UroVysionTM Fluorescence In Situ Hybridization in Urological Cancers: A Narrative Review and Future Perspectives
Abstract
:Simple Summary
Abstract
1. Introduction
2. Application of U-FISH in UC
2.1. Application of U-FISH in Bladder Cancer
2.2. Application of U-FISH in UTUC
2.3. Advantages and Disadvantages of FISH Technology
2.4. Summary
3. Application of U-FISH in Non-Urothelial Carcinoma
3.1. Application of Cytology and Histological U-FISH in Non-Urothelial Carcinoma
3.2. Mutual Validation of Cytology and Histology U-FISH
3.3. Analysis of Reasons for Positive FISH Findings in Urine and Tissue Specimens of Non-Urothelial Carcinoma
3.4. Application of Other Types of Probe Combinations in Non-Urothelial Carcinoma
3.5. Summary
4. Analysis of the Characteristics of Urinary FISH-Positive Cases in Urinary Tract Metastases
5. Future Perspectives on U-FISH
6. Existing Problems
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
FISH | Fluorescence in situ hybridization |
FDA | Food and Drug Administration |
UTUC | Upper tract urothelial carcinoma |
TURBT | Transurethral resection of bladder tumor |
BCG | Bacillus Calmette–Guérin |
CSP | Chromosome-specific centromeric probe |
GLP | Gene locus-specific probe |
NMP22 | Nuclear matrix protein 22 |
BTA | Bladder tumor antigen |
HER-2 | Human epidermal growth factor receptor 2 |
AR | Androgen receptor |
MCM7 | Minichromosome maintenance deficient 7 |
TP53 | Tumor protein p53 |
KRAS | v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog |
BRAF | v-Raf murine sarcoma viral oncogene homolog B |
PIK3CA | Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha |
FGFR1 | Fibroblast growth factor receptor 1 |
MET | Tyrosine-protein kinase met/hepatocyte growth factor receptor |
NRAS | Neuroblastoma RAS viral oncogene homolog |
PDGFRA | Platelet-derived growth factor receptor alpha |
EGFR | Epidermal growth factor receptor |
ERBB2 | Erb-B2 receptor tyrosine kinase 2 |
VHL | Von Hippel–Lindau |
WT1 | Wilm tumor 1 |
References
- Natarajan, A.T. Fluorescence in situ hybridization (FISH) in genetic toxicology. J. Environ. Pathol. Toxicol. Oncol. 2001, 20, 293–298. [Google Scholar] [CrossRef] [PubMed]
- Levsky, J.M.; Singer, R.H. Fluorescence in situ hybridization: Past, present and future. J. Cell Sci. 2003, 116, 2833–2838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sokolova, I.A.; Halling, K.C.; Jenkins, R.B.; Burkhardt, H.M.; Meyer, R.G.; Seelig, S.A.; King, W. The development of a multitarget, multicolor fluorescence in situ hybridization assay for the detection of urothelial carcinoma in urine. J. Mol. Diagn. 2000, 2, 116–123. [Google Scholar] [CrossRef] [Green Version]
- Wiegant, J.; Ried, T.; Nederlof, P.M.; van der Ploeg, M.; Tanke, H.J.; Raap, A.K. In situ hybridization with fluoresceinated DNA. Nucleic Acids Res. 1991, 19, 3237–3241. [Google Scholar] [CrossRef] [PubMed]
- Beijing Jin Pu Jia Medicial Technology Co. Ltd. Available online: http://www.gpmedical.com.cn (accessed on 25 February 2021).
- Zhang, J.; Zheng, S.; Gao, Y.; Rotolo, J.A.; Xiao, Z.; Li, C.; Cheng, S. A partial allelotyping of urothelial carcinoma of bladder in the Chinese. Carcinogenesis 2004, 25, 343–347. [Google Scholar] [CrossRef] [PubMed]
- Halling, K.C.; King, W.; Sokolova, I.A.; Meyer, R.G.; Burkhardt, H.M.; Halling, A.C.; Cheville, J.C.; Sebo, T.J.; Ramakumar, S.; Stewart, C.S.; et al. A comparison of cytology and fluorescence in situ hybridization for the detection of urothelial carcinoma. J. Urol. 2000, 164, 1768–1775. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer Statistics, 2017. CA Cancer J. Clin. 2017, 67, 7–30. [Google Scholar] [CrossRef] [Green Version]
- Jemal, A.; Siegel, R.; Xu, J.; Ward, E. Cancer statistics, 2010. CA Cancer J. Clin. 2010, 60, 277–300. [Google Scholar] [CrossRef]
- Cumberbatch, M.G.K.; Jubber, I.; Black, P.C.; Esperto, F.; Figueroa, J.D.; Kamat, A.M.; Kiemeney, L.; Lotan, Y.; Pang, K.; Silverman, D.T.; et al. Epidemiology of Bladder Cancer: A Systematic Review and Contemporary Update of Risk Factors in 2018. Eur. Urol. 2018, 74, 784–795. [Google Scholar] [CrossRef] [Green Version]
- Villavicencio, H.; Faba, O.R.; Palou, J.; Gausa, L.; Algaba, F.; Marcuello, E. Bladder Preservation Strategy Based on Combined Therapy in Patients with Muscle-Invasive Bladder Cancer: Management and Results at Long-Term Follow-Up. Urol. Int. 2010, 85, 281–286. [Google Scholar] [CrossRef]
- Lee, R.; Droller, M.J. The natural history of bladder cancer. Implications for therapy. Urol. Clin. N. Am. 2000, 27, 1–13. [Google Scholar] [CrossRef]
- NCCN. Clinical Practice Guidelines for Bladder Cancer. 2010. Available online: https://www.nccn.org/store/login/login.aspx?ReturnURL=https://www.nccn.org/professionals/physician_gls/pdf/bladder.pdf (accessed on 25 February 2021).
- Maffezzini, M.; Campodonico, F.; Capponi, G.; Canepa, G.; Casazza, S.; Bandelloni, R.; Tamagno, S.; Puntoni, M. Prognostic significance of fluorescent in situ hybridisation in the follow-up of non-muscle-invasive bladder cancer. Anticancer Res. 2010, 30, 4761–4765. [Google Scholar] [PubMed]
- Gofrit, O.N.; Zorn, K.C.; Silvestre, J.; Shalhav, A.L.; Zagaja, G.P.; Msezane, L.P.; Steinberg, G.D. The predictive value of multi-targeted fluorescent in-situ hybridization in patients with history of bladder cancer. Urol. Oncol. 2008, 26, 246–249. [Google Scholar] [CrossRef] [PubMed]
- Yoder, B.J.; Skacel, M.; Hedgepeth, R.; Babineau, D.; Ulchaker, J.C.; Liou, L.S.; Brainard, J.A.; Biscotti, C.V.; Jones, J.S.; Tubbs, R.R. Reflex UroVysion testing of bladder cancer surveillance patients with equivocal or negative urine cytology: A prospective study with focus on the natural history of anticipatory positive findings. Am. J. Clin. Pathol. 2007, 127, 295–301. [Google Scholar] [CrossRef]
- Daniely, M.; Rona, R.; Kaplan, T.; Olsfanger, S.; Elboim, L.; Freiberger, A.; Lew, S.; Leibovitch, I. Combined morphologic and fluorescence in situ hybridization analysis of voided urine samples for the detection and follow-up of bladder cancer in patients with benign urine cytology. Cancer 2007, 111, 517–524. [Google Scholar] [CrossRef]
- Skacel, M.; Fahmy, M.; Brainard, J.A.; Pettay, J.D.; Biscotti, C.V.; Liou, L.S.; Procop, G.W.; Jones, J.S.; Ulchaker, J.; Zippe, C.D.; et al. Multitarget fluorescence in situ hybridization assay detects transitional cell carcinoma in the majority of patients with bladder cancer and atypical or negative urine cytology. J. Urol. 2003, 169, 2101–2105. [Google Scholar] [CrossRef]
- Sarosdy, M.F.; Schellhammer, P.; Bokinsky, G.; Kahn, P.; Chao, R.; Yore, L.; Zadra, J.; Burzon, D.; Osher, G.; Bridge, J.A.; et al. Clinical evaluation of a multi-target fluorescent in situ hybridization assay for detection of bladder cancer. J. Urol. 2002, 168, 1950–1954. [Google Scholar] [CrossRef]
- Halling, K.C.; King, W.; Sokolova, I.A.; Karnes, R.J.; Meyer, R.G.; Powell, E.L.; Sebo, T.J.; Cheville, J.C.; Clayton, A.C.; Krajnik, K.L.; et al. A comparison of BTA stat, hemoglobin dipstick, telomerase and Vysis UroVysion assays for the detection of urothelial carcinoma in urine. J. Urol. 2002, 167, 2001–2006. [Google Scholar] [CrossRef]
- Ishiwata, S.; Takahashi, S.; Homma, Y.; Tanaka, Y.; Kameyama, S.; Hosaka, Y.; Kitamura, T. Noninvasive detection and prediction of bladder cancer by fluorescence in situ hybridization analysis of exfoliated urothelial cells in voided urine. Urology 2001, 57, 811–815. [Google Scholar] [CrossRef]
- Brausi, M.; Collette, L.; Kurth, K.; van der Meijden, A.P.; Oosterlinck, W.; Witjes, J.A.; Newling, D.; Bouffioux, C.; Sylvester, R.J.; EORTC Genito-Urinary Tract Cancer Collaborative Group. Variability in the recurrence rate at first follow-up cystoscopy after TUR in stage Ta T1 transitional cell carcinoma of the bladder: A combined analysis of seven EORTC studies. Eur. Urol. 2002, 41, 523–530. [Google Scholar] [CrossRef]
- Brauers, A.; Buettner, R.; Jakse, G. Second resection and prognosis of primary high risk superficial bladder cancer: Is cystectomy often too early? J. Urol. 2001, 165, 808–810. [Google Scholar] [CrossRef]
- Ding, T.; Wang, Y.K.; Cao, Y.H.; Yang, L.Y. Clinical utility of fluorescence in situ hybridization for prediction of residual tumor after transurethral resection of bladder urothelial carcinoma. Urology 2011, 77, 855–859. [Google Scholar] [CrossRef] [PubMed]
- Zurkirchen, M.A.; Sulser, T.; Gaspert, A.; Hauri, D. Second transurethral resection of superficial transitional cell carcinoma of the bladder: A must even for experienced urologists. Urol. Int. 2004, 72, 99–102. [Google Scholar] [CrossRef] [PubMed]
- Flaig, T.W.; Spiess, P.E.; Agarwal, N.; Bangs, R.; Boorjian, S.A.; Buyyounouski, M.K.; Chang, S.; Downs, T.M.; Efstathiou, J.A.; Friedlander, T.; et al. Bladder Cancer, Version 3.2020, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2020, 18, 329–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Babjuk, M.; Burger, M.; Comperat, E.M.; Gontero, P.; Mostafid, A.H.; Palou, J.; van Rhijn, B.W.G.; Roupret, M.; Shariat, S.F.; Sylvester, R.; et al. European Association of Urology Guidelines on Non-muscle-invasive Bladder Cancer (TaT1 and Carcinoma In Situ)—Update. Eur. Urol. 2019, 76, 639–657. [Google Scholar] [CrossRef]
- Chang, S.S.; Boorjian, S.A.; Chou, R.; Clark, P.E.; Daneshmand, S.; Konety, B.R.; Pruthi, R.; Quale, D.Z.; Ritch, C.R.; Seigne, J.D.; et al. Diagnosis and Treatment of Non-Muscle Invasive Bladder Cancer: AUA/SUO Guideline. J. Urol. 2016, 196, 1021–1029. [Google Scholar] [CrossRef]
- Savic, S.; Zlobec, I.; Thalmann, G.N.; Engeler, D.; Schmauss, M.; Lehmann, K.; Mattarelli, G.; Eichenberger, T.; Dalquen, P.; Spieler, P.; et al. The prognostic value of cytology and fluorescence in situ hybridization in the follow-up of nonmuscle-invasive bladder cancer after intravesical Bacillus Calmette-Guerin therapy. Int. J. Cancer 2009, 124, 2899–2904. [Google Scholar] [CrossRef]
- Liem, E.; Oddens, J.R.; Vernooij, R.W.M.; Li, R.; Kamat, A.; Dinney, C.P.; Mengual, L.; Alcaraz, A.; Izquierdo, L.; Savic, S.; et al. The Role of Fluorescence In Situ Hybridization for Predicting Recurrence after Adjuvant bacillus Calmette-Guerin in Patients with Intermediate and High Risk Nonmuscle Invasive Bladder Cancer: A Systematic Review and Meta-Analysis of Individual Patient Data. J. Urol. 2020, 203, 283–291. [Google Scholar] [CrossRef]
- Lotan, Y.; Inman, B.A.; Davis, L.G.; Kassouf, W.; Messing, E.; Daneshmand, S.; Canter, D.; Marble, H.T.; Joseph, A.M.; Jewell, S.; et al. Evaluation of the Fluorescence In Situ Hybridization Test to Predict Recurrence and/or Progression of Disease after bacillus Calmette-Guerin for Primary High Grade Nonmuscle Invasive Bladder Cancer: Results from a Prospective Multicenter Trial. J. Urol. 2019, 202, 920–926. [Google Scholar] [CrossRef]
- Bao, Y.; Tu, X.; Chang, T.; Qiu, S.; Yang, L.; Geng, J.; Quan, L.; Wei, Q. The role of fluorescence in situ hybridization to predict patient response to intravesical Bacillus Calmette-Guerin therapy for bladder cancer: A diagnostic meta-analysis and systematic review. Medicine 2018, 97, e12227. [Google Scholar] [CrossRef]
- Kamat, A.M.; Dickstein, R.J.; Messetti, F.; Anderson, R.; Pretzsch, S.M.; Gonzalez, G.N.; Katz, R.L.; Khanna, A.; Zaidi, T.; Wu, X.; et al. Use of fluorescence in situ hybridization to predict response to bacillus Calmette-Guerin therapy for bladder cancer: Results of a prospective trial. J. Urol. 2012, 187, 862–867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whitson, J.; Berry, A.; Carroll, P.; Konety, B. A multicolour fluorescence in situ hybridization test predicts recurrence in patients with high-risk superficial bladder tumours undergoing intravesical therapy. BJU Int. 2009, 104, 336–339. [Google Scholar] [CrossRef] [PubMed]
- Mengual, L.; Marin-Aguilera, M.; Ribal, M.J.; Burset, M.; Villavicencio, H.; Oliver, A.; Alcaraz, A. Clinical utility of fluorescent in situ hybridization for the surveillance of bladder cancer patients treated with bacillus Calmette-Guerin therapy. Eur. Urol. 2007, 52, 752–759. [Google Scholar] [CrossRef] [PubMed]
- Liem, E.I.M.L.; Baard, J.; Cauberg, E.C.C.; Bus, M.T.J.; de Bruin, D.M.; Pes, M.P.L.; de la Rosette, J.J.M.C.H.; de Reijke, T.M. Fluorescence in situ hybridization as prognostic predictor of tumor recurrence during treatment with Bacillus Calmette-Guerin therapy for intermediate- and high-risk non-muscle-invasive bladder cancer. Med. Oncol. 2017, 34, 172. [Google Scholar] [CrossRef]
- Roupret, M.; Babjuk, M.; Comperat, E.; Zigeuner, R.; Sylvester, R.J.; Burger, M.; Cowan, N.C.; Gontero, P.; Van Rhijn, B.W.G.; Mostafid, A.H.; et al. European Association of Urology Guidelines on Upper Urinary Tract Urothelial Carcinoma: 2017 Update. Eur. Urol. 2018, 73, 111–122. [Google Scholar] [CrossRef]
- Fang, D.; Zhang, L.; Li, X.; Xiong, G.; Chen, X.; Han, W.; He, Z.; Zhou, L. Risk factors and treatment outcomes of new contralateral upper urinary urothelial carcinoma after nephroureterectomy: The experiences of a large Chinese center. J. Cancer Res. Clin. Oncol. 2014, 140, 477–485. [Google Scholar] [CrossRef]
- Huang, J. Chinese Guidelines for the Diagnosis and Treatment of Urology and Andrology Diseases (2019 Edition). Beijing Sci. Press 2020, 10, 27–84. [Google Scholar]
- Miyazaki, A.; Tadokoro, H.; Drury, J.K.; Ryden, L.; Haendchen, R.V.; Corday, E. Retrograde coronary venous administration of recombinant tissue-type plasminogen activator: A unique and effective approach to coronary artery thrombolysis. J. Am. Coll. Cardiol. 1991, 18, 613–620. [Google Scholar] [CrossRef] [Green Version]
- Marin-Aguilera, M.; Menqual, L.; Ribal, M.J.; Musquera, M.; Ars, E.; Villauicencio, H.; Alyaba, F.; Alcaraz, A. Utility of fluorescence in situ hybridization as a non-invasive technique in the diagnosis of upper urinary tract urothelial carcinoma. Eur. Urol. 2007, 51, 409–415. [Google Scholar] [CrossRef]
- Jin, H.; Lin, T.; Hao, J.; Qiu, S.; Xu, H.; Yu, R.; Sun, S.; Zhang, P.; Liu, Z.; Yang, L.; et al. A comprehensive comparison of fluorescence in situ hybridization and cytology for the detection of upper urinary tract urothelial carcinoma: A systematic review and meta-analysis. Medicine 2018, 97, e13859. [Google Scholar] [CrossRef]
- Eismann, L.; Mumm, J.N.; Bohn, L.; Wulfing, C.; Knuchel-Clarke, R.; Casuscelli, J.; Waidelich, R.; Stief, C.G.; Schlenker, B.; Rodler, S. The Impact of Fluorescence in situ Hybridization on the Staging of Upper Tract Urothelial Carcinoma. Urol. Int. 2021, 105, 631–636. [Google Scholar] [CrossRef] [PubMed]
- Bing, Z.; Li, J.; Master, S.R.; Lee, C.C.; Puthiyaveettil, R.; Tomaszewski, J.E. Fluorescence in situ hybridization study of chromosome abnormalities of upper urinary tract urothelial carcinoma in paraffin-embedded tissue. Am. J. Clin. Pathol. 2012, 138, 382–389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akkad, T.; Brunner, A.; Pallwein, L.; Gozzi, C.; Bartsch, G.; Mikuz, G.; Steiner, H.; Verdorfer, I. Fluorescence in situ hybridization for detecting upper urinary tract tumors--a preliminary report. Urology 2007, 70, 753–757. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Tao, B.; Peng, Y.; Yang, W.; Wang, C.; Xiang, X.; Zhang, T.; Gao, L.; Yi, J.; Zhou, X.; et al. Utility of Fluorescence In Situ Hybridization (FISH) to Sub-Classify Low-Grade Urothelial Carcinoma for Prognostication. Med. Sci. Monit. 2017, 23, 3161–3167. [Google Scholar] [CrossRef] [Green Version]
- Guan, B.; Du, Y.; Su, X.; Cao, Z.; Li, Y.; Zhan, Y.; Peng, D.; Xiong, G.; Fang, D.; Ding, Y.; et al. Positive urinary fluorescence in situ hybridization indicates poor prognosis in patients with upper tract urothelial carcinoma. Oncotarget 2018, 9, 14652–14660. [Google Scholar] [CrossRef] [Green Version]
- Liang, Q.D.; Zhang, G.J.; Li, W.X.; Wang, J.; Sheng, S.C. Comparison of the diagnostic performance of fluorescence in situ hybridization (FISH), nuclear matrix protein 22 (NMP22), and their combination model in bladder carcinoma detection: A systematic review and meta-analysis. Oncotargets Ther. 2019, 12, 349–358. [Google Scholar] [CrossRef] [Green Version]
- Marley, J. Campbell-Walsh Urology, 9th Edition (E-dition). Int. J. Urol. Nurs. 2007, 1, 94–95. [Google Scholar] [CrossRef]
- Zincke, H.; Aguilo, J.J.; Farrow, G.M.; Utz, D.C.; Khan, A.U. Significance of urinary cytology in the early detection of transitional cell cancer of the upper urinary tract. J. Urol. 1976, 116, 781–783. [Google Scholar] [CrossRef]
- Lopez-Beltran, A.; Requena, M.J.; Cheng, L.; Montironi, R. Pathological variants of invasive bladder cancer according to their suggested clinical significance. BJU Int. 2008, 101, 275–281. [Google Scholar] [CrossRef]
- Reid-Nicholson, M.D.; Ramalingam, P.; Adeagbo, B.; Cheng, N.L.; Peiper, S.C.; Terris, M.K. The use of Urovysion (TM) fluorescence in situ hybridization in the diagnosis and surveillance of non-urothelial carcinoma of the bladder. Mod. Pathol. 2009, 22, 119–127. [Google Scholar] [CrossRef] [Green Version]
- Kipp, B.R.; Tyner, H.L.; Campion, M.B.; Voss, J.S.; Karnes, R.J.; Sebo, T.J.; Halling, K.C.; Zhang, J. Chromosomal alterations detected by fluorescence in situ hybridization in urothelial carcinoma and rarer histologic variants of bladder cancer. Am. J. Clin. Pathol. 2008, 130, 552–559. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Liu, Z.; Lan, R.; Wang, Z.; Hu, Z.; Chen, Z.; Ye, Z. Paraganglioma of the urinary bladder with chromosome duplications detected by fluorescence in situ hybridization in urine exfoliated cells: A case report. Oncol. Lett. 2016, 11, 795–797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, Z.; Ke, C.; Shen, Y.; Zeng, X.; Yang, C. Renal metastases from esophageal cancer and retroperitoneal lymphoma detected via chromosome duplications identified by fluorescence in situ hybridization in urine exfoliated cells: First 2 case reports. Medicine 2021, 100, e24010. [Google Scholar] [CrossRef]
- Kasahara, K.; Taguchi, T.; Yamasaki, I.; Kamada, M.; Yuri, K.; Shuin, T. Detection of genetic alterations in advanced prostate cancer by comparative genomic hybridization. Cancer Genet. Cytogenet. 2002, 137, 59–63. [Google Scholar] [CrossRef]
- Das, K.; Lau, W.; Sivaswaren, C.; Ph, T.; Fook-Chong, S.; Sl, T.; Cheng, C. Chromosomal changes in prostate cancer: A fluorescence in situ hybridization study. Clin. Genet. 2005, 68, 40–47. [Google Scholar] [CrossRef]
- Reis, H.; van der Vos, K.E.; Niedworok, C.; Herold, T.; Modos, O.; Szendroi, A.; Hager, T.; Ingenwerth, M.; Vis, D.J.; Behrendt, M.A.; et al. Pathogenic and targetable genetic alterations in 70 urachal adenocarcinomas. Int. J. Cancer 2018, 143, 1764–1773. [Google Scholar] [CrossRef] [Green Version]
- Collazo-Lorduy, A.; Castillo-Martin, M.; Wang, L.; Patel, V.; Iyer, G.; Jordan, E.; Al-Ahmadie, H.; Leonard, I.; Oh, W.K.; Zhu, J.; et al. Urachal Carcinoma Shares Genomic Alterations with Colorectal Carcinoma and May Respond to Epidermal Growth Factor Inhibition. Eur. Urol. 2016, 70, 771–775. [Google Scholar] [CrossRef] [Green Version]
- Atkin, N.B.; Baker, M.C.; Wilson, G.D. Chromosome abnormalities and p53 expression in a small cell carcinoma of the bladder. Cancer Genet. Cytogenet. 1995, 79, 111–114. [Google Scholar] [CrossRef]
- Leonard, C.; Huret, J.L.; Gfco. From cytogenetics to cytogenomics of bladder cancers. Cancer 2002, 89, 166–173. [Google Scholar]
- Schaefer, I.M.; Gunawan, B.; Fuzesi, L.; Blech, M.; Frasunek, J.; Loertzer, H. Chromosomal imbalances in urinary bladder paraganglioma. Cancer Genet. Cytogenet. 2010, 203, 341–344. [Google Scholar] [CrossRef]
- La Rochelle, J.; Klatte, T.; Dastane, A.; Rao, N.; Seligson, D.; Said, J.; Shuch, B.; Zomorodian, N.; Kabbinavar, F.; Belldegrun, A.; et al. Chromosome 9p deletions identify an aggressive phenotype of clear cell renal cell carcinoma. Cancer 2010, 116, 4696–4702. [Google Scholar] [CrossRef] [PubMed]
- Nagy, A.; Buzogany, I.; Kovacs, G. Microsatellite allelotyping differentiates chromophobe renal cell carcinomas from renal oncocytomas and identifies new genetic changes. Histopathology 2004, 44, 542–546. [Google Scholar] [CrossRef] [PubMed]
- Gunawan, B.; Huber, W.; Holtrup, M.; von Heydebreck, A.; Efferth, T.; Poustka, A.; Ringert, R.H.; Jakse, G.; Fuzesi, L. Prognostic impacts of cytogenetic findings in clear cell renal cell carcinoma: Gain of 5q31-qter predicts a distinct clinical phenotype with favorable prognosis. Cancer Res. 2001, 61, 7731–7738. [Google Scholar]
- Van Heyningen, V.; Hoovers, J.M.; de Kraker, J.; Crolla, J.A. Raised risk of Wilms tumour in patients with aniridia and submicroscopic WT1 deletion. J. Med. Genet. 2007, 44, 787–790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sgambati, M.T.; Stolle, C.; Choyke, P.L.; Walther, M.M.; Zbar, B.; Linehan, W.M.; Glenn, G.M. Mosaicism in von Hippel-Lindau disease: Lessons from kindreds with germline mutations identified in offspring with mosaic parents. Am. J. Hum. Genet. 2000, 66, 84–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, W.; Lyu, R.; Huang, W.Y.; Li, C.W.; Liu, H.; Li, J.; Zou, D.H.; Qiu, L.G.; Yi, S.H. [Characteristics and Prognostic Significance of Cytogenetic Abnormalities in Diffuse Large B-Cell Lymphoma Patients with Bone Marrow Involvement]. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2017, 25, 761–765. [Google Scholar] [CrossRef]
- Haisley, K.R.; Dolan, J.P.; Olson, S.B.; Toledo-Valdovinos, S.A.; Hart, K.D.; Bakis, G.; Enestvedt, B.K.; Hunter, J.G. Sponge Sampling with Fluorescent In Situ Hybridization as a Screening Tool for the Early Detection of Esophageal Cancer. J. Gastrointest Surg. 2017, 21, 215–221. [Google Scholar] [CrossRef]
- Wu, Y.P.; Yang, Y.L.; Yang, G.Z.; Wang, X.Y.; Luo, M.L.; Zhang, Y.; Feng, Y.B.; Xu, X.; Han, Y.L.; Cai, Y.; et al. Identification of chromosome aberrations in esophageal cancer cell line KYSE180 by multicolor fluorescence in situ hybridization. Cancer Genet. Cytogenet. 2006, 170, 102–107. [Google Scholar] [CrossRef]
- Offit, K. Chromosome analysis in the management of patients with non-Hodgkin’s lymphoma. Leuk. Lymphoma 1992, 7, 275–282. [Google Scholar] [CrossRef]
- Korski, K.; Breborowicz, D.; Filas, V.; Breborowicz, J.; Grygalewicz, B.; Pienkowska-Grela, B. A case of primary testicular germ cell tumor with rhabdomyosarcoma metastases as an example of applying the FISH method to diagnostic pathology. Apmis 2007, 115, 1296–1301. [Google Scholar] [CrossRef]
- Ke, C.J.; Liu, Z.H.; Zhu, J.Y.; Zeng, X.; Hu, Z.Q.; Yang, C.G. Fluorescence in situ hybridization (FISH) to predict the efficacy of BCG perfusion in bladder cancer. Transl. Cancer Res. 2022, 11, 10. [Google Scholar] [CrossRef]
Authors | Grade (%) | Stage (%) | Total Sensitivity (%) | Number (n) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
G1 | G2 | G3 | Tis | Ta | T1 | T2 | T3 | T4 | |||
Halling et al. [7] | 36 | 76 | 97 | 100 | 65 | 95 (T1-4) | 81 | 75 | |||
Sarosdy et al. [19] | 55 | 78 | 94 | 100 | 65 | 83 | 100 | 71 | 62 | ||
Skacel et al. [18] | 83 | 80 | 96 | 100 | 83 | 83 | 100 | 85 | 82 |
Type | Sensitivity | Specificity | ||
---|---|---|---|---|
Mean (%) | Range (%) | Mean (%) | Range (%) | |
FISH | 77 | 73–81 | 98 | 96–100 |
Cytology | 48 | 16–89 | 96 | 51–97 |
NMP22 | 75 | 32–92 | 75 | 51–94 |
NMP22 Bladder chek | 55.7 | 85.7 | ||
BTA stat | 68 | 53–89 | 74 | 54–93 |
BTA TARK | 61 | 17–78 | 71 | 51–89 |
ImmunoCyt | 74 | 39–100 | 80 | 73–84 |
Hematuria test paper | 68 | 40–93 | 68 | 51–97 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ke, C.; Hu, Z.; Yang, C. UroVysionTM Fluorescence In Situ Hybridization in Urological Cancers: A Narrative Review and Future Perspectives. Cancers 2022, 14, 5423. https://doi.org/10.3390/cancers14215423
Ke C, Hu Z, Yang C. UroVysionTM Fluorescence In Situ Hybridization in Urological Cancers: A Narrative Review and Future Perspectives. Cancers. 2022; 14(21):5423. https://doi.org/10.3390/cancers14215423
Chicago/Turabian StyleKe, Chunjin, Zhiquan Hu, and Chunguang Yang. 2022. "UroVysionTM Fluorescence In Situ Hybridization in Urological Cancers: A Narrative Review and Future Perspectives" Cancers 14, no. 21: 5423. https://doi.org/10.3390/cancers14215423
APA StyleKe, C., Hu, Z., & Yang, C. (2022). UroVysionTM Fluorescence In Situ Hybridization in Urological Cancers: A Narrative Review and Future Perspectives. Cancers, 14(21), 5423. https://doi.org/10.3390/cancers14215423