanced Solid Tumors, Including a Hepatocellular Carcinoma Safety-Assessment Cohort. Oncologist 2020, 25, e1292–e1302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strauss, J.; Heery, C.R.; Schlom, J.; Madan, R.A.; Cao, L.; Kang, Z.; Lamping, E.; Marté, J.L.; Donahue, R.N.; Grenga, I.; et al. Phase I Trial of M7824 (MSB0011359C), a Bifunctional Fusion Protein Targeting PD-L1 and TGFβ, in Advanced Solid Tumors. Clin. Cancer Res. 2018, 24, 1287–1295. [Google Scholar] [CrossRef] [PubMed]
- Tomczak, P.; Popovic, L.; Barthelemy, P.; Janicic, A.; Fernandez, E.S.; Borchiellini, D.; Aglietta, M.; Maroto, J.; Carnot, A.; O’Connell, B.; et al. Preliminary analysis of a phase II, multicenter, randomized, active-control study to evaluate the efficacy and safety of eganelisib (IPI 549) in combination with nivolumab compared to nivolumab monotherapy in patients with advanced urothelial carcinoma. J. Clin. Oncol. 2021, 39, 436. [Google Scholar] [CrossRef]
- Kim, J.W.; Milowsky, M.I.; Hahn, N.M.; Kwiatkowski, D.J.; Morgans, A.K.; Davis, N.B.; Appleman, L.J.; Gupta, S.; Lara, P.N.; Hoffman-Censits, J.H.; et al. Sapanisertib, a dual mTORC1/2 inhibitor, for TSC1- or TSC2-mutated metastatic urothelial carcinoma (mUC). J. Clin. Oncol. 2021, 39, 431. [Google Scholar] [CrossRef]
- Ornitz, D.M.; Itoh, N. The Fibroblast Growth Factor signaling pathway. Wiley Interdiscip. Rev. Dev. Biol. 2015, 4, 215–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, J.-F.; Caliri, A.W.; Duex, J.E.; Theodorescu, D. Targetable Pathways in Advanced Bladder Cancer: FGFR Signaling. Cancers 2021, 13, 4891. [Google Scholar] [CrossRef]
- Sweis, R.F.; Spranger, S.; Bao, R.; Paner, G.P.; Stadler, W.M.; Steinberg, G.; Gajewski, T.F. Molecular Drivers of the Non–T-cell-Inflamed Tumor Microenvironment in Urothelial Bladder Cancer. Cancer Immunol. Res. 2016, 4, 563–568. [Google Scholar] [CrossRef] [Green Version]
- Kacew, A.; Sweis, R.F. FGFR3 Alterations in the Era of Immunotherapy for Urothelial Bladder Cancer. Front. Immunol. 2020, 11, 575258. [Google Scholar] [CrossRef]
- Bahleda, R.; Italiano, A.; Hierro, C.; Mita, A.; Cervantes, A.; Chan, N.; Awad, M.; Calvo, E.; Moreno, V.; Govindan, R.; et al. Multicenter Phase I Study of Erdafitinib (JNJ-42756493), Oral Pan-Fibroblast Growth Factor Receptor Inhibitor, in Patients with Advanced or Refractory Solid Tumors. Clin. Cancer Res. 2019, 25, 4888–4897. [Google Scholar] [CrossRef]
- Pal, S.K.; Bajorin, D.; Dizman, N.; Hoffman-Censits, J.; Quinn, D.I.; Petrylak, D.P.; Galsky, M.D.; Vaishampayan, U.; De Giorgi, U.; Gupta, S.; et al. Infigratinib in upper tract urothelial carcinoma versus urothelial carcinoma of the bladder and its association with comprehensive genomic profiling and/or cell-free DNA results. Cancer 2020, 126, 2597–2606. [Google Scholar] [CrossRef] [PubMed]
- Siefker-Radtke, A.O.; Necchi, A.; Park, S.H.; García-Donas, J.; Huddart, R.; Burgess, E.F.; Fleming, M.T.; Rezazadeh, A.; Mellado, B.; Varlamov, S.; et al. Management of fibroblast growth factor receptor inhibitor (FGFRi) treatment-emergent adverse events (TEAEs) of interest in patients (Pts) with locally advanced or metastatic urothelial carcinoma (mUC). J. Clin. Oncol. 2021, 39, 426. [Google Scholar] [CrossRef]
- Sjödahl, G.; Lauss, M.; Lövgren, K.; Chebil, G.; Gudjonsson, S.; Veerla, S.; Patschan, O.; Aine, M.; Fernö, M.; Ringnér, M.; et al. A Molecular Taxonomy for Urothelial Carcinoma. Clin. Cancer Res. 2012, 18, 3377–3386. [Google Scholar] [CrossRef] [PubMed]
- Challita-Eid, P.M.; Satpayev, D.; Yang, P.; An, Z.; Morrison, K.; Shostak, Y.; Raitano, A.; Nadell, R.; Liu, W.; Lortie, D.R.; et al. Enfortumab Vedotin Antibody-Drug Conjugate Targeting Nectin-4 Is a Highly Potent Therapeutic Agent in Multiple Preclinical Cancer Models. Cancer Res. 2016, 76, 3003–3013. [Google Scholar] [CrossRef] [Green Version]
- Heath, E.I.; Rosenberg, J.E. The biology and rationale of targeting nectin-4 in urothelial carcinoma. Nat. Rev. Urol. 2020, 18, 93–103. [Google Scholar] [CrossRef] [PubMed]
- Chu, C.E.; Sjöström, M.; Egusa, E.A.; Gibb, E.A.; Badura, M.L.; Zhu, J.; Koshkin, V.S.; Stohr, B.A.; Meng, M.V.; Pruthi, R.S.; et al. Heterogeneity in NECTIN4 Expression Across Molecular Subtypes of Urothelial Cancer Mediates Sensitivity to Enfortumab Vedotin. Clin. Cancer Res. 2021, 27, 5123–5130. [Google Scholar] [CrossRef] [PubMed]
- Galsky, M.D.; Necchi, A.; Shore, N.D.; Plimack, E.R.; Jia, C.; Sbar, E.; Moreno, B.H.; Witjes, J.A. KEYNOTE-905/EV-303: Perioperative pembrolizumab or pembrolizumab plus enfortumab vedotin (EV) and cystectomy compared to cystectomy alone in cisplatin-ineligible patients with muscle-invasive bladder cancer (MIBC). J. Clin. Oncol. 2021, 39, TPS507. [Google Scholar] [CrossRef]
- Goldenberg, D.M.; Stein, R.; Sharkey, R.M. The emergence of trophoblast cell-surface antigen 2 (TROP-2) as a novel cancer target. Oncotarget 2018, 9, 28989–29006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ocean, A.J.; Starodub, A.N.; Bardia, A.; Vahdat, L.T.; Isakoff, S.J.; Guarino, M.; Messersmith, W.A.; Picozzi, V.J.; Mayer, I.A.; Wegener, W.A.; et al. Sacituzumab govitecan (IMMU-132), an anti-Trop-2-SN-38 antibody-drug conjugate for the treatment of diverse epithelial cancers: Safety and pharmacokinetics. Cancer 2017, 123, 3843–3854. [Google Scholar] [CrossRef] [Green Version]
- Necchi, A.; Raggi, D.; Bandini, M.; Gallina, A.; Capitanio, U.; Gandaglia, G.; Cucchiara, V.; Fossati, N.; de Cobelli, F.; Salonia, A.; et al. Sure: An Open Label, Sequential-Arm, Phase Ii Study of Neoadjuvant Sacituzumab Govitecan (Sg), and Sg Plus Pembrolizumab (Pembro) Before Radical Cystectomy, for Patients with Muscle-Invasive Bladder Cancer (Mibc) Who Cannot Receive or Refuse Cisplatin-Based Chemotherapy. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2021, 39, 506. [Google Scholar]
- Chou, J.; Trepka, K.; Sjöström, M.; Egusa, E.A.; Chu, C.E.; Zhu, J.; Chan, E.; Gibb, E.A.; Badura, M.L.; Contreras-Sanz, A.; et al. TROP2 Expression Across Molecular Subtypes of Urothelial Carcinoma and Enfortumab Vedotin-resistant Cells. Eur. Urol. Oncol. 2022. [Google Scholar] [CrossRef]
- Yan, M.; Schwaederle, M.; Arguello, D.; Millis, S.Z.; Gatalica, Z.; Kurzrock, R. HER2 expression status in diverse cancers: Review of results from 37,992 patients. Cancer Metastasis Rev. 2015, 34, 157–164. [Google Scholar] [CrossRef] [Green Version]
- Choudhury, N.J.; Campanile, A.; Antic, T.; Yap, K.L.; Fitzpatrick, C.A.; Wade, J.L.; Karrison, T.; Stadler, W.M.; Nakamura, Y.; O’Donnell, P.H. Afatinib Activity in Platinum-Refractory Metastatic Urothelial Carcinoma in Patients with ERBB Alterations. J. Clin. Oncol. 2016, 34, 2165–2171. [Google Scholar] [CrossRef] [Green Version]
- Yu, E.Y.; Kang, V.; Walker, L.N.; Galsky, M.D. SGNTUC-019: Phase II basket study of tucatinib (TUC) and trastuzumab (Tras) in previously treated solid tumors with HER2 alterations: Urothelial cancer cohort (trial in progress). J. Clin. Oncol. 2021, 39, TPS499. [Google Scholar] [CrossRef]
- Mariathasan, S.; Turley, S.J.; Nickles, D.; Castiglioni, A.; Yuen, K.; Wang, Y.; Kadel, E.E., III; Koeppen, H.; Astarita, J.L.; Cubas, R.; et al. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 2018, 554, 544–548. [Google Scholar] [CrossRef]
- Lind, H.; Gameiro, S.; Jochems, C.; Donahue, R.N.; Strauss, J.; Gulley, J.L.; Palena, C.; Schlom, J. Dual targeting of TGF-β and PD-L1 via a bifunctional anti-PD-L1/TGF-βRII agent: Status of preclinical and clinical advances. J. Immunother. Cancer 2019, 8, e000433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grivas, P.; Morales-Barrera, R.; Sridhar, S.S.; Loriot, Y.; Van Der Heijden, M.S.; Galsky, M.D.; Baxter, D.; Khaled, A.H.; Hug, B.A. A phase Ib single-arm study of bintrafusp alfa for the treatment of pretreated, locally advanced/unresectable or metastatic urothelial cancer. J. Clin. Oncol. 2021, 39, TPS501. [Google Scholar] [CrossRef]
- Rascio, F.; Spadaccino, F.; Rocchetti, M.; Castellano, G.; Stallone, G.; Netti, G.; Ranieri, E. The Pathogenic Role of PI3K/AKT Pathway in Cancer Onset and Drug Resistance: An Updated Review. Cancers 2021, 13, 3949. [Google Scholar] [CrossRef]
- Fukao, T.; Koyasu, S. PI3K and negative regulation of TLR signaling. Trends Immunol. 2003, 24, 358–363. [Google Scholar] [CrossRef]
- López-Knowles, E.; Hernández, S.; Malats, N.; Kogevinas, M.; Lloreta, J.; Carrato, A.; Tardón, A.; Serra, C.; Real, F.X. EPICURO Study Group Investigators PIK3CA Mutations Are an Early Genetic Alteration Associated with FGFR3 Mutations in Superficial Papillary Bladder Tumors. Cancer Res. 2006, 66, 7401–7404. [Google Scholar] [CrossRef] [Green Version]
- Seront, E.; Rottey, S.; Sautois, B.; Kerger, J.; D’Hondt, L.; Verschaeve, V.; Canon, J.-L.; Dopchie, C.; Vandenbulcke, J.; Whenham, N.; et al. Phase II study of everolimus in patients with locally advanced or metastatic transitional cell carcinoma of the urothelial tract: Clinical activity, molecular response, and biomarkers. Ann. Oncol. 2012, 23, 2663–2670. [Google Scholar] [CrossRef]
- Iyer, G.; Hanrahan, A.J.; Milowsky, M.I.; Al-Ahmadie, H.; Scott, S.N.; Janakiraman, M.; Pirun, M.; Sander, C.; Socci, N.D.; Ostrovnaya, I.; et al. Genome Sequencing Identifies a Basis for Everolimus Sensitivity. Science 2012, 338, 221. [Google Scholar] [CrossRef] [Green Version]
- Gerullis, H.; Eimer, C.; Ecke, T.H.; Georgas, E.; Freitas, C.; Kastenholz, S.; Arndt, C.; Heusch, C.; Otto, T. A phase II trial of temsirolimus in second-line metastatic urothelial cancer. Med. Oncol. 2012, 29, 2870–2876. [Google Scholar] [CrossRef] [PubMed]
- McPherson, V.; Bs, B.R.; Bs, A.B.; Bs, S.N.S.; Bs, M.E.B.; Garcia-Grossman, I.R.; Bs, A.M.R.; McCoy, A.S.; Kim, P.H.; Al-Ahmadie, H.; et al. A phase 2 trial of buparlisib in patients with platinum-resistant metastatic urothelial carcinoma. Cancer 2020, 126, 4532–4544. [Google Scholar] [CrossRef] [PubMed]
- Bellmunt, J.; Lalani, A.-K.A.; Jacobus, S.; Wankowicz, S.; Polacek, L.; Takeda, D.Y.; Harshman, L.C.; Wagle, N.; Moreno, I.; Lundgren, K.; et al. Everolimus and pazopanib (E/P) benefit genomically selected patients with metastatic urothelial carcinoma. Br. J. Cancer 2018, 119, 707–712. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, J.; Haap, M.; Kopp, H.-G.; Lipp, H.-P. Tyrosine Kinase Inhibitors—A Review on Pharmacology, Metabolism and Side Effects. Curr. Drug Metab. 2009, 10, 470–481. [Google Scholar] [CrossRef] [PubMed]
- McCombie, W.R.; McPherson, J.D.; Mardis, E.R. Next-Generation Sequencing Technologies. Cold Spring Harb. Perspect. Med. 2019, 9, a036798. [Google Scholar] [CrossRef] [PubMed]
Reference | Agent | Trial | Phase | Setting | N | Biomarker | ORR | Median OS (months) | Primary Endpoint |
---|---|---|---|---|---|---|---|---|---|
Powles et al. Lancet 2018 [9] | atezolizumab vs. chemo | NCT02302807 | 3 | 2L mUC | 931 | PD-L1 (IC2/3) | 23.0% | 11.1 vs. 10.6 | OS |
Bellmunt et al. NJEM 2017 [10] | pembrolizumab vs. chemo | NCT02256436 | 3 | 2L mUC | 542 | PD-L1 | 21.1% | 10.3 vs. 7.4 | OS, PFS |
Loriot et al. NEJM 2019 [19] | erdafitinib | NCT02365597 | 2 | 2L mUC | 99 | FGFR3 | 40.0% | 13.8 | ORR |
Pal et al. Cancer Discov 2018 [20] | infigratinib (BGJ398) | NCT01004224 | 1 | 2L mUC | 67 | FGFR3 | 25.4% | 7.75 | ORR |
Schuler et al. Lancet Oncol 2019 [21] | rogartinib | NCT01976741 | 1 | 2L mUC | 52 | FGFR3 | 23.0% | NR | Safety |
Sternberg et al. JCO 2022 [22] | rogartinib vs. chemo | NCT03410693 | 2/3 | 2L mUC | 175 | FGFR3 | 20.7% | 8.3 | ORR, OS |
Powles et al. NEJM 2021 [23] | enfortumab vedotin vs. chemo | NCT03474107 | 3 | 2L mUC | 608 | Nectin-4 | 40.6% | 12.8 vs. 8.9 | OS |
Rosenberg et al. [abstract] JCO 2020 [24] | enfortumab vedotin + pembro | NCT03288545 | 1b/2 | 1L cis-ineligible | 45 | Nectin-4/PD-L1 | 73.3% | NR | Safety, ORR |
Tagawa et al. JCO 2021 [25] | sacituzumab govitecan | NCT03547973 | 2 | 2L mUC | 113 | Trop-2 | 27.0% | 10.5 | ORR |
Galsky et al. [abstract] JCO 2022 [26] | trastuzumab + nivolumab | NCT03523572 | 1b/2 | 2L mUC | 34 | HER2/PD-L1 | 36.7% | 11 | ORR |
Bryce et al. [abstract] JCO 2017 [27] | trastuzumab + pertuzumab | NCT02091141 | 2 | 2L mUC | 12 | HER2 | 33.0% | NR | ORR |
Sheng et al. Clin Cancer Res 2021 [28] | anti-HER2 RC48-ADC | NCT03507166 | 2 | 2L mUC | 43 | HER2 | 51.2% | 13.9 | ORR |
Doi et al. Oncologist 2020 [29] | bintrafusp alfa | NCT02699515 | 1 | 2L solid tumors | 23 | TGF-Beta/PD-L1 | 14.3% | NR | Safety |
Strauss et al. Clin Cancer Res 2018 [30] | bintrafusp alfa | NCT02517398 | 1 | 2L solid tumors | 19 | TGF-Beta/PD-L1 | 26.5% | NR | Safety |
Tomczak et al. [abstract] JCO 2021 [31] | eganelisib + nivolumab | NCT03980041 | 2 | 2L mUC | 49 | PI3K-y | 30.3% | NR | ORR |
Kim et al. [abstract] JCO 2021 [32] | sapanisertib | NCT03047213 | 2 | 2L mUC | 17 | mTORC1/2 | 0.0% | 3.4 | ORR |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katims, A.B.; Reisz, P.A.; Nogueira, L.; Truong, H.; Lenis, A.T.; Pietzak, E.J.; Kim, K.; Coleman, J.A. Targeted Therapies in Advanced and Metastatic Urothelial Carcinoma. Cancers 2022, 14, 5431. https://doi.org/10.3390/cancers14215431
Katims AB, Reisz PA, Nogueira L, Truong H, Lenis AT, Pietzak EJ, Kim K, Coleman JA. Targeted Therapies in Advanced and Metastatic Urothelial Carcinoma. Cancers. 2022; 14(21):5431. https://doi.org/10.3390/cancers14215431
Chicago/Turabian StyleKatims, Andrew B., Peter A. Reisz, Lucas Nogueira, Hong Truong, Andrew T. Lenis, Eugene J. Pietzak, Kwanghee Kim, and Jonathan A. Coleman. 2022. "Targeted Therapies in Advanced and Metastatic Urothelial Carcinoma" Cancers 14, no. 21: 5431. https://doi.org/10.3390/cancers14215431
APA StyleKatims, A. B., Reisz, P. A., Nogueira, L., Truong, H., Lenis, A. T., Pietzak, E. J., Kim, K., & Coleman, J. A. (2022). Targeted Therapies in Advanced and Metastatic Urothelial Carcinoma. Cancers, 14(21), 5431. https://doi.org/10.3390/cancers14215431