Integration between Novel Imaging Technologies and Modern Radiotherapy Techniques: How the Eye Drove the Chisel
Abstract
:Simple Summary
Abstract
1. Background
2. Diagnostic Imaging and Its Predictive Value before Treatment: How Modern Imaging May Avoid Unnecessary Invasive Diagnostic Procedures (Table 1 and Table 2 Below)
Study | Year | N. of Pts | Type of Cancer | Diagnostic Imaging | Primary Endpoint | Main Findings |
---|---|---|---|---|---|---|
Pietragalla M et al. [1] | 2020 | 92 | Salivary glands | MRI | Predictive role of ADC | ADC can be used as a parameter of benignity and malignancy in salivary gland neoplasms |
Srisajjakul S et al. [2] | 2020 | - | Pancreatic cancer | CT and MRI | To distinguish between chronic pancreatitis and pancreatic cancer by means of CT and MRI features | Combinations of several imaging signs and features can improve accurate differentiation between pancreatitis and cancer |
Granata V et al. [3] | 2021 | 88 | Cholangiocarcinoma | MRI | To analyze the features of ICC and its differential diagnosis at MRI | MRI features allowed the differentiation between mass-forming ICCs and other mimickers with statistical significance |
Mungai F et al. [4] | 2021 | - | Salivary glands | DCE-MRI | To evaluate DCE-MRI parameters as imaging biomarkers for characterization and differentiation between benign and malignant lesions | DCE-MRI pharmacokinetic data could be helpful for recognizing the principal types of salivary gland tumors |
Study | Year | N. of Pts | Type of Cancer | Diagnostic Imaging | Primary Endpoint | Main Findings |
---|---|---|---|---|---|---|
El-Shater Bosaily A et al. [5] | 2015 | 714 | Prostate cancer | MP-MRI | MP-MRI diagnostic role | MP-MRI of the prostate prior to the first biopsy improves the detection accuracy of clinically significant cancer |
Turkbey B et al. [6] | 2019 | - | Prostate cancer | MRI | PI-RADS v2.1 modifications and better assessment of prostate cancer on MRI | The updated version PI-RADS v2.1 can improve inter-reader variability and simplify the assessment of prostate cancer on MRI |
Scialpi M et al. [7] | 2021 | - | Prostate cancer | MRI | To increase the accuracy of MP-MRI to reduce equivocal lesions and unnecessary biopsies | A simplified PI-RADS (S-PI-RADS) is an easy, reliable and potentially reproducible system for detecting and managing prostate cancer |
Morote J et al. [8] | 2022 | 567 | Prostate cancer | MRI | To identify candidates for prostatic biopsy among patients in the PI-RADS 3 category | The Proclarix test is more accurate in selecting appropriate candidates for prostate biopsy among men in the PI-RADS 3 category |
Gundogdu E et al. [9] | 2020 | - | Prostate cancer | MRI | Relationship between serum PSA level, GS, PI-RADS v2 score, ADCmin value and tumour diameter in patients who underwent RP | PI-RADS v2 scoring system, tumour diameter, tumour ADCmin values and PSA value can be predictive parameters in both central and peripheral carcinomas |
Trivedi J et al. [10] | 2021 | - | Prostate cancer | MRI | To identify incidental findings in and around the prostate on MRI | Radiologists must be familiar with common incidental findings on MRI to minimise anxiety in the patient, have a well-informed discussion with the referring clinician and reduce costs and follow-up |
Cutaia G et al. [11] | 2020 | 647 | Prostate cancer | MRI | To assess the prevalence and clinical significance of incidental findings on prostatic MP-MRI | Incidental findings might be encountered frequently on MP-MRI, and they are more common in patients aged > 65 |
Gong L et al. [12] | 2022 | 489 | Prostate cancer | MRI | To assess the correlation between prostate gland radiomic features and GS | 2D prostate-gland-MRI-based radiomic features showed stable potential in identifying GS |
Santone A et al. [13] | 2021 | 112 | Prostate cancer | MRI | To detect prostate cancer grade by radiomic features directly from magnetic resonance images | Effectiveness of radiomics for Gleason grade group detection from magnetic resonance |
Renard-Penna R et al. [14] | 2022 | - | Prostate cancer | MRI | To assess the role and potential impact of MRI in targeting local recurrence after surgery for prostate cancer in the setting of salvage radiation therapy | Functional MRI with diffusion and perfusion imaging has the potential to demonstrate local recurrence even at low PSA values |
Coppola A et al. [15] | 2020 | 73 | Prostata cancer | CE-MRI | To evaluate the role of CE-MR in the diagnosis of local recurrence in patients with prostate cancer after radical prostatectomy and referred for salvage radiotherapy | The sensitivity of CE-MRI in local recurrence detection after radical prostatectomy increases with increasing PSA values |
3. Radiomics: Role of Imaging in Predicting Treatment Outcomes: How Modern Imaging May Help to Predict Outcomes of a Determined Treatment (Table 3 and Table 4 Below)
Study | Year | N. of Pts | Type of Cancer | Diagnostic Imaging | Primary Endpoint | Main Findings |
---|---|---|---|---|---|---|
Zhang L et al. [16] | 2020 | 360 | GIST | CT | CT-based radiomics models for GIST risk stratification | Quantitative radiomics analysis can be regarded as a complementary tool to achieve an accurate diagnosis for GISTs |
Kirienko M et al. [17] | 2020 | 108 | Thymic neoplasms and lymphoma | CT | CT-based radiomics model in the differential diagnosis between lymphomas and thymic neoplasms | Radiomics analysis support diagnosis in patients with mediastinal masses with a major impact on the management of asymptomatic cases |
Lian S et al. [18] | 2020 | 147 | NPC and NPL | MRI | Predictive role of ADC in differentiating NPC from NPL at the primary site | Whole-tumour histogram analysis of ADC maps could be helpful for differentiating NPC from NPL |
Nakamura Y et al. [19] | 2021 | - | HCC | CT | Role of advanced CT techniques in assessing HCC | Dual-energy CT, perfusion CT and AI-based methods can be used for the characterization of liver tumours, the quantification of treatment responses, and for predicting the overall survival rate of patients |
Danti G et al. [20] | 2021 | - | NEN | CT and 68Ga-DOTA-peptides PET/CT | Morphologic and functional imaging in the characterization of NEN | Potential future possibilities of prognostic imaging in the assessment of NEN, especially GI ones |
Farchione A et al. [23] | 2020 | 57 | NSCLC | CT | Predictive role of CT data in NSCLC survival | Opposite influence on the performance of quantitative imaging features in predicting OS of surgically treated NSCLC patients |
Sun NN et al. [24] | 2020 | 72 | Oesophageal cancer | DCE-MRI | To predict and assess treatment response by DCE-MRI in patients treated with CRT | DCE-MRI could serve as an imaging technique for treatment planning |
Crimì F et al. [25] | 2020 | 62 | Rectal cancer | T2w-MRI | Role of T2-weighted MRI in the prediction of outcomes in patients LARC undergoing nCRT | MRI T2-weighted sequences-based TA was not effective in predicting the complete pathological response to nCRT in patients with LARC |
Fornell-Perez R et al. [26] | 2020 | 100 | Rectal cancer | DWI-MRI | To assess the value DWI to HRT2w in MRI detection of EMVI | The addition of DWI improved the diagnostic performance of EMVI |
Pietragalla M et al. [27] | 2020 | 40 | Laryngeal carcinoma | CT | To evaluate cartilage invasion on CT in patients undergoing total laryngectomy | CT has a high predictive value in assessing cartilage invasion in both primary and recurrent carcinomas |
Russo L et al. [28] | 2021 | 13 | Cervical cancer | MRI | Role of MRI in the evaluation of response to treatment after nCRT in patients with cervical cancer FIGO stage IB2-IIA1 | The usefulness of MRI in the assessment of treatment responses after NACT |
Hang-Tong H et al. [29] | 2020 | - | HCC | CT | CT image-based radiomics model for early recurrent HCC | CT-based radiomics has poor reproducibility between centres. Image heterogeneity, such as slice thickness, can be a significant influencing factor |
Cusumano D et al. [30] | 2021 | 195 | Rectal cancer | MRI | To develop a generalised radiomics model for predicting pCR after nCRT in LARC patients | Good performance of the elaborated model |
Hu S et al. [31] | 2020 | 225 | Papillary thyroid carcinoma | MRI and US | Role of US and MRI in predicting ETE in patients with papillary carcinoma | Preoperative US should be used as the first line in predicting minimal ETE, and MRI should be added to extensive ETE assessment |
Zhang Y et al. [32] | 2020 | 128 | Breast carcinoma | MRI | Role of MRI in predicting Ki67 index | The ADC-based radiomics model is a feasible predictor for the Ki-67 index in patients with invasive ductal breast cancer |
Nazari M et al. [33] | 2020 | 71 | Renal Carcinoma | CT | CT image-based radiomics model for ccRCC grade | CT radiomics features a useful and promising methodology for the preoperative evaluation of ccRCC Fuhrman grades |
Benedetti G et al. [34] | 2021 | 39 | Pancreatic cancer | CT | CT image-based radiomics model in detecting histopathologic characteristics of pancreatic NET | Radiomics features can discriminate histopathology of panNET |
Halefoglu AM et al. [35] | 2021 | 66 | Renal carcinoma | CT and MRI | To investigate whether CT and T2 weighted- MRI could discriminate between low grade and high grade in ccRCC and pRCC | Contrast-enhanced CT and T2 weighted -MRI can play a considerable role in the discrimination of low-grade versus high-grade tumours of both subtype RCC patients |
Danti G et al. [36] | 2020 | 68 | Lung carcinoid | CT and nuclear imaging | To assess CT and nuclear imaging’s role in characterizing lung carcinoid | CT and nuclear molecular imaging are important in characterizing lung carcinoids |
Bracci S et al. [37] | 2021 | 72 | NSCLC | CT | CT image-based radiomics model in predicting PDL1 expression in advanced NSCLC | CT texture analysis could be useful for predicting PD-L1 expression and guiding the therapeutic choice in patients with advanced NSCLC |
Agazzi G et al. [38] | 2021 | 84 | NSCLC | CT | Predictive role of CT texture-based model in detecting EGFR-mutational status and ALK rearrangement | Texture analysis could be promising for the noninvasive characterization of lung adenocarcinoma with respect to EGFR and ALK mutations |
Desideri I et al. [44] | 2020 | - | Head and Neck, Breast, Lung and Prostate cancer | - | Current-state-of-the-art on the use of radiomics for the prediction of radiation-induced toxicity | The current state-of-the-art on radiomics prediction of radiation-induced toxicity is still relatively limited, with the notable exception of xerostomia prognostication |
Study | Year | N. of Pts | Type of Cancer | Diagnostic Imaging | Primary Endpoint | Main Findings |
---|---|---|---|---|---|---|
Mostafaei S et al. [21] | 2020 | 64 | Prostate cancer | CT | Prediction of RT-induced toxicity by means of CT radiomics | CT imaging features can predict radiation toxicity in association with clinical and dosimetric features |
Abdollahi H et al. [39] | 2018 | - | Prostate cancer | MRI | Role of MRI radiomic analysis to assess IMRT rectal toxicity | Pre-IMRT MR image radiomic features could predict rectal toxicity in prostate cancer patients |
Abdollahi H et al. [40] | 2019 | 33 | Prostate cancer | MRI | Role of MRI texture features analysis in predicting IMRT urinary toxicity | Radiomics features as potentially important imaging biomarkers in radiation-induced bladder injuries |
Abdollahi H et al. [41] | 2019 | 30 | Prostate cancer | MRI | Role of MRI texture features analysis in predicting IMRT femoral head damage | Radiomics features as potentially important imaging biomarkers for predicting radiotherapy-induced femoral changes |
Rossi L et al. [42] | 2018 | 351 | Prostate cancer | - | Role of TA 3D distributions in predicting toxicity rates | 3D dosimetric texture analysis features have a predictive role in detecting GI and GU radiation toxicity |
Lorenz JW et al. [43] | 2019 | - | Prostate cancer | MRI-Linac | MRI-Linac radiomics feature variation in OARs | Early variations of the rectal wall were observed in patients undergoing RT on MRI linear accelerator |
4. Implementation of Novel Imaging in Radiotherapy Planning: How Modern Imaging May Improve Planning Radiotherapy Techniques (Table 5 and Table 6 Below)
Study | Year | N. of Pts | Type of Cancer | Diagnostic Imaging/Technique | Primary Endpoint | Main Findings |
---|---|---|---|---|---|---|
Rosa C et al. [48] | 2021 | 32 | Rectal cancer | CBCT | Role of CBCT in evaluating organ motion in LARC | CBCTs resulted in effective organ motion assessment, and it could be an appropriate method for the implementation of an intensification treatment |
Study | Year | N. of Pts | Type of Cancer | Diagnostic Imaging/Technique | Primary Endpoint | Main Findings |
---|---|---|---|---|---|---|
Jani AB et al. [45] | 2021 | 165 | Prostate cancer | 18F-fluciclovine-PET/CT | Role of 18F-fluciclovine-PET/CT in post-prostatectomy radiotherapy decision-making and planning | The inclusion of 18F-fluciclovine-PET into postprostatectomy radiotherapy significantly improved survival free from biochemical recurrence or persistence |
Hofman S et al. [46] | 2020 | 302 | Prostate cancer | PSMA PET/CT | Role of PSMA PET/TC in staging and management of HR prostate cancer | PSMA PET-CT is a suitable replacement for conventional imaging, providing superior accuracy to the combined findings of CT and bone scanning |
Jereczek-Fossa B et al. [49] | 2020 | 179 | Prostate Cancer | IGRT | Incidence and predictors for outcomes and toxicity with IGRT | IGRT allows for safe, moderate hypofractionation |
Cuccia F et al. [50] | 2020 | 170 | Prostate cancer | HT | Toxicity and clinical outcomes of moderately hypofractionatedHT | Moderately hypofractionated RT with HT for localized prostate cancer reported excellent outcomes with mild acute and late toxicity incidence, with promising biochemical control rates |
Kerkmeijer L et al. [51] | 2021 | 571 | Prostate cancer | EBRT | Role of focal boosting of the macroscopically visible tumour in increasing bDFS | The addition of a focal boost to the intraprostatic lesion improved bDFS for patients with localized intermediate- and high-risk prostate cancer without impacting toxicity and quality of life |
Onal C et al. [52] | 2020 | 40 | Prostate cancer | VMAT | To compare testicular doses during VMAT in patients receiving prostate-only and pelvic lymphatic irradiation | The patients with prostate-only irradiation received lower testicular doses than those with additional pelvic field irradiation |
Sanmamed N et al. [53] | 2019 | 61 | Prostate cancer | MRI-guided high-dose-rate brachytherapy + EBRT | Impact of the dose on bladder neck urinary toxicity and health-related quality of life | A high bladder-neck dose was observed in patients who had acute urinary toxicity, but the predictive value of this parameter needs further investigation |
D’Angelillo RM et al. [54] | 2020 | 150 | Prostate cancer | 18F-choline PET/CT | Role of 18F-choline PET/CT in allowing dose escalation in salvage radiotherapy | High-dose salvage radiotherapy to a biological target volume is feasible on 18F-choline PET/CT positive areas |
Rigo M et al. [55] | 2020 | 24 | Prostate cancer | EBRT | Role of EBRT molecular-imaging guided in salvage radiotherapy post-HIFU | Feasibility and low toxicity of salvage EBRT after HIFU failure |
Francolini G et al. [56] | 2022 | - | Prostate cancer | IMRT/VMAT | Clinical outcomes nodal IMRT boost | WPRT and IMRT/VMAT boost on positive pelvic nodes are effective and promising approaches with limited toxicity |
Francolini G et al. [57] | 2022 | 185 | Prostate cancer | SRT/SSRT | To compare outcomes between SRT and SSRT after radical prostatectomy and macroscopic recurrence | SSRT should be considered an attractive alternative to conventional SRT in this setting |
Kuisma A et al. [58] | 2022 | 30 | Prostate cancer | Carbon-11 acetate (ACE) PET-CT | Role of Carbon-11 acetate (ACE) PET-CT for RT planning | Biological guidance for dose-escalated prostate RT is feasible with ACE PET/CT |
Holscher T et al. [59] | 2022 | 63 | Prostate cancer | PSMA PET/CT | Toxicity and efficacy of Local Ablative PET PSMA-guided RT in oligometastatic patients | Local ablative radiotherapy is safe, and it might be an option to avoid systemic therapy in selected patients |
Mazzola R [60] | 2021 | 20 | Prostate cancer | PSMA PET/CT, SBRT, MRI-linac | Feasibility and patient-reported outcomes following PSMA-PET/CT guided SBRT by means of MRI-Linac | Encouraging findings in terms of effectiveness and tolerability |
5. Influence on Systemic Treatment and Different Medical Conditions: How Modern Imaging May Change Use of Radiotherapy Influencing Overall Treatment Management of Patients (Table 7 Below)
Study | Year | N. of Pts | Type of Cancer | Diagnostic Imaging/Technique | Primary Endpoint | Main Findings |
---|---|---|---|---|---|---|
Phillips R et al. [61] | 2020 | 54 | Prostate cancer | SABR | To determine if SABR improves oncologic outcomes compared to observation | Treatment with SABR for oligometastatic prostate cancer improved outcomes |
Vernaleone M et al. [62] | 2019 | 38 | Rectal cancer | SBRT | Safety and clinical benefit of SBRT for liver oligometastatic colorectal cancer | Importance of patients’ selection to identify the oligometastatic scenario most likely to benefit from SBRT. Prospective studies are needed to further assess its role among locoregional treatment options for liver metastases from CRC |
Falcinelli L et al. [63] | 2021 | 56 | Lung cancer | SBRT | Outcomes after SBRT on primary and metastatic lung cancer | SBRT was well tolerated and provided good local control |
Fiorentino A et al. [64] | 2021 | - | Cardiac arrhythmias | SABR | Role of SABR in treating cardiac arrhythmias | Clinical data suggested the feasibility, efficacy and safety of SABR for refractory ventricular arrhythmias |
Barra S et al. [72] | 2021 | 28 | Prostate cancer | SBRT | To evaluate SBRT in low-risk prostate cancer patients as a treatment option in emergency health conditions | SBRT for early prostate cancer reported a safe toxicity profile and a good clinical outcome at the median follow-up of 5 years, and it could be a useful option if radiotherapy is required in emergency medical conditions |
6. Discussion
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pietragalla, M.; Nardi, C.; Bonasera, L.; Mungai, F.; Taverna, C.; Novelli, L.; De Renzis, A.; Calistri, L.; Tomei, M.; Occhipinti, M.; et al. The role of diffusion-weighted and dynamic contrast enhancement perfusion-weighted imaging in the evaluation of salivary glands neoplasms. La Radiol. Med. 2020, 125, 851–863. [Google Scholar] [CrossRef] [PubMed]
- Srisajjakul, S.; Prapaisilp, P.; Bangchokdee, S. CT and MR features that can help to differentiate between focal chronic pancreatitis and pancreatic cancer. La Radiol. Med. 2020, 125, 356–364. [Google Scholar] [CrossRef] [PubMed]
- Granata, V.; Grassi, R.; Fusco, R.; Setola, S.V.; Belli, A.; Ottaiano, A.; Nasti, G.; La Porta, M.; Danti, G.; Cappabianca, S.; et al. Intrahepatic cholangiocarcinoma and its differential diagnosis at MRI: How radiologist should assess MR features. La Radiol. Med. 2021, 126, 1584–1600. [Google Scholar] [CrossRef]
- Mungai, F.; Verrone, G.B.; Bonasera, L.; Bicci, E.; Pietragalla, M.; Nardi, C.; Berti, V.; Mazzoni, L.N.; Miele, V. Imaging biomarkers in the diagnosis of salivary gland tumors: The value of lesion/parenchyma ratio of perfusion-MR pharmacokinetic parameters. La Radiol. Med. 2021, 126, 1345–1355. [Google Scholar] [CrossRef]
- El-Shater Bosaily, A.; Parker, C.; Brown, L.C.; Gabe, R.; Hindley, R.G.; Kaplan, R.; Emberton, M.; Ahmed, H.U.; PROMIS Group. PROMIS–Prostate MR imaging study: A paired validating cohort study evaluating the role of multi-parametric MRI in men with clinical suspicion of prostate cancer. Contemp. Clin. Trials 2015, 42, 26–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turkbey, B.; Rosenkrantz, A.B.; Haider, M.A.; Padhani, A.R.; Villeirs, G.; Macura, K.J.; Tempany, C.M.; Choyke, P.L.; Cornud, F.; Margolis, D.J.; et al. Prostate imaging reporting and data system version 2.1: 2019 update of prostate imaging reporting and data system version. Eur. Urol. 2019, 76, 340–351. [Google Scholar] [CrossRef]
- Scialpi, M.; Scialpi, P.; Martorana, E.; Torre, R.; Mancioli, F.A.; D’Andrea, A.; Di Blasi, A. Biparametric MRI with simplified PI-RADS (S-PI-RADS) for prostate cancer detection and management: What do radiologist need to know. La Radiol. Med. 2021, 126, 1660–1661. [Google Scholar] [CrossRef]
- Morote, J.; Campistol, M.; Triquell, M.; Celma, A.; Regis, L.; de Torres, I.; Semidey, M.E.; Mast, R.; Santamaria, A.; Planas, J.; et al. Improving the Early Detection of Clinically Significant Prostate Cancer in Men in the Challenging Prostate Imaging-Reporting and Data System 3 Category. Eur. Urol. Open Sci. 2022, 37, 38–44. [Google Scholar] [CrossRef]
- Gündoğdu, E.; Emekli, E.; Kebapçı, M. Evaluation of relationships between the final Gleason score, PI-RADS v2 score, ADC value, PSA level, and tumor diameter in patients that underwent radical prostatectomy due to prostate cancer. La Radiol. Med. 2020, 125, 827–837. [Google Scholar] [CrossRef]
- Trivedi, J.; Sutherland, T.; Page, M. Incidental findings in and around the prostate on prostate MRI: A pictorial review. Insights Into Imaging 2021, 12, 37. [Google Scholar] [CrossRef]
- Cutaia, G.; Tosto, G.; Cannella, R.; Bruno, A.; Leto, C.; Salvaggio, L.; Cutaia, S.; Lombardo, F.P.; Dispensa, N.; Giambelluca, D.; et al. Prevalence and clinical significance of incidental findings on multiparametric prostate MRI. La Radiol. Med. 2020, 125, 204–213. [Google Scholar] [CrossRef] [PubMed]
- Gong, L.; Xu, M.; Fang, M.; He, B.; Li, H.; Fang, X.; Dong, D.; Tian, J. The potential of prostate gland radiomic features in identifying the Gleason score. Comput. Biol. Med. 2022, 144, 105318. [Google Scholar] [CrossRef]
- Santone, A.; Brunese, M.C.; Donnarumma, F.; Guerriero, P.; Mercaldo, F.; Reginelli, A.; Miele, V.; Giovagnoni, A.; Brunese, L. Radiomic features for prostate cancer grade detection through formal verification. La Radiol. Med. 2021, 126, 688–697. [Google Scholar] [CrossRef] [PubMed]
- Renard-Penna, R.; Zhang-Yin, J.; Montagne, S.; Aupin, L.; Bruguière, E.; Labidi, M.; Latorzeff, I.; Hennequin, C. Targeting Local Recurrence After Surgery With MRI Imaging for Prostate Cancer in the Setting of Salvage Radiation Therapy. Front. Oncol. 2022, 12, 775387. [Google Scholar] [CrossRef] [PubMed]
- Coppola, A.; Platania, G.; Ticca, C.; De Mattia, C.; Bortolato, B.; Palazzi, M.F.; Vanzulli, A. Sensitivity of CE-MRI in detecting local recurrence after radical prostatectomy. La Radiol. Med. 2020, 125, 683–690. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Kang, L.; Li, G.; Zhang, X.; Ren, J.; Shi, Z.; Li, J.; Yu, S. Computed tomography-based radiomics model for discriminating the risk stratification of gastrointestinal stromal tumors. La Radiol. Med. 2020, 125, 465–473. [Google Scholar] [CrossRef]
- Kirienko, M.; Ninatti, G.; Cozzi, L.; Voulaz, E.; Gennaro, N.; Barajon, I.; Ricci, F.; Carlo-Stella, C.; Zucali, P.; Sollini, M.; et al. Computed tomography (CT)-derived radiomic features differentiate prevascular mediastinum masses as thymic neoplasms versus lymphomas. La Radiol. Med. 2020, 125, 951–960. [Google Scholar] [CrossRef]
- Lian, S.; Zhang, C.; Chi, J.; Huang, Y.; Shi, F.; Xie, C. Differentiation between nasopharyngeal carcinoma and lymphoma at the primary site using whole-tumor histogram analysis of apparent diffusion coefficient maps. La Radiol. Med. 2020, 125, 647–653. [Google Scholar] [CrossRef]
- Nakamura, Y.; Higaki, T.; Honda, Y.; Tatsugami, F.; Tani, C.; Fukumoto, W.; Narita, K.; Kondo, S.; Akagi, M.; Awai, K. Advanced CT techniques for assessing hepatocellular carcinoma. La Radiol. Med. 2021, 126, 925–935. [Google Scholar] [CrossRef]
- Danti, G.; Flammia, F.; Matteuzzi, B.; Cozzi, D.; Berti, V.; Grazzini, G.; Pradella, S.; Recchia, L.; Brunese, L.; Miele, V. Gastrointestinal neuroendocrine neoplasms (GI-NENs): Hot topics in morphological, functional, and prognostic imaging. La Radiol. Med. 2021, 126, 1497–1507. [Google Scholar] [CrossRef]
- Mostafaei, S.; Abdollahi, H.; Dehkordi, S.K.; Shiri, I.; Razzaghdoust, A.; Moghaddam, S.H.Z.; Saadipoor, A.; Koosha, F.; Cheraghi, S.; Mahdavi, S.R. CT imaging markers to improve radiation toxicity prediction in prostate cancer radiotherapy by stacking regression algorithm. La Radiol. Med. 2019, 125, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Merlotti, A.; Bruni, A.; Borghetti, P.; Ramella, S.; Scotti, V.; Trovò, M.; Chiari, R.; Lohr, F.; Ricardi, U.; Bria, E.; et al. Sequential chemo-hypofractionated RT versus concurrent standard CRT for locally advanced NSCLC: GRADE recommendation by the Italian Association of Radiotherapy and Clinical Oncology (AIRO). La Radiol. Med. 2021, 126, 1117–1128. [Google Scholar] [CrossRef] [PubMed]
- Farchione, A.; Larici, A.R.; Masciocchi, C.; Cicchetti, G.; Congedo, M.T.; Franchi, P.; Gatta, R.; Cicero, S.L.; Valentini, V.; Bonomo, L.; et al. Exploring technical issues in personalized medicine: NSCLC survival prediction by quantitative image analysis—Usefulness of density correction of volumetric CT data. La Radiol. Med. 2020, 125, 625–635. [Google Scholar] [CrossRef] [PubMed]
- Sun, N.N.; Ge, X.L.; Liu, X.S.; Xu, L.L. Histogram analysis of DCE-MRI for chemoradiotherapy response evaluation in locally advanced esophageal squamous cell carcinoma. La Radiol. Med. 2020, 125, 165–176. [Google Scholar] [CrossRef]
- Crimì, F.; Capelli, G.; Spolverato, G.; Bao, Q.R.; Florio, A.; Rossi, S.M.; Cecchin, D.; Albertoni, L.; Campi, C.; Pucciarelli, S.; et al. MRI T2-weighted sequences-based texture analysis (TA) as a predictor of response to neoadjuvant chemo-radiotherapy (nCRT) in patients with locally advanced rectal cancer (LARC). La Radiol. Med. 2020, 125, 1216–1224. [Google Scholar] [CrossRef]
- Fornell-Perez, R.; Vivas-Escalona, V.; Aranda-Sanchez, J.; Gonzalez-Dominguez, M.C.; Rubio-Garcia, J.; Aleman-Flores, P.; Lozano-Rodriguez, A.; Porcel-De-Peralta, G.; Loro-Ferrer, J.F. Primary and post-chemoradiotherapy MRI detection of extramural venous invasion in rectal cancer: The role of diffusion-weighted imaging. La Radiol. Med. 2020, 125, 522–530. [Google Scholar] [CrossRef]
- Pietragalla, M.; Nardi, C.; Bonasera, L.; Mungai, F.; Verrone, G.B.; Calistri, L.; Taverna, C.; Novelli, L.; Locatello, L.G.; Mannelli, G.; et al. Current role of computed tomography imaging in the evaluation of cartilage invasion by laryngeal carcinoma. La Radiol. Med. 2020, 125, 1301–1310. [Google Scholar] [CrossRef]
- Russo, L.; Gui, B.; Miccò, M.; Panico, C.; De Vincenzo, R.; Fanfani, F.; Scambia, G.; Manfredi, R. The role of MRI in cervical cancer > 2 cm (FIGO stage IB2-IIA1) conservatively treated with neoadjuvant chemotherapy followed by conization: A pilot study. La Radiol. Med. 2021, 126, 1055–1063. [Google Scholar] [CrossRef]
- Hu, H.-T.; Shan, Q.-Y.; Chen, S.-L.; Li, B.; Feng, S.-T.; Xu, E.-J.; Li, X.; Long, J.-Y.; Xie, X.-Y.; Lu, M.-D.; et al. CT-based radiomics for preoperative prediction of early recurrent hepatocellular carcinoma: Technical reproducibility of acquisition and scanners. La Radiol. Med. 2020, 125, 697–705. [Google Scholar] [CrossRef]
- Cusumano, D.; Meijer, G.; Lenkowicz, J.; Chiloiro, G.; Boldrini, L.; Masciocchi, C.; Dinapoli, N.; Gatta, R.; Casà, C.; Damiani, A.; et al. A field strength independent MR radiomics model to predict pathological complete response in locally advanced rectal cancer. La Radiol. Med. 2020, 126, 421–429. [Google Scholar] [CrossRef]
- Hu, S.; Zhang, H.; Sun, Z.; Ge, Y.; Li, J.; Yu, C.; Deng, Z.; Dou, W.; Wang, X. Preoperative assessment of extrathyroidal extension of papillary thyroid carcinomas by ultrasound and magnetic resonance imaging: A comparative study. La Radiol. Med. 2020, 125, 870–876. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, Y.; Zhang, K.; Liu, Y.; Cui, J.; Tao, J.; Wang, Y.; Wang, S. Invasive ductal breast cancer: Preoperative predict Ki-67 index based on radiomics of ADC maps. La Radiol. Med. 2020, 125, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Nazari, M.; Shiri, I.; Hajianfar, G.; Oveisi, N.; Abdollahi, H.; Deevband, M.R.; Oveisi, M.; Zaidi, H. Noninvasive Fuhrman grading of clear cell renal cell carcinoma using computed tomography radiomic features and machine learning. La Radiol. Med. 2020, 125, 754–762. [Google Scholar] [CrossRef] [Green Version]
- Benedetti, G.; Mori, M.; Panzeri, M.M.; Barbera, M.; Palumbo, D.; Sini, C.; Muffatti, F.; Andreasi, V.; Steidler, S.; Doglioni, C.; et al. CT-derived radiomic features to discriminate histologic characteristics of pancreatic neuroendocrine tumors. La Radiol. Med. 2021, 126, 745–760. [Google Scholar] [CrossRef] [PubMed]
- Halefoglu, A.M.; Ozagari, A.A. Tumor grade estımatıon of clear cell and papıllary renal cell carcınomas usıng contrast-enhanced MDCT and FSE T2 weıghted MR ımagıng: Radıology-pathology correlatıon. La Radiol. Med. 2021, 126, 1139–1148. [Google Scholar] [CrossRef]
- Danti, G.; Berti, V.; Abenavoli, E.; Briganti, V.; Linguanti, F.; Mungai, F.; Pradella, S.; Miele, V. Diagnostic imaging of typical lung carcinoids: Relationship between MDCT, 111In-Octreoscan and 18F-FDG-PET imaging features with Ki-67 index. La Radiol. Med. 2020, 125, 715–729. [Google Scholar] [CrossRef] [PubMed]
- Bracci, S.; Dolciami, M.; Trobiani, C.; Izzo, A.; Pernazza, A.; D’Amati, G.; Manganaro, L.; Ricci, P. Quantitative CT texture analysis in predicting PD-L1 expression in locally advanced or metastatic NSCLC patients. La Radiol. Med. 2021, 126, 1425–1433. [Google Scholar] [CrossRef]
- Agazzi, G.M.; Ravanelli, M.; Roca, E.; Medicina, D.; Balzarini, P.; Pessina, C.; Vermi, W.; Berruti, A.; Maroldi, R.; Farina, D. CT texture analysis for prediction of EGFR mutational status and ALK rearrangement in patients with non-small cell lung cancer. La Radiol. Med. 2021, 126, 786–794. [Google Scholar] [CrossRef]
- Abdollahi, H.; Mahdavi, S.R.; Mofid, B.; Bakhshandeh, M.; Razzaghdoust, A.; Saadipoor, A.; Tanha, K. Rectal wall MRI radiomics in prostate cancer patients: Prediction of and correlation with early rectal toxicity. Int. J. Radiat. Biol. 2018, 94, 829–837. [Google Scholar] [CrossRef] [PubMed]
- Abdollahi, H.; Tanha, K.; Mofid, B.; Razzaghdoust, A.; Saadipoor, A.; Khalafi, L.; Bakhshandeh, M.; Mahdavi, S.R. MRI Radiomic Analysis of IMRT-Induced Bladder Wall Changes in Prostate Cancer Patients: A Relationship with Radiation Dose and Toxicity. J. Med. Imaging Radiat. Sci. 2019, 50, 252–260. [Google Scholar] [CrossRef] [PubMed]
- Abdollahi, H.; Mahdavi, S.R.; Shiri, I.; Mofid, B.; Bakhshandeh, M.; Rahmani, K. Magnetic resonance imaging radiomic feature analysis of radiation-induced femoral head changes in prostate cancer radiotherapy. J. Cancer Res. Ther. 2019, 15, S11–S19. [Google Scholar] [CrossRef]
- Rossi, L.; Bijman, R.; Schillemans, W.; Aluwini, S.; Cavedon, C.; Witte, M.; Incrocci, L.; Heijmen, B. Texture analysis of 3D dose distributions for predictive modelling of toxicity rates in radiotherapy. Radiother. Oncol. 2018, 129, 548–553. [Google Scholar] [CrossRef]
- Lorenz, J.W.; Schott, D.; Rein, L.; Mostafaei, F.; Noid, G.; Lawton, C.; Bedi, M.; Li, X.A.; Schultz, C.J.; Paulson, E.; et al. Serial T2-Weighted Magnetic Resonance Images Acquired on a 1.5 Tesla Magnetic Resonance Linear Accelerator Reveal Radiomic Feature Variation in Organs at Risk: An Exploratory Analysis of Novel Metrics of Tissue Response in Prostate Cancer. Cureus 2019, 11, e4510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desideri, I.; Loi, M.; Francolini, G.; Becherini, C.; Livi, L.; Bonomo, P. Application of Radiomics for the Prediction of Radiation-Induced Toxicity in the IMRT Era: Current State-of-the-Art. Front. Oncol. 2020, 10, 1708. [Google Scholar] [CrossRef] [PubMed]
- Jani, A.B.; Schreibmann, E.; Goyal, S.; Halkar, R.; Hershatter, B.; Rossi, P.J.; Shelton, J.W.; Patel, P.R.; Xu, K.M.; Goodman, M.; et al. 18F-fluciclovine-PET/CT imaging versus conventional imaging alone to guide postprostatectomy salvage radiotherapy for prostate cancer (EMPIRE-1): A single centre, open-label, phase 2/3 randomised controlled trial. Lancet 2021, 397, 1895–1904. [Google Scholar] [CrossRef]
- Hofman, M.S.; Lawrentschuk, N.; Francis, R.J.; Tang, C.; Vela, I.; Thomas, P.; Rutherford, N.; Martin, J.M.; Frydenberg, M.; Shakher, R.; et al. Prostate-specific membrane antigen PET-CT in patients with high-risk prostate cancer before curative-intent surgery or radiotherapy (proPSMA): A prospective, randomised, multicentre study. Lancet 2020, 395, 1208–1216. [Google Scholar] [CrossRef]
- Vogelius, I.R.; Bentzen, S.M. Meta-analysis of the alpha/beta ratio for prostate cancer in the presence of an overall time factor: Bad news, good news, or no news? Int. J. Radiat. Oncol. Biol. Phys. 2013, 85, 89–94. [Google Scholar] [CrossRef] [Green Version]
- Rosa, C.; Caravatta, L.; Di Tommaso, M.; Fasciolo, D.; Gasparini, L.; Di Guglielmo, F.C.; Augurio, A.; Vinciguerra, A.; Vecchi, C.; Genovesi, D. Cone-beam computed tomography for organ motion evaluation in locally advanced rectal cancer patients. La Radiol. Med. 2021, 126, 147–154. [Google Scholar] [CrossRef]
- Jereczek-Fossa, B.A.; Surgo, A.; Maisonneuve, P.; Maucieri, A.; Gerardi, M.A.; Zerini, D.; Marvaso, G.; Ciardo, D.; Volpe, S.; Rojas, D.P.; et al. Correction to: Late toxicity of image-guided hypofractionated radiotherapy for prostate: Non-randomized comparison with conventional fractionation. La Radiol. Med. 2020, 125, 107. [Google Scholar] [CrossRef] [Green Version]
- Cuccia, F.; Mortellaro, G.; Trapani, G.; Valenti, V.; Ognibene, L.; De Gregorio, G.; Quartuccio, E.; Luca, N.; Tripoli, A.; Serretta, V.; et al. Acute and late toxicity and preliminary outcomes report of moderately hypofractionated helical tomotherapy for localized prostate cancer: A mono-institutional analysis. La Radiol. Med. 2020, 125, 220–227. [Google Scholar] [CrossRef]
- Kerkmeijer, L.G.W.; Groen, V.H.; Pos, F.J.; Haustermans, K.; Monninkhof, E.M.; Smeenk, R.J.; Kunze-Busch, M.; de Boer, J.C.J.; Zijp, J.V.D.V.V.; van Vulpen, M.; et al. Focal Boost to the Intraprostatic Tumor in External Beam Radiotherapy for Patients With Localized Prostate Cancer: Results From the FLAME Randomized Phase III Trial. J. Clin. Oncol. 2021, 39, 787–796. [Google Scholar] [CrossRef]
- Onal, C.; Bozca, R.; Dolek, Y.; Guler, O.C.; Arslan, G. Incidental testicular doses during volumetric-modulated arc radiotherapy in prostate cancer patients. La Radiol. Med. 2020, 125, 777–783. [Google Scholar] [CrossRef]
- Sanmamed, N.; Chung, P.; Berlin, A.; Adleman, J.; Borg, J.; Lao, B.; Ghai, S.; Weersink, R.; Simeonov, A.; Rink, A.; et al. Dose to the bladder neck in MRI-guided high-dose-rate prostate brachytherapy: Impact on acute urinary toxicity and health-related quality of life. Brachytherapy 2019, 18, 477–483. [Google Scholar] [CrossRef] [PubMed]
- D’Angelillo, R.M.; Fiore, M.; Trodella, L.E.; Sciuto, R.; Ippolito, E.; Carnevale, A.; Iurato, A.; Miele, M.; Trecca, P.; Trodella, L.; et al. 18F-choline PET/CT driven salvage radiotherapy in prostate cancer patients: Up-date analysis with 5-year median follow-up. La Radiol. Med. 2020, 125, 668–673. [Google Scholar] [CrossRef] [PubMed]
- Rigo, M.; Mazzola, R.; Napoli, G.; Giaj-Levra, N.; Figlia, V.; Nicosia, L.; Ricchetti, F.; Tomasini, D.; Bonu, M.L.; Cuccia, F.; et al. Post-HIFU locally relapsed prostate cancer: High-dose salvage radiotherapy guided by molecular imaging. La Radiol. Med. 2020, 125, 491–499. [Google Scholar] [CrossRef] [PubMed]
- Francolini, G.; Stocchi, G.; Detti, B.; Di Cataldo, V.; Bruni, A.; Triggiani, L.; Guerini, A.E.; Mazzola, R.; Cuccia, F.; Mariotti, M.; et al. Dose-escalated pelvic radiotherapy for prostate cancer in definitive or postoperative setting. La Radiol. Med. 2022, 127, 206–213. [Google Scholar] [CrossRef] [PubMed]
- Francolini, G.; Jereczek-Fossa, B.A.; Di Cataldo, V.; Simontacchi, G.; Marvaso, G.; Gandini, S.; Corso, F.; Ciccone, L.P.; Zerella, M.A.; Gentile, P.; et al. Stereotactic or conventional radiotherapy for macroscopic prostate bed recurrence: A propensity score analysis. La Radiol. Med. 2022, 127, 449–457. [Google Scholar] [CrossRef] [PubMed]
- Kuisma, A.; Wright, P.; Suilamo, S.; Seppälä, J.; Koivisto, M.; Lindholm, P.; Minn, H. Long-term outcome of biologically guided dose-escalated radiotherapy of localized prostate cancer. Acta Oncol. 2022, 61, 97–103. [Google Scholar] [CrossRef]
- Hölscher, T.; Baumann, M.; Kotzerke, J.; Zöphel, K.; Paulsen, F.; Müller, A.C.; Zips, D.; Koi, L.; Thomas, C.; Löck, S.; et al. Toxicity and Efficacy of Local Ablative, Image-guided Radiotherapy in Gallium-68 Prostate-specific Membrane Antigen Targeted Positron Emission Tomography-staged, Castration-sensitive Oligometastatic Prostate Cancer: The OLI-P Phase 2 Clinical Trial. Eur. Urol. Oncol. 2022, 5, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Mazzola, R.; Cuccia, F.; Figlia, V.; Rigo, M.; Nicosia, L.; Giaj-Levra, N.; Ricchetti, F.; Vitale, C.; Mantoan, B.; Di Paola, G.; et al. Stereotactic body radiotherapy for oligometastatic castration sensitive prostate cancer using 1.5 T MRI-Linac: Preliminary data on feasibility and acute patient-reported outcomes. La Radiol. Med. 2021, 126, 989–997. [Google Scholar] [CrossRef] [PubMed]
- Phillips, R.; Shi, W.Y.; Deek, M.; Radwan, N.; Lim, S.J.; Antonarakis, E.S.; Rowe, S.P.; Ross, A.E.; Gorin, M.A.; Deville, C.; et al. Outcomes of Observation vs Stereotactic Ablative Radiation for Oligometastatic Prostate Cancer: The ORIOLE Phase 2 Randomized Clinical Trial. JAMA Oncol. 2020, 6, 650–659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vernaleone, M.; Bonomo, P.; Di Cataldo, V.; Saieva, C.; Masi, L.; Desideri, I.; Greto, D.; Francolini, G.; Becherini, C.; Livi, L. Robotic stereotactic radiotherapy for liver oligometastases from colorectal cancer: A single-center experience. La Radiol. Med. 2019, 124, 870–876. [Google Scholar] [CrossRef] [PubMed]
- Falcinelli, L.; Mendichi, M.; Chierchini, S.; Tenti, M.V.; Bellavita, R.; Saldi, S.; Ingrosso, G.; Reggioli, V.; Bini, V.; Aristei, C. Pulmonary function in stereotactic body radiotherapy with helical tomotherapy for primary and metastatic lung lesions. La Radiol. Med. 2021, 126, 163–169. [Google Scholar] [CrossRef]
- Fiorentino, A.; Gregucci, F.; Bonaparte, I.; Vitulano, N.; Surgo, A.; Mazzola, R.; Di Monaco, A.; Carbonara, R.; Alongi, F.; Langialonga, T.; et al. Stereotactic Ablative radiation therapy (SABR) for cardiac arrhythmia: A new therapeutic option? Radiol. Med. 2021, 126, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Gundem, G.; Van Loo, P.; Kremeyer, B.; Alexandrov, L.B.; Tubio, J.M.C.; Papaemmanuil, E.; Brewer, D.S.; Kallio, H.M.L.; Högnäs, G.; Annala, M.; et al. The evolutionary history of lethal metastatic prostate cancer. Nature 2015, 520, 353–357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fersino, S.; Borghesi, S.; Jereczek-Fossa, B.A.; Arcangeli, S.; Mortellaro, G.; Magrini, S.M.; Alongi, F.; Uro-Oncology Study Group of Italian Association of Radiotherapy and Clinical Oncology (AIRO). PROACTA: A survey on the actual attitude of the Italian radiation oncologists in the management and prescription of hormonal therapy in prostate cancer patients. La Radiol. Med. 2020, 126, 460–465. [Google Scholar] [CrossRef]
- Detti, B.; Ingrosso, G.; Becherini, C.; Lancia, A.; Olmetto, E.; Alì, E.; Marani, S.; Teriaca, M.A.; Francolini, G.; Sardaro, A.; et al. Management of prostate cancer radiotherapy during the COVID-19 pandemic: A necessary paradigm change. Cancer Treat. Res. Commun. 2021, 27, 100331. [Google Scholar] [CrossRef] [PubMed]
- Ierardi, A.M.; Wood, B.J.; Arrichiello, A.; Bottino, N.; Bracchi, L.; Forzenigo, L.; Andrisani, M.C.; Vespro, V.; Bonelli, C.; Amalou, A.; et al. Preparation of a radiology department in an Italian hospital dedicated to COVID-19 patients. La Radiol. Med. 2020, 125, 894–901. [Google Scholar] [CrossRef] [PubMed]
- Montesi, G.; Di Biase, S.; Chierchini, S.; Pavanato, G.; Virdis, G.E.; Contato, E.; Mandoliti, G. Radiotherapy during COVID-19 pandemic. How to create a No fly zone: A Northern Italy experience. La Radiol. Med. 2020, 125, 600–603. [Google Scholar] [CrossRef]
- Di Serafino, M.; Notaro, M.; Rea, G.; Iacobellis, F.; Delli Paoli, V.; Acampora, C.; Ianniello, S.; Brunese, L.; Romano, L.; Vallone, G. The lung ultrasound: Facts or artifacts? In the era of COVID-19 outbreak. La Radiol. Med. 2020, 125, 738–753. [Google Scholar] [CrossRef] [PubMed]
- Cellini, F.; Di Franco, R.; Manfrida, S.; Borzillo, V.; Maranzano, E.; Pergolizzi, S.; Morganti, A.G.; Fusco, V.; Deodato, F.; Santarelli, M.; et al. Palliative radiotherapy indications during the COVID-19 pandemic and in future complex logistic settings: The NORMALITY model. La Radiol. Med. 2021, 126, 1619–1656. [Google Scholar] [CrossRef] [PubMed]
- Barra, S.; Guarnieri, A.; Bastia, M.B.D.M.E.; Marcenaro, M.; Tornari, E.; Belgioia, L.; Magrini, S.M.; Ricardi, U.; Corvò, R. Short fractionation radiotherapy for early prostate cancer in the time of COVID-19: Long-term excellent outcomes from a multicenter Italian trial suggest a larger adoption in clinical practice. La Radiol. Med. 2021, 126, 142–146. [Google Scholar] [CrossRef] [PubMed]
- Francolini, G.; Desideri, I.; Stocchi, G.; Ciccone, L.P.; Salvestrini, V.; Garlatti, P.; Aquilano, M.; Greto, D.; Bonomo, P.; Meattini, I.; et al. Impact of COVID-19 on workload burden of a complex radiotherapy facility. La Radiol. Med. 2021, 126, 717–721. [Google Scholar] [CrossRef]
- Giovagnoni, A. Facing the COVID-19 emergency: We can and we do. La Radiol. Med. 2020, 125, 337–338. [Google Scholar] [CrossRef] [Green Version]
- Cusumano, D.; Placidi, L.; Teodoli, S.; Boldrini, L.; Greco, F.; Longo, S.; Cellini, F.; Dinapoli, N.; Valentini, V.; De Spirito, M.; et al. On the accuracy of bulk synthetic CT for MR-guided online adaptive radiotherapy. La Radiol. Med. 2019, 125, 157–164. [Google Scholar] [CrossRef]
- Francolini, G.; Desideri, I.; Stocchi, G.; Salvestrini, V.; Ciccone, L.P.; Garlatti, P.; Loi, M.; Livi, L. Artificial Intelligence in radiotherapy: State of the art and future directions. Med. Oncol. 2020, 37, 50. [Google Scholar] [CrossRef] [PubMed]
- Franzese, E.; De Falco, S.; Laterza, M.M.; Montella, L.; Facchini, S.; Liguori, C.; Coppola, P.; Diessa, Y.; Berretta, M.; Pisconti, S.; et al. The use of 68Ga prostate-specific membrane antigen PET-CT in prostate cancer: Diagnostic challenges and therapeutic opportunities. Futur. Sci. OA 2021, 7, FSO705. [Google Scholar] [CrossRef] [PubMed]
- Ferro, M.; de Cobelli, O.; Vartolomei, M.D.; Lucarelli, G.; Crocetto, F.; Barone, B.; Sciarra, A.; Del Giudice, F.; Muto, M.; Maggi, M.; et al. Prostate Cancer Radiogenomics—From Imaging to Molecular Characterization. Int. J. Mol. Sci. 2021, 22, 9971. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Francolini, G.; Morelli, I.; Carnevale, M.G.; Grassi, R.; Nardone, V.; Loi, M.; Valzano, M.; Salvestrini, V.; Livi, L.; Desideri, I. Integration between Novel Imaging Technologies and Modern Radiotherapy Techniques: How the Eye Drove the Chisel. Cancers 2022, 14, 5277. https://doi.org/10.3390/cancers14215277
Francolini G, Morelli I, Carnevale MG, Grassi R, Nardone V, Loi M, Valzano M, Salvestrini V, Livi L, Desideri I. Integration between Novel Imaging Technologies and Modern Radiotherapy Techniques: How the Eye Drove the Chisel. Cancers. 2022; 14(21):5277. https://doi.org/10.3390/cancers14215277
Chicago/Turabian StyleFrancolini, Giulio, Ilaria Morelli, Maria Grazia Carnevale, Roberta Grassi, Valerio Nardone, Mauro Loi, Marianna Valzano, Viola Salvestrini, Lorenzo Livi, and Isacco Desideri. 2022. "Integration between Novel Imaging Technologies and Modern Radiotherapy Techniques: How the Eye Drove the Chisel" Cancers 14, no. 21: 5277. https://doi.org/10.3390/cancers14215277
APA StyleFrancolini, G., Morelli, I., Carnevale, M. G., Grassi, R., Nardone, V., Loi, M., Valzano, M., Salvestrini, V., Livi, L., & Desideri, I. (2022). Integration between Novel Imaging Technologies and Modern Radiotherapy Techniques: How the Eye Drove the Chisel. Cancers, 14(21), 5277. https://doi.org/10.3390/cancers14215277