Distinct B-Cell Specific Transcriptional Contexts of the BCL2 Oncogene Impact Pre-Malignant Development in Mouse Models
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell Lines and Mouse Models
- The “3′RR-BCL2” model, with random integration of a transgene that contains a human BCL2 gene cassette driven by the BCL2 P1/P2 promoter region, under the control of the 3′ IgH superenhancer (under the form previously described as a functional “core 3′RR” [26], combining the various enhancer elements from the Ig heavy chain locus 3′ regulatory region, but devoid of the large intervening sequences located in-between enhancers in the mouse IgH locus);
- The “Igκ-BCL2” model, in which the Jκ region is deleted and replaced with the same above-mentioned BCL2 cassette [P1/P2 promoter BCL2 gene], as a knock-in in the mouse Igκ light chain locus, immediately upstream of the Eκ enhancer.
2.2. Tumor Follow Up
2.3. Flow Cytometry Analysis of Lymphoid Compartment
- Resting cohort: this cohort comprising 6 wildtype, 13 hemizygous Igκ-BCL2/+, and 7 3′RR-BCL2 mice was analyzed to carry out full characterizations of mice at the resting state;
- Iteratively immunized cohort: 3 groups of 13 wildtype, 7 Igκ-BCL2/+, and 10 3′RR-BCL2 mice were immunized intra-peritoneally at 3 months of age with 200 µL of Sheep Red Blood Cells (SRBC) and then iteratively over 3 consecutive months; they were sacrificed one month after the third immunization.
2.4. Western Blots
2.5. Proliferation Test
2.6. Quantification of Antibody Affinity
2.7. Next-Generation Sequencing for Ig Repertoire Analysis and Global RNA Expression
- BM, spleen, and mesenteric LNs from the iteratively immunized cohorts, including 3 groups of non-tumoral mice: wildtype (9 mice), Igκ-BCL2/+ (5 mice), and 3′RR-BCL2 (5 mice);
- Spleen, mesenteric LNs, and tumoral tissues from mice affected with tumors, including 8 Igκ-BCL2 knock-in mice (5 Igκ-BCL2 homozygous + 3 hemizygous), and the single 3′RR-BCL2 transgenic mouse that developed lymphoma.
2.8. Single Cell Sequencing and Analysis
2.9. Study of BCL2 Promoter Mutations
- 1.
- The various cell lines listed in Section 1 (DoHH2, SU-DHL-4, SU-DHL-6, and OCI-Ly3) were used as positive controls for BCL2 promoter mutations;
- 2.
- Total spleen from iteratively immunized mice (4 Igκ-BCL2 /+ and 4 3′RR-BCL2);
- 3.
- Class-switched versus non-class-switched B cells from additional groups of 3-month-old immunized Igκ-BCL2 /+ (3 mice) and 3′RR-BCL2 mice (3 mice). These mice were induced only once with SRBC and sacrificed on day 7. Single-cell suspensions from the spleen were stained with BV510 anti-CD19 (BD Biosciences, Clone: 1D3) and FITC anti-IgM (Southern Biotech, Cat number: 1020-02) antibodies. Cells were then sorted using the BD Aria III cell sorter to obtain class-switched B cells (CD19+/IgM-) and non-class-switched B cells (CD19+/IgM+);
- 4.
- From mice tumors:
- −
- Tumoral tissues of 3 Igκ-BCL2/+ mice;
- −
- Mesenteric LNs of one Igκ-BCL2/+ and one 3′RR-BCL2 tumoral mice;
- −
- Total spleen of two 3′RR-BCL2 tumoral mice.
3. Results
3.1. Generation of Mice Carrying B-Cell Specific BCL2 Deregulation
3.2. Impact of BCL2 Deregulation on B- and T-Cell Differentiation
3.3. Lymphoid Compartments and Response to Immunization in BCL2 Mice
3.4. Early Impact of B-Cell Anomalies on Global Transcriptional Profiles from Lymphoid Tissue Populations
3.5. Single-Cell Transcriptome Analysis
3.6. B-Cell Diversity in Young Immunized Mice
3.7. Immunohistochemical Analysis and Tumor Development in BCL2 Transgenic Mice
3.8. The BCL2 Cassette Is Exposed to Low SHM in Both Transgenic Models
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Milpied, P.; Gandhi, A.K.; Cartron, G.; Pasqualucci, L.; Tarte, K.; Nadel, B.; Roulland, S. Follicular Lymphoma Dynamics. Adv. Immunol. 2021, 150, 43–103. [Google Scholar] [CrossRef] [PubMed]
- Ruminy, P.; Jardin, F.; Picquenot, J.M.; Gaulard, P.; Parmentier, F.; Buchonnet, G.; Maisonneuve, C.; Tilly, H.; Bastard, C. Two Patterns of Chromosomal Breakpoint Locations on the Immunoglobulin Heavy-Chain Locus in B-Cell Lymphomas with t(3;14)(Q27;Q32): Relevance to Histology. Oncogene 2006, 25, 4947–4954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hillion, J.; Mecucci, C.; Aventin, A.; Leroux, D.; Wlodarska, I.; Van Den Berghe, H.; Larsen, C.J. A Variant Translocation t(2;18) in Follicular Lymphoma Involves the 5′ End of Bcl-2 and Ig Kappa Light Chain Gene. Oncogene 1991, 6, 169–172. [Google Scholar] [PubMed]
- Lin, P.; Jetly, R.; Lennon, P.A.; Abruzzo, L.V.; Prajapati, S.; Medeiros, L.J. Translocation (18;22)(Q21;Q11) in B-Cell Lymphomas: A Report of 4 Cases and Review of the Literature. Hum. Pathol. 2008, 39, 1664–1672. [Google Scholar] [CrossRef] [PubMed]
- Monni, O.; Joensuu, H.; Franssila, K.; Klefstrom, J.; Alitalo, K.; Knuutila, S. BCL2 Overexpression Associated with Chromosomal Amplification in Diffuse Large B-Cell Lymphoma. Blood 1997, 90, 1168–1174. [Google Scholar] [CrossRef] [Green Version]
- Raghavan, S.C.; Swanson, P.C.; Wu, X.; Hsieh, C.-L.; Lieber, M.R. A Non-B-DNA Structure at the Bcl-2 Major Breakpoint Region Is Cleaved by the RAG Complex. Nature 2004, 428, 88–93. [Google Scholar] [CrossRef] [Green Version]
- Pinaud, E.; Marquet, M.; Fiancette, R.; Péron, S.; Vincent-Fabert, C.; Denizot, Y.; Cogné, M. The IgH Locus 3′ Regulatory Region: Pulling the Strings from Behind. Adv. Immunol. 2011, 110, 27–70. [Google Scholar] [CrossRef]
- Cogné, M.; Lansford, R.; Bottaro, A.; Zhang, J.; Gorman, J.; Young, F.; Cheng, H.L.; Alt, F.W. A Class Switch Control Region at the 3′ End of the Immunoglobulin Heavy Chain Locus. Cell 1994, 77, 737–747. [Google Scholar] [CrossRef]
- Rouaud, P.; Vincent-Fabert, C.; Saintamand, A.; Fiancette, R.; Marquet, M.; Robert, I.; Reina-San-Martin, B.; Pinaud, E.; Cogné, M.; Denizot, Y. The IgH 3′ Regulatory Region Controls Somatic Hypermutation in Germinal Center B Cells. J. Exp. Med. 2013, 210, 1501–1507. [Google Scholar] [CrossRef] [Green Version]
- Saintamand, A.; Rouaud, P.; Saad, F.; Rios, G.; Cogné, M.; Denizot, Y. Elucidation of IgH 3′ Region Regulatory Role during Class Switch Recombination via Germline Deletion. Nat. Commun. 2015, 6, 7084. [Google Scholar] [CrossRef]
- Mayer, C.T.; Gazumyan, A.; Kara, E.E.; Gitlin, A.D.; Golijanin, J.; Viant, C.; Pai, J.; Oliveira, T.Y.; Wang, Q.; Escolano, A.; et al. The Microanatomic Segregation of Selection by Apoptosis in the Germinal Center. Science 2017, 358, 6360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Péron, S.; Laffleur, B.; Denis-Lagache, N.; Cook-Moreau, J.; Tinguely, A.; Delpy, L.; Denizot, Y.; Pinaud, E.; Cogné, M. AID-Driven Deletion Causes Immunoglobulin Heavy Chain Locus Suicide Recombination in B Cells. Science 2012, 336, 931–934. [Google Scholar] [CrossRef] [PubMed]
- Milpied, P.; Nadel, B.; Roulland, S. Premalignant Cell Dynamics in Indolent B-Cell Malignancies. Curr. Opin. Hematol. 2015, 22, 388–396. [Google Scholar] [CrossRef]
- Tellier, J.; Menard, C.; Roulland, S.; Martin, N.; Monvoisin, C.; Chasson, L.; Nadel, B.; Gaulard, P.; Schiff, C.; Tarte, K. Human t(14;18)Positive Germinal Center B Cells: A New Step in Follicular Lymphoma Pathogenesis? Blood 2014, 123, 3462–3465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huet, S.; Sujobert, P.; Salles, G. From Genetics to the Clinic: A Translational Perspective on Follicular Lymphoma. Nat. Rev. Cancer 2018, 18, 224–239. [Google Scholar] [CrossRef] [PubMed]
- Boice, M.; Salloum, D.; Mourcin, F.; Sanghvi, V.; Amin, R.; Oricchio, E.; Jiang, M.; Mottok, A.; Denis-Lagache, N.; Ciriello, G.; et al. Loss of the HVEM Tumor Suppressor in Lymphoma and Restoration by Modified CAR-T Cells. Cell 2016, 167, 405–418.e13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amin, R.; Mourcin, F.; Uhel, F.; Pangault, C.; Ruminy, P.; Dupré, L.; Guirriec, M.; Marchand, T.; Fest, T.; Lamy, T.; et al. DC-SIGN-Expressing Macrophages Trigger Activation of Mannosylated IgM B-Cell Receptor in Follicular Lymphoma. Blood 2015, 126, 1911–1920. [Google Scholar] [CrossRef] [Green Version]
- Linley, A.; Krysov, S.; Ponzoni, M.; Johnson, P.W.; Packham, G.; Stevenson, F.K. Lectin Binding to Surface Ig Variable Regions Provides a Universal Persistent Activating Signal for Follicular Lymphoma Cells. Blood 2015, 126, 1902–1910. [Google Scholar] [CrossRef] [Green Version]
- McDonnell, T.J.; Deane, N.; Platt, F.M.; Nunez, G.; Jaeger, U.; McKearn, J.P.; Korsmeyer, S.J. Bcl-2-Immunoglobulin Transgenic Mice Demonstrate Extended B Cell Survival and Follicular Lymphoproliferation. Cell 1989, 57, 79–88. [Google Scholar] [CrossRef]
- Strasser, A.; Whittingham, S.; Vaux, D.L.; Bath, M.L.; Adams, J.M.; Cory, S.; Harris, A.W. Enforced BCL2 Expression in B-Lymphoid Cells Prolongs Antibody Responses and Elicits Autoimmune Disease. Proc. Natl. Acad. Sci. USA 1991, 88, 8661–8665. [Google Scholar] [CrossRef]
- Strasser, A.; Harris, A.W.; Bath, M.L.; Cory, S. Novel Primitive Lymphoid Tumours Induced in Transgenic Mice by Cooperation between Myc and Bcl-2. Nature 1990, 348, 331–333. [Google Scholar] [CrossRef] [PubMed]
- McDonnell, T.J.; Korsmeyer, S.J. Progression from Lymphoid Hyperplasia to High-Grade Malignant Lymphoma in Mice Transgenic for the t(14; 18). Nature 1991, 349, 254–256. [Google Scholar] [CrossRef] [PubMed]
- Ogilvy, S.; Metcalf, D.; Print, C.G.; Bath, M.L.; Harris, A.W.; Adams, J.M. Constitutive Bcl-2 Expression throughout the Hematopoietic Compartment Affects Multiple Lineages and Enhances Progenitor Cell Survival. Proc. Natl. Acad. Sci. USA 1999, 96, 14943–14948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Egle, A.; Harris, A.W.; Bath, M.L.; O’Reilly, L.; Cory, S. VavP-Bcl2 Transgenic Mice Develop Follicular Lymphoma Preceded by Germinal Center Hyperplasia. Blood 2004, 103, 2276–2283. [Google Scholar] [CrossRef] [PubMed]
- Saito, M.; Novak, U.; Piovan, E.; Basso, K.; Sumazin, P.; Schneider, C.; Crespo, M.; Shen, Q.; Bhagat, G.; Califano, A.; et al. BCL6 Suppression of BCL2 via Miz1 and Its Disruption in Diffuse Large B Cell Lymphoma. Proc. Natl. Acad. Sci. USA 2009, 106, 11294–11299. [Google Scholar] [CrossRef] [Green Version]
- Le Noir, S.; Bonaud, A.; Hervé, B.; Baylet, A.; Boyer, F.; Lecardeur, S.; Oruc, Z.; Sirac, C.; Cogné, M. IgH 3′ Regulatory Region Increases Ectopic Class Switch Recombination. PLoS Genet. 2021, 17, e1009288. [Google Scholar] [CrossRef]
- Zhang, C.; Li, R.; Li, Y.; Song, C.; Liu, Z.; Zhang, Y.; Xu, Z.; Zhuang, R.; Yi, J.; Yang, A.; et al. Establishment of Reverse Direct ELISA and Its Application in Screening High-Affinity Monoclonal Antibodies. Hybridoma 2012, 31, 284–288. [Google Scholar] [CrossRef] [Green Version]
- Javaugue, V.; Pascal, V.; Bender, S.; Nasraddine, S.; Dargelos, M.; Alizadeh, M.; Saintamand, A.; Filloux, M.; Derouault, P.; Bouyer, S.; et al. RNA-Based Immunoglobulin Repertoire Sequencing Is a New Tool for the Management of Monoclonal Gammopathy of Renal (Kidney) Significance. Kidney Int. 2021, 101, 331–337. [Google Scholar] [CrossRef]
- Magoč, T.; Salzberg, S.L. FLASH: Fast Length Adjustment of Short Reads to Improve Genome Assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Lefranc, M.-P.; Miles, J.J.; Alamyar, E.; Giudicelli, V.; Duroux, P.; Freeman, J.D.; Corbin, V.D.A.; Scheerlinck, J.-P.; Frohman, M.A.; et al. IMGT/HighV QUEST Paradigm for T Cell Receptor IMGT Clonotype Diversity and next Generation Repertoire Immunoprofiling. Nat. Commun. 2013, 4, 2333. [Google Scholar] [CrossRef] [Green Version]
- Anders, S.; Huber, W. Differential Expression Analysis for Sequence Count Data. Genome Biol. 2010, 11, R106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stuart, T.; Butler, A.; Hoffman, P.; Hafemeister, C.; Papalexi, E.; Mauck, W.M.; Hao, Y.; Stoeckius, M.; Smibert, P.; Satija, R. Comprehensive Integration of Single-Cell Data. Cell 2019, 177, 1888–1902.e21. [Google Scholar] [CrossRef] [PubMed]
- Hafemeister, C.; Satija, R. Normalization and Variance Stabilization of Single-Cell RNA-Seq Data Using Regularized Negative Binomial Regression. Genome Biol. 2019, 20, 296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butler, A.; Hoffman, P.; Smibert, P.; Papalexi, E.; Satija, R. Integrating Single-Cell Transcriptomic Data across Different Conditions, Technologies, and Species. Nat. Biotechnol. 2018, 36, 411–420. [Google Scholar] [CrossRef]
- Kowalczyk, M.S.; Tirosh, I.; Heckl, D.; Rao, T.N.; Dixit, A.; Haas, B.J.; Schneider, R.K.; Wagers, A.J.; Ebert, B.L.; Regev, A. Single-Cell RNA-Seq Reveals Changes in Cell Cycle and Differentiation Programs upon Aging of Hematopoietic Stem Cells. Genome Res. 2015, 25, 1860–1872. [Google Scholar] [CrossRef] [Green Version]
- Martin, O.A.; Garot, A.; Noir, S.L.; Aldigier, J.-C.; Cogné, M.; Pinaud, E.; Boyer, F. Detecting Rare AID-Induced Mutations in B-Lineage Oncogenes from High-Throughput Sequencing Data Using the Detection of Minor Variants by Error Correction Method. J. Immunol. 2018, 201, 950–956. [Google Scholar] [CrossRef] [Green Version]
- Chevrier, S.; Genton, C.; Kallies, A.; Karnowski, A.; Otten, L.A.; Malissen, B.; Malissen, M.; Botto, M.; Corcoran, L.M.; Nutt, S.L.; et al. CD93 Is Required for Maintenance of Antibody Secretion and Persistence of Plasma Cells in the Bone Marrow Niche. Proc. Natl. Acad. Sci. USA 2009, 106, 3895–3900. [Google Scholar] [CrossRef] [Green Version]
- Smith, K.G.; Light, A.; O’Reilly, L.A.; Ang, S.M.; Strasser, A.; Tarlinton, D. Bcl-2 Transgene Expression Inhibits Apoptosis in the Germinal Center and Reveals Differences in the Selection of Memory B Cells and Bone Marrow Antibody-Forming Cells. J. Exp. Med. 2000, 191, 475–484. [Google Scholar] [CrossRef] [Green Version]
- Golay, J.; Broccoli, V.; Lamorte, G.; Bifulco, C.; Parravicini, C.; Pizzey, A.; Thomas, N.S.; Delia, D.; Ferrauti, P.; Vitolo, D.; et al. The A-Myb Transcription Factor Is a Marker of Centroblasts in Vivo. J. Immunol. 1998, 160, 2786–2793. [Google Scholar]
- Richter, K.; Burch, L.; Chao, F.; Henke, D.; Jiang, C.; Daly, J.; Zhao, M.-L.; Kissling, G.; Diaz, M. Altered Pattern of Immunoglobulin Hypermutation in Mice Deficient in Slip-GC Protein. J. Biol. Chem. 2012, 287, 31856–31865. [Google Scholar] [CrossRef] [Green Version]
- Laidlaw, B.J.; Schmidt, T.H.; Green, J.A.; Allen, C.D.C.; Okada, T.; Cyster, J.G. The Eph-Related Tyrosine Kinase Ligand Ephrin-B1 Marks Germinal Center and Memory Precursor B Cells. J. Exp. Med. 2017, 214, 639–649. [Google Scholar] [CrossRef]
- Brescia, P.; Schneider, C.; Holmes, A.B.; Shen, Q.; Hussein, S.; Pasqualucci, L.; Basso, K.; Dalla-Favera, R. MEF2B Instructs Germinal Center Development and Acts as an Oncogene in B Cell Lymphomagenesis. Cancer Cell 2018, 34, 453–465.e9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Todd, D.J.; McHeyzer-Williams, L.J.; Kowal, C.; Lee, A.-H.; Volpe, B.T.; Diamond, B.; McHeyzer-Williams, M.G.; Glimcher, L.H. XBP1 Governs Late Events in Plasma Cell Differentiation and Is Not Required for Antigen-Specific Memory B Cell Development. J. Exp. Med. 2009, 206, 2151–2159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Connor, B.P.; Raman, V.S.; Erickson, L.D.; Cook, W.J.; Weaver, L.K.; Ahonen, C.; Lin, L.-L.; Mantchev, G.T.; Bram, R.J.; Noelle, R.J. BCMA Is Essential for the Survival of Long-Lived Bone Marrow Plasma Cells. J. Exp. Med. 2004, 199, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Kassambara, A.; Herviou, L.; Ovejero, S.; Jourdan, M.; Thibaut, C.; Vikova, V.; Pasero, P.; Elemento, O.; Moreaux, J. RNA-Sequencing Data-Driven Dissection of Human Plasma Cell Differentiation Reveals New Potential Transcription Regulators. Leukemia 2021, 35, 1451–1462. [Google Scholar] [CrossRef] [PubMed]
- Gehrie, E.; Van der Touw, W.; Bromberg, J.S.; Ochando, J.C. Plasmacytoid Dendritic Cells in Tolerance. Methods Mol. Biol. 2011, 677, 127–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Touzeau, C.; Maciag, P.; Amiot, M.; Moreau, P. Targeting Bcl-2 for the Treatment of Multiple Myeloma. Leukemia 2018, 32, 1899–1907. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V.A.; Barwick, B.G.; Matulis, S.M.; Shirasaki, R.; Jaye, D.L.; Keats, J.J.; Oberlton, B.; Joseph, N.S.; Hofmeister, C.C.; Heffner, L.T.; et al. Venetoclax Sensitivity in Multiple Myeloma Is Associated with B-Cell Gene Expression. Blood 2021, 137, 3604–3615. [Google Scholar] [CrossRef]
- Hervás-Salcedo, R.; Martín-Antonio, B. A Journey through the Inter-Cellular Interactions in the Bone Marrow in Multiple Myeloma: Implications for the Next Generation of Treatments. Cancers 2022, 14, 3796. [Google Scholar] [CrossRef]
- Roulland, S.; Faroudi, M.; Mamessier, E.; Sungalee, S.; Salles, G.; Nadel, B. Early Steps of Follicular Lymphoma Pathogenesis. Adv. Immunol. 2011, 111, 1–46. [Google Scholar] [CrossRef]
- Sungalee, S.; Mamessier, E.; Morgado, E.; Grégoire, E.; Brohawn, P.Z.; Morehouse, C.A.; Jouve, N.; Monvoisin, C.; Menard, C.; Debroas, G.; et al. Germinal Center Reentries of BCL2-Overexpressing B Cells Drive Follicular Lymphoma Progression. J. Clin. Investig. 2014, 124, 5337–5351. [Google Scholar] [CrossRef] [PubMed]
- Vogelsberg, A.; Steinhilber, J.; Mankel, B.; Federmann, B.; Schmidt, J.; Montes-Mojarro, I.A.; Hüttl, K.; Rodriguez-Pinilla, M.; Baskaran, P.; Nahnsen, S.; et al. Genetic Evolution of in Situ Follicular Neoplasia to Aggressive B-Cell Lymphoma of Germinal Center Subtype. Haematologica 2021, 106, 2673–2681. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Fernando, T.M.; Lossos, C.; Yusufova, N.; Liu, F.; Fontán, L.; Durant, M.; Geng, H.; Melnick, J.; Luo, Y.; et al. PRMT5 Interacts with the BCL6 Oncoprotein and Is Required for Germinal Center Formation and Lymphoma Cell Survival. Blood 2018, 132, 2026–2039. [Google Scholar] [CrossRef] [Green Version]
- Dominguez, P.M.; Ghamlouch, H.; Rosikiewicz, W.; Kumar, P.; Béguelin, W.; Fontán, L.; Rivas, M.A.; Pawlikowska, P.; Armand, M.; Mouly, E.; et al. TET2 Deficiency Causes Germinal Center Hyperplasia, Impairs Plasma Cell Differentiation, and Promotes B-Cell Lymphomagenesis. Cancer Discov. 2018, 8, 1632–1653. [Google Scholar] [CrossRef] [Green Version]
- Rivas, M.A.; Meydan, C.; Chin, C.R.; Challman, M.F.; Kim, D.; Bhinder, B.; Kloetgen, A.; Viny, A.D.; Teater, M.R.; McNally, D.R.; et al. Smc3 Dosage Regulates B Cell Transit through Germinal Centers and Restricts Their Malignant Transformation. Nat. Immunol. 2021, 22, 240–253. [Google Scholar] [CrossRef] [PubMed]
- Béguelin, W.; Teater, M.; Meydan, C.; Hoehn, K.B.; Phillip, J.M.; Soshnev, A.A.; Venturutti, L.; Rivas, M.A.; Calvo-Fernández, M.T.; Gutierrez, J.; et al. Mutant EZH2 Induces a Pre-Malignant Lymphoma Niche by Reprogramming the Immune Response. Cancer Cell 2020, 37, 655–673.e11. [Google Scholar] [CrossRef]
- Toellner, K.-M.; Jenkinson, W.E.; Taylor, D.R.; Khan, M.; Sze, D.M.-Y.; Sansom, D.M.; Vinuesa, C.G.; MacLennan, I.C.M. Low-Level Hypermutation in T Cell-Independent Germinal Centers Compared with High Mutation Rates Associated with T Cell-Dependent Germinal Centers. J. Exp. Med. 2002, 195, 383–389. [Google Scholar] [CrossRef]
- Szymanowska, N.; Klapper, W.; Gesk, S.; Küppers, R.; Martín-Subero, J.I.; Siebert, R. BCL2 and BCL3 Are Recurrent Translocation Partners of the IGH Locus. Cancer Genet. Cytogenet. 2008, 186, 110–114. [Google Scholar] [CrossRef]
- Peperzak, V.; Vikström, I.; Walker, J.; Glaser, S.P.; LePage, M.; Coquery, C.M.; Erickson, L.D.; Fairfax, K.; Mackay, F.; Strasser, A.; et al. Mcl-1 Is Essential for the Survival of Plasma Cells. Nat. Immunol. 2013, 14, 290–297. [Google Scholar] [CrossRef]
- Onnis, A.; Cianfanelli, V.; Cassioli, C.; Samardzic, D.; Pelicci, P.G.; Cecconi, F.; Baldari, C.T. The Pro-Oxidant Adaptor P66SHC Promotes B Cell Mitophagy by Disrupting Mitochondrial Integrity and Recruiting LC3-II. Autophagy 2018, 14, 2117–2138. [Google Scholar] [CrossRef] [Green Version]
- Onishi, M.; Yamano, K.; Sato, M.; Matsuda, N.; Okamoto, K. Molecular Mechanisms and Physiological Functions of Mitophagy. EMBO J. 2021, 40, e104705. [Google Scholar] [CrossRef] [PubMed]
- Murai, M.; Toyota, M.; Satoh, A.; Suzuki, H.; Akino, K.; Mita, H.; Sasaki, Y.; Ishida, T.; Shen, L.; Garcia-Manero, G.; et al. Aberrant DNA Methylation Associated with Silencing BNIP3 Gene Expression in Haematopoietic Tumours. Br. J. Cancer 2005, 92, 1165–1172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, M.C.J.; Tadros, S.; Bouska, A.; Heavican, T.; Yang, H.; Deng, Q.; Moore, D.; Akhter, A.; Hartert, K.; Jain, N.; et al. Subtype-Specific and Co-Occurring Genetic Alterations in B-Cell Non-Hodgkin Lymphoma. Haematologica 2022, 107, 690–701. [Google Scholar] [CrossRef]
- Michaelson, J.S.; Singh, M.; Birshtein, B.K. B Cell Lineage-Specific Activator Protein (BSAP). A Player at Multiple Stages of B Cell Development. J. Immunol. 1996, 156, 2349–2351. [Google Scholar]
- Arulampalam, V.; Grant, P.A.; Samuelsson, A.; Lendahl, U.; Pettersson, S. Lipopolysaccharide-Dependent Transactivation of the Temporally Regulated Immunoglobulin Heavy Chain 3′ Enhancer. Eur. J. Immunol. 1994, 24, 1671–1677. [Google Scholar] [CrossRef]
- Neurath, M.F.; Max, E.E.; Strober, W. Pax5 (BSAP) Regulates the Murine Immunoglobulin 3′ Alpha Enhancer by Suppressing Binding of NF-Alpha P, a Protein That Controls Heavy Chain Transcription. Proc. Natl. Acad. Sci. USA 1995, 92, 5336–5340. [Google Scholar] [CrossRef] [Green Version]
- Muto, A.; Hoshino, H.; Madisen, L.; Yanai, N.; Obinata, M.; Karasuyama, H.; Hayashi, N.; Nakauchi, H.; Yamamoto, M.; Groudine, M.; et al. Identification of Bach2 as a B-Cell-Specific Partner for Small Maf Proteins That Negatively Regulate the Immunoglobulin Heavy Chain Gene 3′ Enhancer. EMBO J. 1998, 17, 5734–5743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Zhang, Y.; Ba, Z.; Kyritsis, N.; Casellas, R.; Alt, F.W. Fundamental Roles of Chromatin Loop Extrusion in Antibody Class Switching. Nature 2019, 575, 385–389. [Google Scholar] [CrossRef]
- Wuerffel, R.; Wang, L.; Grigera, F.; Manis, J.; Selsing, E.; Perlot, T.; Alt, F.W.; Cogne, M.; Pinaud, E.; Kenter, A.L. S-S Synapsis during Class Switch Recombination Is Promoted by Distantly Located Transcriptional Elements and Activation-Induced Deaminase. Immunity 2007, 27, 711–722. [Google Scholar] [CrossRef] [PubMed]
Genotype | Number | Age (weeks) | Ascitis | Tumor | Organs Affected / Tumor Description | Other Observations |
---|---|---|---|---|---|---|
IgK-Bcl2 Δ/Δ | KI- 1 | 85 | ✓ | ✓ | Intestine, Mesenteric LNs, Cervical LNs, Splenomegaly (165 mg) | / |
KI- 2 | 50 | X | ✓ | Intestine, Mesenteric LNs, Cervical LNs, Splenomegaly (650 mg) | / | |
KI- 3 | 71 | ✓ | ✓ | Intestine, Stomach, Splenomegaly (395 mg) | / | |
KI- 4 | 90 | X | ✓ | Intestine, LNs | occlusion | |
KI- 5 | 71 | X | ✓ | Mesenteric LNs, Liver, Splenomegaly (1580 mg) | / | |
KI- 6 | 54 | ✓ | ✓ | Stomach, Intestine, Mesenteric LNs, Liver, Pancreas, Splenomegaly (305 mg) | / | |
KI- 7 | 54 | ✓ | ✓ | Kidneys, LN atrophy, Splenomegaly (950 mg) | / | |
KI- 8 | 105 | X | ✓ | Mesentery, Liver, Kidneys, Splenomegaly | / | |
KI- 9 | 109 | ✓ | ✓ | Liver, Splenomegaly (397 mg) | / | |
KI- 10 | 70 | X | ✓ | Stomach, Liver, Splenomegaly (287 mg) | / | |
KI BCl2 Δ/+ | KI- 11 | 92 | ✓ | ✓ | Under lungs, Mesenteric LNs, Splenomegaly (145 mg) | Diffused and bloody cervical LNs |
KI- 12 | 84 | X | ✓ | Splenomegaly, Liver, Kidneys | Swollen testicles | |
KI-13 | 117 | ✓ | ✓ | Intestine, Atrophy of all LNs, Splenomegaly (2500 mg) | / | |
KI-14 | 52 | X | ✓ | Atrophy of cervical LNs, Splenomegaly (300 mg) | Obese | |
KI-15 | 52 | X | ✓ | Splenomegaly (300 mg) | Obese | |
KI-16 | 41 | X | ✓ | Mesentery, Splenomegaly | / | |
KI-17 | 81 | X | ✓ | Mesentery, Splenomegaly | / | |
KI-18 | 111 | X | ✓ | Mesentery, Splenomegaly | / | |
KI-19 | 79 | ✓ | ✓ | Mesentery, splenomegaly (1350 mg) | Decolored liver | |
3′RR-Bcl2+ | Tg-1 | 74 | X | ✓ | Atrophy of inguinal and axillary LNs, Splenomegaly (380) | / |
Tg-2 | 74 | X | ✓ | Splenomegaly (161 mg) | / | |
Tg-3 | 60 | X | ✓ | Splenomegaly (240 mg) | / | |
Tg-4 | 60 | X | ✓ | Splenomegaly (222 mg) | / | |
Tg-5 | 64 | X | ✓ | Atrophy of cervical LNs | / | |
Splenomegaly (222 mg) | ||||||
Tg-6 | 64 | ✓ | ✓ | Intestine, Liver, Atrophy of cervical LNs, Splenomegaly (730 mg) | / | |
Tg-7 | 121 | X | ✓ | Mesentery, Splenomegaly (1139 mg) | / |
Genotype | Mouse nb | Heavy Chain | Total Number of Clonotypes | Total Number of Productive Reads | V_Gene | J_Gene | Clonotypic Predominance | V_Mutation Frequency |
---|---|---|---|---|---|---|---|---|
(Clones ≥ 30%) | (without CDR3) per kb | |||||||
IgK-BCL2 ∆/∆ | KI-2 | IgG | 234 | 1269 | IGHV4-1 | IGHJ2 | 42.2 | 1 |
KI-3 | IgM | 248 | 9087 | IGHV6-3 | IGHJ2 | 95.2 | 21 | |
IgG | 58 | 8308 | IGHV10-3 | IGHJ2 | 99 | 3.5 | ||
KI-4 | IgM | 430 | 2104 | IGHV4-1 | IGHJ2 | 47.6 | 0 | |
IgG | 1055 | 6274 | IGHV1-5 | IGHJ3 | 30.2 | 15 | ||
KI-8 | IgM | 143 | 1560 | IGHV3-6 | IGHJ2 | 64.4 | 18 | |
IgG | 26 | 2835 | IGHV4-1 | IGHJ2 | 98.4 | 8 | ||
IgK-BCL2 ∆/+ | KI-16 | IgG | 15 | 871 | IGHV10-1 | IGHJ2 | 98.8 | 0 |
KI-18 | IgG | 74 | 175 | IGHV10-3 | IGHJ2 | 41.1 | 3.5 | |
KI-19 | IgM | 494 | 2106 | IGHV1-39 | IGHJ2 | 53.4 | 0 | |
IgG | 619 | 11924 | IGHV1-26 | IGHJ2 | 85.2 | 0 | ||
3′RR-BCL2 | Tg-6 | IgG | 1157 | 12395 | IGHV2-2 | IGHJ4 | 51.1 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zawil, L.; Marchiol, T.; Brauge, B.; Saintamand, A.; Carrion, C.; Dessauge, E.; Oblet, C.; Le Noir, S.; Mourcin, F.; Brousse, M.; et al. Distinct B-Cell Specific Transcriptional Contexts of the BCL2 Oncogene Impact Pre-Malignant Development in Mouse Models. Cancers 2022, 14, 5337. https://doi.org/10.3390/cancers14215337
Zawil L, Marchiol T, Brauge B, Saintamand A, Carrion C, Dessauge E, Oblet C, Le Noir S, Mourcin F, Brousse M, et al. Distinct B-Cell Specific Transcriptional Contexts of the BCL2 Oncogene Impact Pre-Malignant Development in Mouse Models. Cancers. 2022; 14(21):5337. https://doi.org/10.3390/cancers14215337
Chicago/Turabian StyleZawil, Lina, Tiffany Marchiol, Baptiste Brauge, Alexis Saintamand, Claire Carrion, Elise Dessauge, Christelle Oblet, Sandrine Le Noir, Frédéric Mourcin, Mylène Brousse, and et al. 2022. "Distinct B-Cell Specific Transcriptional Contexts of the BCL2 Oncogene Impact Pre-Malignant Development in Mouse Models" Cancers 14, no. 21: 5337. https://doi.org/10.3390/cancers14215337
APA StyleZawil, L., Marchiol, T., Brauge, B., Saintamand, A., Carrion, C., Dessauge, E., Oblet, C., Le Noir, S., Mourcin, F., Brousse, M., Derouault, P., Alizadeh, M., Makhour, Y. E., Monvoisin, C., Saint-Vanne, J., Léonard, S., Durand-Panteix, S., Tarte, K., & Cogné, M. (2022). Distinct B-Cell Specific Transcriptional Contexts of the BCL2 Oncogene Impact Pre-Malignant Development in Mouse Models. Cancers, 14(21), 5337. https://doi.org/10.3390/cancers14215337