Tumor Necrosis Factor: What Is in a Name?
Abstract
:Simple Summary
Abstract
1. Introduction
2. A Short History of TNF
3. TNF in Cancer Treatment
4. Potential Mechanisms
4.1. Angiogenesis and Hemorrhagic Necrosis
4.2. TNF Is Linked to the Presence of M2 Macrophages in Tumors
5. Development of Anti-TNF Drugs
5.1. Infliximab
5.2. Etanercept
5.3. Adalimumab
6. Target Pathologies
7. TNF Inhibition Increases the Chance of Some Infectious Diseases
8. Is There a Role of TNF Inhibition in the Increase of Malignancies?
9. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sedgwick, J.D.; Riminton, D.S.; Cyster, J.G.; Körner, H. Tumor necrosis factor: A master-regulator of leukocyte movement. Immunol. Today 2000, 21, 110–113. [Google Scholar] [CrossRef]
- Chen, X.; Oppenheim, J.J. TNF-α: An Activator of CD4+FoxP3+TNFR2+ Regulatory T Cells. TNF Pathophysiol. 2010, 11, 119–134. [Google Scholar] [CrossRef]
- Korner, H.; McMorran, B.; Schluter, D.; Fromm, P. The role of TNF in parasitic diseases: Still more questions than answers. Int. J. Parasitol. 2010, 40, 879–888. [Google Scholar] [CrossRef] [PubMed]
- Schleicher, U.; Paduch, K.; Debus, A.; Obermeyer, S.; Konig, T.; Kling, J.C.; Ribechini, E.; Dudziak, D.; Mougiakakos, D.; Murray, P.J.; et al. TNF-Mediated Restriction of Arginase 1 Expression in Myeloid Cells Triggers Type 2 NO Synthase Activity at the Site of Infection. Cell Rep. 2016, 15, 1062–1075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torti, F.M.; Dieckmann, B.; Beutler, B.; Cerami, A.; Ringold, G.M. A macrophage factor inhibits adipocyte gene expression: An in vitro model of cachexia. Science 1985, 229, 867–869. [Google Scholar] [CrossRef]
- Baune, B.T.; Wiede, F.; Braun, A.; Golledge, J.; Arolt, V.; Korner, H. Cognitive dysfunction in mice deficient for TNF- and its receptors. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2008, 147B, 1056–1064. [Google Scholar] [CrossRef]
- Carswell, E.A.; Old, L.J.; Kassel, R.L.; Green, S.; Fiore, N.; Williamson, B. An endotoxin-induced serum factor that causes necrosis of tumors. Proc. Natl. Acad. Sci. USA 1975, 72, 3666–3670. [Google Scholar] [CrossRef] [Green Version]
- Espevik, T.; Nissen-Meyer, J. A highly sensitive cell line, WEHI 164 clone 13, for measuring cytotoxic factor/tumor necrosis factor from human monocytes. J. Immunol. Methods 1986, 95, 99–105. [Google Scholar] [CrossRef]
- Coley, W.B. Late results of the treatment of inoperable sarcoma by the mixed toxins of erysipelas and Bacillus prodigiosus. Am. J. Med. Sci. 1906, 131, 375–430. [Google Scholar]
- Coley, W.B. The Treatment of Inoperable Sarcoma by Bacterial Toxins (the Mixed Toxins of the Streptococcus erysipelas and the Bacillus prodigiosus). Proc. R. Soc. Med. 1910, 3, 1–48. [Google Scholar] [CrossRef] [Green Version]
- Old, L.J. Tumor necrosis factor (TNF). Science 1985, 230, 630–632. [Google Scholar] [CrossRef]
- Balkwill, F. Tumour necrosis factor and cancer. Nat. Cancer 2009, 9, 361–371. [Google Scholar] [CrossRef]
- Männel, D.N.; Moore, R.N.; Mergenhagen, S.E. Macrophages as a source of tumoricidal activity (tumor-necrotizing factor). Infect. Immun. 1980, 30, 523–530. [Google Scholar] [CrossRef]
- Peters, P.M.; Ortaldo, J.R.; Shalaby, M.R.; Svedersky, L.P.; Nedwin, G.E.; Bringman, T.S.; Hass, P.E.; Aggarwal, B.B.; Herberman, R.B.; Goeddel, D.V.; et al. Natural killer-sensitive targets stimulate production of TNF-alpha but not TNF-beta (lymphotoxin) by highly purified human peripheral blood large granular lymphocytes. J. Immunol. 1986, 137, 2592–2598. [Google Scholar]
- Endres, R.; Alimzhanov, M.B.; Plitz, T.; Futterer, A.; Kosco-Vilbois, M.H.; Nedospasov, S.A.; Rajewsky, K.; Pfeffer, K. Mature follicular dendritic cell networks depend on expression of lymphotoxin beta receptor by radioresistant stromal cells and of lymphotoxin beta and tumor necrosis factor by B cells. J. Exp. Med. 1999, 189, 159–168. [Google Scholar] [CrossRef] [Green Version]
- Cuturi, M.C.; Murphy, M.; Costa-Giomi, M.P.; Weinmann, R.; Perussia, B.; Trinchieri, G. Independent regulation of tumor necrosis factor and lymphotoxin production by human peripheral blood lymphocytes. J. Exp. Med. 1987, 165, 1581–1594. [Google Scholar] [CrossRef] [Green Version]
- Pasparakis, M.; Alexopoulou, L.; Episkopou, V.; Kollias, G. Immune and inflammatory responses in TNF alpha-deficient mice: A critical requirement for TNF alpha in the formation of primary B cell follicles, follicular dendritic cell networks and germinal centers, and in the maturation of the humoral immune response. J. Exp. Med. 1996, 184, 1397–1411. [Google Scholar] [CrossRef]
- Marino, M.W.; Dunn, A.; Grail, D.; Inglese, M.; Noguchi, Y.; Richards, E.; Jungbluth, A.; Wada, H.; Moore, M.; Williamson, B.; et al. Characterization of tumor necrosis factor-deficient mice. Proc. Natl. Acad. Sci. USA 1997, 94, 8093–8098. [Google Scholar] [CrossRef] [Green Version]
- Körner, H.; Cook, M.; Riminton, D.S.; Lemckert, F.A.; Hoek, R.M.; Ledermann, B.; Köntgen, F.; Groth, B.F.D.S.; Sedgwick, J.D. Distinct roles for lymphotoxin-α and tumor necrosis factor in organogenesis and spatial organization of lymphoid tissue. Eur. J. Immunol. 1997, 27, 2600–2609. [Google Scholar] [CrossRef]
- Grivennikov, S.I.; Tumanov, A.V.; Liepinsh, D.J.; Kruglov, A.A.; Marakusha, B.I.; Shakhov, A.N.; Murakami, T.; Drutskaya, L.N.; Forster, I.; Clausen, B.E.; et al. Distinct and Nonredundant In Vivo Functions of TNF Produced by T Cells and Macrophages/Neutrophils: Protective and Deleterious Effects. Immunity 2005, 22, 93–104. [Google Scholar] [CrossRef] [Green Version]
- Kollias, G. TNF pathophysiology in murine models of chronic inflammation and autoimmunity. Semin. Arthritis Rheum. 2005, 34, 3–6. [Google Scholar] [CrossRef] [PubMed]
- Udalova, I.; Monaco, C.; Nanchahal, J.; Feldmann, M. Anti-TNF Therapy. Microbiol. Spectr. 2016, 4. [Google Scholar] [CrossRef] [PubMed]
- Granger, G.A.; Williams, T.W. Lymphocyte Cytotoxicity in vitro: Activation and Release of a Cytotoxic Factor. Nature 1968, 218, 1253–1254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Helson, L.; Green, S.; Carswell, E.; Old, L.J. Effect of tumour necrosis factor on cultured human melanoma cells. Nature 1975, 258, 731–732. [Google Scholar] [CrossRef] [PubMed]
- Pennica, D.; Nedwin, G.E.; Hayflick, J.S.; Seeburg, P.H.; Derynck, R.; Palladino, M.A.; Kohr, W.J.; Aggarwal, B.B.; Goeddel, D.V. Human tumor necrosis factor: Precursor structure, expression and homology to lymphotoxin. Nature 1984, 312, 724–729. [Google Scholar] [CrossRef]
- Marmenout, A.; Fransen, L.; Tavernier, J.; Van der Heyden, J.; Tizard, R.; Kawashima, E.; Shaw, A.; Johnson, M.-J.; Semon, D.; Muller, R.; et al. Molecular cloning and expression of human tumor necrosis factor and comparison with mouse tumor necrosis factor. JBIC J. Biol. Inorg. Chem. 1985, 152, 515–522. [Google Scholar] [CrossRef]
- Fransen, L.; Müller, R.; Marmenout, A.; Tavernier, J.; Van Der Heyden, J.; Kawashima, E.; Chollet, A.; Tizard, R.; Van Heuverswyn, H.; Van Vliet, A.; et al. Molecular cloning of mouse tumour necrosis factor cDNA and its eukaryotic expression. Nucleic Acids Res. 1985, 13, 4417–4429. [Google Scholar] [CrossRef] [Green Version]
- Nedwin, G.E.; Naylor, S.L.; Sakaguchi, A.Y.; Smith, D.; Jarrett-Nedwin, J.; Pennica, D.; Goeddel, D.V.; Gray, P.W. Human Lymphotoxin and tumor necrosis factor genes: Structure, homology and chromosomal localization. Nucleic Acids Res. 1985, 13, 6361–6373. [Google Scholar] [CrossRef] [Green Version]
- Li, C.B.; Gray, P.W.; Lin, P.F.; McGrath, K.M.; Ruddle, F.H.; Ruddle, N.H. Cloning and expression of murine lymphotoxin cDNA. J. Immunol. 1987, 138, 4496–4501. [Google Scholar]
- Müller, U.; Jongeneel, C.V.; Nedospasov, S.A.; Lindahl, K.F.; Steinmetz, M. Tumour necrosis factor and lymphotoxin genes map close to H–2D in the mouse major histocompatibility complex. Nature 1987, 325, 265–267. [Google Scholar] [CrossRef]
- Engelmann, H.; Aderka, D.; Rubinstein, M.; Rotman, D.; Wallach, D. A tumor necrosis factor-binding protein purified to homogeneity from human urine protects cells from tumor necrosis factor toxicity. J. Biol. Chem. 1989, 264, 11974–11980. [Google Scholar] [CrossRef]
- Loetscher, H.; Pan, Y.-C.E.; Lahm, H.-W.; Gentz, R.; Brockhaus, M.; Tabuchi, H.; Lesslauer, W. Molecular cloning and expression of the human 55 kd tumor necrosis factor receptor. Cell 1990, 61, 351–359. [Google Scholar] [CrossRef]
- Gray, P.W.; Barrett, K.; Chantry, D.; Turner, M.; Feldmann, M. Cloning of human tumor necrosis factor (TNF) receptor cDNA and expression of recombinant soluble TNF-binding protein. Proc. Natl. Acad. Sci. USA 1990, 87, 7380–7384. [Google Scholar] [CrossRef] [PubMed]
- Brockhaus, M.; Schoenfeld, H.J.; Schlaeger, E.J.; Hunziker, W.; Lesslauer, W.; Loetscher, H. Identification of two types of tumor necrosis factor receptors on human cell lines by monoclonal antibodies. Proc. Natl. Acad. Sci. USA 1990, 87, 3127–3131. [Google Scholar] [CrossRef] [Green Version]
- Lewis, M.; Tartaglia, L.A.; Lee, A.; Bennett, G.L.; Rice, G.C.; Wong, G.H.; Chen, E.Y.; Goeddel, D.V. Cloning and expression of cDNAs for two distinct murine tumor necrosis factor receptors demonstrate one receptor is species specific. Proc. Natl. Acad. Sci. USA 1991, 88, 2830–2834. [Google Scholar] [CrossRef] [Green Version]
- Tartaglia, L.A.; Goeddel, D.V. Two TNF receptors. Immunol. Today 1992, 13, 151–153. [Google Scholar] [CrossRef]
- Ashkenazi, A.; Marsters, S.A.; Capon, D.J.; Chamow, S.M.; Figari, I.S.; Pennica, D.; Goeddel, D.V.; Palladino, M.A.; Smith, D.H. Protection against endotoxic shock by a tumor necrosis factor receptor immunoadhesin. Proc. Natl. Acad. Sci. USA 1991, 88, 10535–10539. [Google Scholar] [CrossRef] [Green Version]
- Pfeffer, K.; Matsuyama, T.; Kündig, T.M.; Wakeham, A.; Kishihara, K.; Shahinian, A.; Wiegmann, K.; Ohashi, P.S.; Krnke, M.; Mak, T.W. Mice deficient for the 55 kd tumor necrosis factor receptor are resistant to endotoxic shock, yet succumb to L. monocytogenes infection. Cell 1993, 73, 457–467. [Google Scholar] [CrossRef]
- Rothe, J.; Lesslauer, W.; Lötscher, H.; Lang, Y.; Koebel, P.; Köntgen, F.; Althage, A.; Zinkernagel, R.; Steinmetz, M.; Bluethmann, H. Mice lacking the tumour necrosis factor receptor 1 are resistant to IMF-mediated toxicity but highly susceptible to infection by Listeria monocytogenes. Nature 1993, 364, 798–802. [Google Scholar] [CrossRef]
- Tartaglia, L.A.; Goeddel, D.V.; Reynolds, C.; Figari, I.S.; Weber, R.F.; Fendly, B.M.; Palladino, M.A. Stimulation of human T-cell proliferation by specific activation of the 75-kDa tumor necrosis factor receptor. J. Immunol. 1993, 151, 4637–4641. [Google Scholar]
- Tartaglia, L.A.; Weber, R.F.; Figari, I.S.; Reynolds, C.; Palladino, M.A., Jr.; Goeddel, D.V. The two different receptors for tumor necrosis factor mediate distinct cellular responses. Proc. Natl. Acad. Sci. USA 1991, 88, 9292–9296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Declercq, W.; Denecker, G.; Fiers, W.; Vandenabeele, P. Cooperation of both TNF receptors in inducing apoptosis: Involvement of the TNF receptor-associated factor binding domain of the TNF receptor 75. J. Immunol. 1998, 161, 390–399. [Google Scholar] [PubMed]
- Browning, J.L.; Ngam-ek, A.; Lawton, P.; DeMarinis, J.; Tizard, R.; Pingchang Chow, E.; Hession, C.; O’Brine-Greco, B.; Foley, S.F.; Ware, C.F. Lymphotoxin [beta], a novel member of the TNF family that forms a heteromeric complex with lymphotoxin on the cell surface. Cell 1993, 72, 847–856. [Google Scholar] [CrossRef]
- Pokholok, D.K.; Maroulakou, I.G.; Kuprash, D.V.; Alimzhanov, M.B.; Kozlov, S.V.; Novobrantseva, T.I.; Turetskaya, R.L.; Green, J.E.; Nedospasov, S.A. Cloning and expression analysis of the murine lymphotoxin b gene. Proc. Natl. Acad. Sci. USA 1995, 92, 674–678. [Google Scholar] [CrossRef]
- Crowe, P.D.; VanArsdale, T.L.; Walter, B.N.; Ware, C.F.; Hession, C.; Ehrenfels, B.; Browning, J.L.; Din, W.S.; Goodwin, R.G.; Smith, C.A. A lymphotoxin-beta-specific receptor. Science 1994, 264, 707–710. [Google Scholar] [CrossRef]
- Erickson, S.L.; de Sauvage, F.J.; Kikly, K.; Carver-Moore, K.; Pitts-Meek, S.; Gillett, N.; Sheehan, K.C.F.; Schreiber, R.D.; Goeddel, D.V.; Moore, M.W. Decreased sensitivity to tumour-necrosis factor but normal T-cell development in TNF receptor-2-deficient mice. Nature 1994, 372, 560–563. [Google Scholar] [CrossRef]
- Peschon, J.J.; Torrance, D.S.; Stocking, K.L.; Glaccum, M.B.; Otten, C.; Willis, C.R.; Charrier, K.; Morrissey, P.J.; Ware, C.B.; Mohler, K.M. TNF receptor-deficient mice reveal divergent roles for p55 and p75 in several models of inflammation. J. Immunol. 1998, 160, 943–952. [Google Scholar]
- Riminton, S.; Körner, H.; Strickland, D.; Lemckert, F.A.; Pollard, J.D.; Sedgwick, J.D. Challenging Cytokine Redundancy: Inflammatory Cell Movement and Clinical Course of Experimental Autoimmune Encephalomyelitis Are Normal in Lymphotoxin-deficient, but Not Tumor Necrosis Factor–deficient, Mice. J. Exp. Med. 1998, 187, 1517–1528. [Google Scholar] [CrossRef]
- Wilhelm, P.; Riminton, S.; Ritter, U.; Lemckert, F.A.; Scheidig, C.; Hoek, R.; Sedgwick, J.D.; Körner, H. Membrane lymphotoxin contributes to anti-leishmanial immunity by controlling structural integrity of lymphoid organs. Eur. J. Immunol. 2002, 32, 1993–2003. [Google Scholar] [CrossRef]
- Sedger, L.M.; McDermott, M.F. TNF and TNF-receptors: From mediators of cell death and inflammation to therapeutic giants—Past, present and future. Cytokine Growth Factor Rev. 2014, 25, 453–472. [Google Scholar] [CrossRef] [Green Version]
- Aggarwal, B.B. Signalling pathways of the TNF superfamily: A double-edged sword. Nat. Rev. Immunol. 2003, 3, 745–756. [Google Scholar] [CrossRef] [PubMed]
- Tartaglia, L.A.; Ayres, T.; Wong, G.H.; Goeddel, D.V. A novel domain within the 55 kd TNF receptor signals cell death. Cell 1993, 74, 845–853. [Google Scholar] [CrossRef]
- Ruff, M.R.; Gifford, G.E. Rabbit tumor necrosis factor: Mechanism of action. Infect. Immun. 1981, 31, 380–385. [Google Scholar] [CrossRef] [Green Version]
- Colotta, F.; Peri, G.; Villa, A.; Mantovani, A. Rapid killing of actinomycin D-treated tumor cells by human mononuclear cells. I. Effectors belong to the monocyte-macrophage lineage. J. Immunol. 1984, 132, 936–944. [Google Scholar]
- Kirstein, M.; Baglioni, C. Tumor necrosis factor induces synthesis of two proteins in human fibroblasts. J. Biol. Chem. 1986, 261, 9565–9567. [Google Scholar] [CrossRef]
- Flick, D.A.; Gifford, G.E. Comparison of in vitro cell cytotoxic assays for tumor necrosis factor. J. Immunol. Methods 1984, 68, 167–175. [Google Scholar] [CrossRef]
- Beutler, B.; Cerami, A. The Biology of Cachectin/TNF—A Primary Mediator of the Host Response. Annu. Rev. Immunol. 1989, 7, 625–655. [Google Scholar] [CrossRef]
- Lesslauer, W.; Tabuchi, H.; Gentz, R.; Brockhaus, M.; Schlaeger, E.J.; Grau, G.; Piguet, P.F.; Pointaire, P.; Vassalli, P.; Loetscher, H. Recombinant soluble tumor necrosis factor receptor proteins protect mice from lipopolysaccharide-induced lethality. Eur. J. Immunol. 1991, 21, 2883–2886. [Google Scholar] [CrossRef]
- Starnes, C.O. Coley’s toxins in perspective. Nature 1992, 357, 11–12. [Google Scholar] [CrossRef]
- Creaven, P.; Plager, J.; Dupere, S.; Huben, R.; Takita, H.; Mittelman, A.; Proefrock, A. Phase I clinical trial of recombinant human tumor necrosis factor. Cancer Chemother. Pharmacol. 1987, 20, 137–144. [Google Scholar] [CrossRef]
- Feinberg, B.; Kurzrock, R.; Talpaz, M.; Blick, M.; Saks, S.; Gutterman, J.U. A phase I trial of intravenously-administered recombinant tumor necrosis factor-alpha in cancer patients. J. Clin. Oncol. 1988, 6, 1328–1334. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, J.E.; Scuderi, P.; Wiggins, C.; Rudolph, A.; Hersh, E.M. A phase I trial of recombinant tumor necrosis factor (rTNF) administered by continuous intravenous infusion in patients with disseminated malignancy. Biotherapy 1989, 1, 207–214. [Google Scholar] [CrossRef]
- Zamkoff, K.W.; Newman, N.B.; Rudolph, A.R.; Young, J.; Poiesz, B.J. A phase I trial of subcutaneously administered recombination tumor necrosis factor to patients with advanced malignancy. J. Biol. Response Modif. 1989, 8, 539–552. [Google Scholar]
- Roberts, N.J.; Zhou, S.; Diaz, L.A.; Holdhoff, M. Systemic use of tumor necrosis factor alpha as an anticancer agent. Oncotarget 2011, 2, 739–751. [Google Scholar] [CrossRef] [Green Version]
- Kurzrock, R.; Feinberg, B.; Talpaz, M.; Saks, S.; Gutterman, J.U. Phase I study of a combination of recombinant tumor necrosis factor-alpha and recombinant interferon-gamma in cancer patients. J. Interferon Res. 1989, 9, 435–444. [Google Scholar] [CrossRef]
- Paolozzi, F.; Zamkoff, K.; Doyle, M.; Konrad, M.; Bradley, E.C.; Rudolph, A.; Newman, N.; Gullo, J.; Scalzo, A.; Poiesz, B. Phase I trial of recombinant interleukin-2 and recombinant beta-interferon in refractory neoplastic diseases. J. Biol. Response Modif. 1989, 8, 122–139. [Google Scholar]
- Negrier, M.S.; Pourreau, C.N.; Palmer, P.A.; Ranchere, J.Y.; Mercatello, A.; Viens, P.; Blaise, D.; Jasmin, C.; Misset, J.L.; Franks, C.R.; et al. Phase I Trial of Recombinant Interleukin-2 Followed by Recombinant Tumor Necrosis Factor in Patients with Metastatic Cancer. J. Immunother. 1992, 11, 93–102. [Google Scholar] [CrossRef]
- Laha, D.; Grant, R.; Mishra, P.; Nilubol, N. The Role of Tumor Necrosis Factor in Manipulating the Immunological Response of Tumor Microenvironment. Front. Immunol. 2021, 12, 656908. [Google Scholar] [CrossRef]
- Harris, J.M.; Chess, R.B. Effect of pegylation on pharmaceuticals. Nat. Rev. Drug Discov. 2003, 2, 214–221. [Google Scholar] [CrossRef]
- Thamm, D.H.; Kurzman, I.D.; Clark, M.A.; Ehrhart, E.J., 3rd; Kraft, S.L.; Gustafson, D.L.; Vail, D.M. Preclinical investigation of PEGylated tumor necrosis factor alpha in dogs with spontaneous tumors: Phase I evaluation. Clin. Cancer Res. 2010, 16, 1498–1508. [Google Scholar] [CrossRef] [Green Version]
- Lienard, D.; Ewalenko, P.; Delmotte, J.J.; Renard, N.; Lejeune, F.J. High-dose recombinant tumor necrosis factor alpha in combination with interferon gamma and melphalan in isolation perfusion of the limbs for melanoma and sarcoma. J. Clin. Oncol. 1992, 10, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Van Der Veen, A.H.; ten Hagen, T.L.; de Wilt, J.H.; van Ijken, M.G.; Eggermont, A.M. An overview on the use of TNF-alpha: Our experience with regional administration and developments towards new opportunities for systemic application. Anticancer Res. 2000, 20, 3467–3474. [Google Scholar] [PubMed]
- Grünhagen, D.J.; Brunstein, F.; Hagen, T.L.T.; Van Geel, A.N.; De Wilt, J.H.; Eggermont, A.M. TNF-based isolated limb perfusion: A decade of experience with antivascular therapy in the management of locally advanced extremity soft tissue sarcomas. Target. Treat. Soft Tissue Sarcomas 2004, 120, 65–79. [Google Scholar] [CrossRef]
- Grünhagen, D.J.; De Wilt, J.H.; Hagen, T.L.T.; Eggermont, A.M. Technology Insight: Utility of TNF-α-based isolated limb perfusion to avoid amputation of irresectable tumors of the extremities. Nat. Clin. Pr. Oncol. 2006, 3, 94–103. [Google Scholar] [CrossRef] [PubMed]
- Verhoef, C.; de Wilt, J.H.W.; Grünhagen, D.J.; van Geel, A.N.; Hagen, T.L.M.T.; Eggermont, A.M.M. Isolated Limb Perfusion with Melphalan and TNF-α in the Treatment of Extremity Sarcoma. Curr. Treat. Options Oncol. 2007, 8, 417–427. [Google Scholar] [CrossRef] [Green Version]
- Grünhagen, D.J.; de Wilt, J.H.; Van Geel, A.N.; Verhoef, C.; Eggermont, A.M. Isolated Limb Perfusion with TNF-α and Melphalan in Locally Advanced Soft Tissue Sarcomas of the Extremities. Treat. Bone Soft Tissue Sarcomas 2009, 179, 257–270. [Google Scholar] [CrossRef]
- Moreno-Ramirez, D.; Cruz-Merino, L.; Ferrandiz, L.; Villegas-Portero, R.; Nieto-Garcia, A. Isolated Limb Perfusion for Malignant Melanoma: Systematic Review on Effectiveness and Safety. Oncologist 2010, 15, 416–427. [Google Scholar] [CrossRef] [Green Version]
- De Wilt, J.H.; ten Hagen, T.L.; de Boeck, G.; van Tiel, S.T.; de Bruijn, E.A.; Eggermont, A.M. Tumour necrosis factor alpha increases melphalan concentration in tumour tissue after isolated limb perfusion. Br. J. Cancer 2000, 82, 1000–1003. [Google Scholar] [CrossRef]
- Lejeune, F.J.; Liénard, D.; Matter, M.; Rüegg, C. Efficiency of recombinant human TNF in human cancer therapy. Cancer Immun. 2006, 6, 6. [Google Scholar]
- Creagh, E.M.; O’Neill, L.A. TLRs, NLRs and RLRs: A trinity of pathogen sensors that co-operate in innate immunity. Trends Immunol. 2006, 27, 352–357. [Google Scholar] [CrossRef]
- Pober, J.S. TNF as an activator of vascular endothelium. Ann. Inst. Pasteur Immunol. 1988, 139, 317–323. [Google Scholar] [CrossRef]
- Senger, D.R.; Van de Water, L.; Brown, L.F.; Nagy, J.A.; Yeo, K.T.; Yeo, T.K.; Berse, B.; Jackman, R.W.; Dvorak, A.M.; Dvorak, H.F. Vascular permeability factor (VPF, VEGF) in tumor biology. Cancer Metastasis Rev. 1993, 12, 303–324. [Google Scholar] [CrossRef]
- Brown, L.F.; Detmar, M.; Claffey, K.; Nagy, J.A.; Feng, D.; Dvorak, A.M.; Dvorak, H.F. Vascular permeability factor/vascular endothelial growth factor:A multifunctional angiogenic cytokine. Regul. Angiogenesis 1997, 79, 233–269. [Google Scholar] [CrossRef]
- Watanabe, N.; Niitsu, Y.; Umeno, H.; Kuriyama, H.; Neda, H.; Yamauchi, N.; Maeda, M.; Urushizaki, I. Toxic effect of tumor necrosis factor on tumor vasculature in mice. Cancer Res. 1988, 48, 2179–2183. [Google Scholar]
- Havell, E.A.; Fiers, W.; North, R.J. The antitumor function of tumor necrosis factor (TNF), I. Therapeutic action of TNF against an established murine sarcoma is indirect, immunologically dependent, and limited by severe toxicity. J. Exp. Med. 1988, 167, 1067–1085. [Google Scholar] [CrossRef] [Green Version]
- Leibovich, S.J.; Polverini, P.J.; Shepard, H.M.; Wiseman, D.; Shively, V.P.; Nuseir, N. Macrophage-induced angiogenesis is mediated by tumour necrosis factor-α. Nature 1987, 329, 630–632. [Google Scholar] [CrossRef]
- Naylor, M.S.; Malik, S.T.; Stamp, G.W.; Jobling, T.; Balkwill, F. In situ detection of tumour necrosis factor in human ovarian cancer specimens. Eur. J. Cancer Clin. Oncol. 1990, 26, 1027–1030. [Google Scholar] [CrossRef]
- Naylor, M.S.; Stamp, G.W.; Balkwill, F. Investigation of cytokine gene expression in human colorectal cancer. Cancer Res. 1990, 50, 4436–4440. [Google Scholar]
- Balkwill, F.; Mantovani, A. Inflammation and cancer: Back to Virchow? Lancet. 2001, 357, 539–545. [Google Scholar] [CrossRef]
- DeNardo, D.G.; Barreto, J.B.; Andreu, P.; Vasquez, L.; Tawfik, D.; Kolhatkar, N.; Coussens, L.M. CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell 2009, 16, 91–102. [Google Scholar] [CrossRef] [Green Version]
- Grivennikov, S.I.; Greten, F.R.; Karin, M. Immunity, inflammation, and cancer. Cell 2010, 140, 883–899. [Google Scholar] [CrossRef] [PubMed]
- Mantovani, A.; Allavena, P.; Sica, A.; Balkwill, F. Cancer-related inflammation. Nature 2008, 454, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Gordon, S.; Martinez, F.O. Alternative Activation of Macrophages: Mechanism and Functions. Immunity 2010, 32, 593–604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kratochvill, F.; Neale, G.; Haverkamp, J.M.; Van de Velde, L.-A.; Smith, A.M.; Kawauchi, D.; McEvoy, J.; Roussel, M.F.; Dyer, M.A.; Qualls, J.E.; et al. TNF Counterbalances the Emergence of M2 Tumor Macrophages. Cell Rep. 2015, 12, 1902–1914. [Google Scholar] [CrossRef] [Green Version]
- Beutler, B.; Milsark, I.W.; Cerami, A.C. Passive Immunization Against Cachectin/Tumor Necrosis Factor Protects Mice from Lethal Effect of Endotoxin. Science 1985, 229, 869–871. [Google Scholar] [CrossRef]
- Sheehan, K.C.; Ruddle, N.H.; Schreiber, R.D. Generation and characterization of hamster monoclonal antibodies that neutralize murine tumor necrosis factors. J. Immunol. 1989, 142, 3884–3893. [Google Scholar]
- Ruddle, N.H.; Bergman, C.M.; McGrath, K.M.; Lingenheld, E.G.; Grunnet, M.L.; Padula, S.J.; Clark, R.B. An antibody to lymphotoxin and tumor necrosis factor prevents transfer of experimental allergic encephalomyelitis. J. Exp. Med. 1990, 172, 1193–1200. [Google Scholar] [CrossRef] [PubMed]
- Körner, H.; Goodsall, A.L.; Lemckert, F.A.; Scallon, B.J.; Ghrayeb, J.; Ford, A.L.; Sedgwick, J.D. Unimpaired autoreactive T-cell traffic within the central nervous system during tumor necrosis factor receptor-mediated inhibition of experimental autoimmune encephalomyelitis. Proc. Natl. Acad. Sci. USA 1995, 92, 11066–11070. [Google Scholar] [CrossRef] [Green Version]
- Liew, F.Y.; Parkinson, C.; Millott, S.; Severn, A.; Carrier, M. Tumour necrosis factor (TNF alpha) in leishmaniasis. I. TNF alpha mediates host protection against cutaneous leishmaniasis. Immunology 1990, 69, 570–573. [Google Scholar]
- Flynn, J.L.; Goldstein, M.M.; Chan, J.; Triebold, K.J.; Pfeffer, K.; Lowenstein, C.J.; Schrelber, R.; Mak, T.W.; Bloom, B.R. Tumor necrosis factor-α is required in the protective immune response against mycobacterium tuberculosis in mice. Immunity 1995, 2, 561–572. [Google Scholar] [CrossRef] [Green Version]
- Knight, D.M.; Trinh, H.A.N.; Le, J.; Siegel, S.; Shealy, D.; McDonough, M.; Scallon, B.; Moore, M.A.; Vilcek, J.A.N.; Daddona, P.; et al. Construction and initial characterization of a mouse-human chimeric anti-TNF antibody. Mol. Immunol. 1993, 30, 1443–1453. [Google Scholar] [CrossRef]
- Siegel, S.A.; Shealy, D.J.; Nakada, M.T.; Le, J.; Woulfe, D.S.; Probert, L.; Kollias, G.; Ghrayeb, J.; Vilcek, J.; Daddona, P.E. The Mouse/Human Chimeric Monoclonal Antibody cA2 Neutralizes TNF In Vitro and Protects Transgenic Mice from Cachexia and TNF Lethality In Vivo. Cytokine 1995, 7, 15–25. [Google Scholar] [CrossRef]
- Frenzel, A.; Schirrmann, T.; Hust, M. Phage display-derived human antibodies in clinical development and therapy. mAbs 2016, 8, 1177–1194. [Google Scholar] [CrossRef] [PubMed]
- Scallon, B.J.; Moore, M.A.; Trinh, H.; Knight, D.M.; Ghrayeb, J. Chimeric anti-TNFa monoclonal antibody cA2 binds soluble recombinant transmembrane TNFa and activates immune effector functions. Cytokine. 1995, 7, 251–259. [Google Scholar] [CrossRef]
- Elliott, M.J.; Maini, R.N.; Feldmann, M.; Kalden, J.R.; Antoni, C.; Smolen, J.S.; Leeb, B.; Breedveld, F.C.; Macfarlane, J.D.; Bijl, H.; et al. Randomised double-blind comparison of chimeric monoclonal antibody to tumour necrosis factor alpha (cA2) versus placebo in rheumatoid arthritis. Lancet 1994, 344, 1105–1110. [Google Scholar] [CrossRef]
- Elliott, M.; Maini, R.; Feldmann, M.; Long-Fox, A.; Charles, P.; Bijl, J.; Woody, J. Repeated therapy with monoclonal antibody to tumour necrosis factor α (cA2) in patients with rheumatoid arthritis. Lancet 1994, 344, 1125–1127. [Google Scholar] [CrossRef]
- Hess, A.; Axmann, R.; Rech, J.; Finzel, S.; Heindl, C.; Kreitz, S.; Sergeeva, M.; Saake, M.; Garcia, M.; Kollias, G.; et al. Blockade of TNF-alpha rapidly inhibits pain responses in the central nervous system. Proc. Natl. Acad. Sci. USA 2011, 108, 3731–3736. [Google Scholar] [CrossRef] [Green Version]
- Peppel, K.; Poltorak, A.; Melhado, I.; Jirik, F.; Beutler, B. Expression of a TNF inhibitor in transgenic mice. J. Immunol. 1993, 151, 5699–5703. [Google Scholar]
- Markey, K.A.; Burman, A.C.; Banovic, T.; Kuns, R.D.; Raffelt, N.C.; Rowe, V.; Olver, S.D.; Don, A.L.; Morris, E.S.; Pettit, A.R.; et al. Soluble lymphotoxin is an important effector molecule in GVHD and GVL. Blood 2010, 115, 122–132. [Google Scholar] [CrossRef] [Green Version]
- Weinblatt, M.E.; Kremer, J.M.; Bankhurst, A.D.; Bulpitt, K.J.; Fleischmann, R.M.; Fox, R.I.; Jackson, C.G.; Lange, M.; Burge, D.J. A trial of etanercept, a recombinant tumor necrosis factor receptor:Fc fusion protein, in patients with rheumatoid arthritis receiving methotrexate. N. Engl. J. Med. 1999, 340, 253–259. [Google Scholar] [CrossRef]
- Rau, R. Adalimumab (a fully human anti-tumour necrosis factor monoclonal antibody) in the treatment of active rheumatoid arthritis: The initial results of five trials. Ann. Rheum. Dis. 2002, 61, 70ii–73ii. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weinblatt, M.E.; Keystone, E.C.; Furst, D.E.; Moreland, L.W.; Weisman, M.H.; Birbara, C.A.; Teoh, L.A.; Fischkoff, S.A.; Chartash, E.K. Adalimumab, a fully human anti-tumor necrosis factor alpha monoclonal antibody, for the treatment of rheumatoid arthritis in patients taking concomitant methotrexate: The ARMADA trial. Arthritis Rheum. 2003, 48, 35–45. [Google Scholar] [CrossRef]
- Kaymakcalan, Z.; Sakorafas, P.; Bose, S.; Scesney, S.; Xiong, L.; Hanzatian, D.K.; Salfeld, J.; Sasso, E.H. Comparisons of affinities, avidities, and complement activation of adalimumab, infliximab, and etanercept in binding to soluble and membrane tumor necrosis factor. Clin. Immunol. 2009, 131, 308–316. [Google Scholar] [CrossRef]
- Bean, A.G.; Roach, D.R.; Briscoe, H.; France, M.P.; Korner, H.; Sedgwick, J.D.; Britton, W.J. Structural deficiencies in granuloma formation in TNF gene-targeted mice underlie the heightened susceptibility to aerosol Mycobacterium tuberculosis infection, which is not compensated for by lymphotoxin. J. Immunol. 1999, 162, 3504–3511. [Google Scholar]
- Cush, J.J. Safety overview of new disease-modifying antirheumatic drugs. Rheum. Dis. Clin. N. Am. 2004, 30, 237–255. [Google Scholar] [CrossRef]
- Wallis, R.S.; Broder, M.S.; Wong, J.Y.; Hanson, M.E.; Beenhouwer, D.O. Granulomatous infectious diseases associated with tumor necrosis factor antagonists. Clin. Infect. Dis. 2004, 38, 1261–1265. [Google Scholar] [CrossRef] [Green Version]
- Haak-Frendscho, M.; Marsters, S.A.; Mordenti, J.; Brady, S.; Gillett, N.A.; Chen, S.A.; Ashkenazi, A. Inhibition of TNF by a TNF receptor immunoadhesin. Comparison to an anti-TNF monoclonal antibody. J. Immunol. 1994, 152, 1347–1353. [Google Scholar]
- Plessner, H.L.; Lin, P.L.; Kohno, T.; Louie, J.S.; Kirschner, D.; Chan, J.; Flynn, J.L. Neutralization of Tumor Necrosis Factor (TNF) by Antibody but not TNF Receptor Fusion Molecule Exacerbates Chronic Murine Tuberculosis. J. Infect. Dis. 2007, 195, 1643–1650. [Google Scholar] [CrossRef] [Green Version]
- Fallahi-Sichani, M.; Flynn, J.L.; Linderman, J.J.; Kirschner, D.E. Differential Risk of Tuberculosis Reactivation among Anti-TNF Therapies Is Due to Drug Binding Kinetics and Permeability. J. Immunol. 2012, 188, 3169–3178. [Google Scholar] [CrossRef] [Green Version]
- Ehlers, S.; Holscher, C.; Scheu, S.; Tertilt, C.; Hehlgans, T.; Suwinski, J.; Endres, R.; Pfeffer, K. The lymphotoxin beta receptor is critically involved in controlling infections with the intracellular pathogens Mycobacterium tuberculosis and Listeria monocytogenes. J. Immunol. 2003, 170, 5210–5218. [Google Scholar] [CrossRef] [Green Version]
- Drutskaya, M.S.; Efimov, G.A.; Kruglov, A.A.; Kuprash, D.V.; Nedospasov, S.A. Tumor necrosis factor, lymphotoxin and cancer. IUBMB Life 2010, 62, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Brown, S.L.; Greene, M.H.; Gershon, S.K.; Edwards, E.T.; Braun, M.M. Tumor necrosis factor antagonist therapy and lymphoma development: Twenty-six cases reported to the Food and Drug Administration. Arthritis Rheum. 2002, 46, 3151–3158. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, F.; Michaud, K. Lymphoma in rheumatoid arthritis: The effect of methotrexate and anti-tumor necrosis factor therapy in 18,572 patients. Arthritis Rheum. 2004, 50, 1740–1751. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, F.; Michaud, K. The effect of methotrexate and anti-tumor necrosis factor therapy on the risk of lymphoma in rheumatoid arthritis in 19,562 patients during 89,710 person-years of observation. Arthritis Rheum. 2007, 56, 1433–1439. [Google Scholar] [CrossRef] [PubMed]
- Askling, J.; Fored, C.M.; Brandt, L.; Baecklund, E.; Bertilsson, L.; Feltelius, N.; Cöster, L.; Geborek, P.; Jacobsson, L.T.; Lindblad, S.; et al. Risks of solid cancers in patients with rheumatoid arthritis and after treatment with tumour necrosis factor antagonists. Ann. Rheum. Dis. 2005, 64, 1421–1426. [Google Scholar] [CrossRef] [Green Version]
- Askling, J.; Fored, C.M.; Baecklund, E.; Brandt, L.; Backlin, C.; Ekbom, A.; Sundström, C.; Bertilsson, L.; Cöster, L.; Geborek, P.; et al. Haematopoietic malignancies in rheumatoid arthritis: Lymphoma risk and characteristics after exposure to tumour necrosis factor antagonists. Ann. Rheum. Dis. 2005, 64, 1414–1420. [Google Scholar] [CrossRef]
- Raaschou, P.; Soderling, J.; Turesson, C.; Askling, J.; Group, A.S. Tumor Necrosis Factor Inhibitors and Cancer Recurrence in Swedish Patients With Rheumatoid Arthritis: A Nationwide Population-Based Cohort Study. Ann. Intern Med. 2018, 169, 291–299. [Google Scholar] [CrossRef]
- Silva-Fernández, L.; Lunt, M.; Kearsley-Fleet, L.; Watson, K.D.; Dixon, W.G.; Symmons, D.P.M.; Hyrich, K.L.; on behalf of the British Society for Rheumatology Biologics Register (BSRBR) Control Centre Consortium. The incidence of cancer in patients with rheumatoid arthritis and a prior malignancy who receive TNF inhibitors or rituximab: Results from the British Society for Rheumatology Biologics Register-Rheumatoid Arthritis. Rheumatology 2016, 55, 2033–2039. [Google Scholar] [CrossRef] [Green Version]
- D’Arcy, M.E.; Beachler, D.C.; Pfeiffer, R.M.; Curtis, J.R.; Mariette, X.; Seror, R.; Mahale, P.; Rivera, D.R.; Yanik, E.L.; Engels, E.A. Tumor Necrosis Factor Inhibitors and the Risk of Cancer among Older Americans with Rheumatoid Arthritis. Cancer Epidemiol. Biomarkers Prev. 2021, 30, 2059–2067. [Google Scholar] [CrossRef]
- Bongartz, T.; Sutton, A.J.; Sweeting, M.J.; Buchan, I.; Matteson, E.L.; Montori, V. Anti-TNF antibody therapy in rheumatoid arthritis and the risk of serious infections and malignancies: Systematic review and meta-analysis of rare harmful effects in randomized controlled trials. JAMA 2006, 295, 2275–2285. [Google Scholar] [CrossRef]
- Chen, Y.; Friedman, M.; Liu, G.; Deodhar, A.; Chu, C.Q. Do tumor necrosis factor inhibitors increase cancer risk in patients with chronic immune-mediated inflammatory disorders? Cytokine 2018, 101, 78–88. [Google Scholar] [CrossRef]
- Thomas, E.; Brewster, D.H.; Black, R.J.; Macfarlane, G.J. Risk of malignancy among patients with rheumatic conditions. Int. J. Cancer 2000, 88, 497–502. [Google Scholar] [CrossRef]
- Pouplard, C.; Brenaut, E.; Horreau, C.; Barnetche, T.; Misery, L.; Richard, M.-A.; Aractingi, S.; Aubin, F.; Cribier, B.; Joly, P.; et al. Risk of cancer in psoriasis: A systematic review and meta-analysis of epidemiological studies. J. Eur. Acad. Dermatol. Venereol. 2013, 27, 36–46. [Google Scholar] [CrossRef]
- Baecklund, E.; Smedby, K.E.; Sutton, L.A.; Askling, J.; Rosenquist, R. Lymphoma development in patients with autoimmune and inflammatory disorders—What are the driving forces? Semin. Cancer Biol. 2014, 24, 61–70. [Google Scholar] [CrossRef]
- Simon, T.A.; Thompson, A.; Gandhi, K.K.; Hochberg, M.C.; Suissa, S. Incidence of malignancy in adult patients with rheumatoid arthritis: A meta-analysis. Arthritis Res. Ther. 2015, 17, 212. [Google Scholar] [CrossRef] [Green Version]
- Madhusudan, S.; Foster, M.; Muthuramalingam, S.R.; Braybrooke, J.P.; Wilner, S.; Kaur, K.; Han, C.; Hoare, S.; Balkwill, F.; Talbot, D.C.; et al. A phase II study of etanercept (Enbrel), a tumor necrosis factor alpha inhibitor in patients with metastatic breast cancer. Clin. Cancer Res. 2004, 10, 6528–6534. [Google Scholar] [CrossRef]
- Madhusudan, S.; Muthuramalingam, S.R.; Braybrooke, J.P.; Wilner, S.; Kaur, K.; Han, C.; Hoare, S.; Balkwill, F.; Ganesan, T.S. Study of etanercept, a tumor necrosis factor-alpha inhibitor, in recurrent ovarian cancer. J. Clin. Oncol. 2005, 23, 5950–5959. [Google Scholar] [CrossRef]
- Beardsley, T. Drug agency jumps TNF gun. Nature 1985, 315, 175. [Google Scholar] [CrossRef] [Green Version]
- Klausner, A. TNF Trials Show Little Efficacy. Bio/Technology 1986, 4, 1044. [Google Scholar] [CrossRef]
- Al-Hatamleh, M.A.I.; Ahmad, S.; Boer, J.; Lim, J.; Chen, X.; Plebanski, M.; Mohamud, R. A Perspective Review on the Role of Nanomedicine in the Modulation of TNF-TNFR2 Axis in Breast Cancer Immunotherapy. J. Oncol. 2019, 2019, 6313242. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.; Li, J.; Gu, P.; Fan, X. The application of nanoparticles in cancer immunotherapy: Targeting tumor microenvironment. Bioact. Mater. 2020, 6, 1973–1987. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Yang, C.; Körner, H.; Ge, C. Tumor Necrosis Factor: What Is in a Name? Cancers 2022, 14, 5270. https://doi.org/10.3390/cancers14215270
Wang X, Yang C, Körner H, Ge C. Tumor Necrosis Factor: What Is in a Name? Cancers. 2022; 14(21):5270. https://doi.org/10.3390/cancers14215270
Chicago/Turabian StyleWang, Xinming, Chunlan Yang, Heinrich Körner, and Chaoliang Ge. 2022. "Tumor Necrosis Factor: What Is in a Name?" Cancers 14, no. 21: 5270. https://doi.org/10.3390/cancers14215270
APA StyleWang, X., Yang, C., Körner, H., & Ge, C. (2022). Tumor Necrosis Factor: What Is in a Name? Cancers, 14(21), 5270. https://doi.org/10.3390/cancers14215270