Clinical Outcomes of Acute Myeloid Leukemia Patients Harboring the RUNX1 Mutation: Is It Still an Unfavorable Prognosis? A Cohort Study and Meta-Analysis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Prospective Cohort Study
Statistical Analysis for the Cohort Study
2.2. Systematic Review and Meta-Analysis
2.2.1. Data Sources and Searches
2.2.2. Selection Criteria and Data Extraction
2.2.3. Quality Assessment
2.2.4. Statistical Analysis for the Meta-Analysis
2.2.5. Terminology
3. Results
3.1. Prospective Cohort Study
3.1.1. Treatment Responses and Clinical Outcomes
3.1.2. Factors Associated with Survival Outcomes
3.2. Systematic Review and Meta-Analysis
3.2.1. Study Identification, Selection, and Characteristics
3.2.2. Baseline Patient Characteristics
3.2.3. Treatment Response and Clinical Outcomes
3.2.4. Subgroup Analyses According to AML Type
3.2.5. Sensitivity Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AML | acute myeloid leukemia |
CR | complete remission |
CI | confidence interval |
ECOG | Eastern Cooperative Oncology Group |
EFS | event-free survival |
ELN | European LeukemiaNet |
HMAs | hypomethylating agents |
HR | hazard ratio |
IQR | interquartile range |
OR | odds ratio |
OS | overall survival |
RFS | relapse-free survival |
RR | risk ratio |
RUNX1mut | RUNX1 mutation |
RUNX1wt | RUNX1 wild type |
WHO | World Health Organization |
References
- DiNardo, C.D.; Cortes, J.E. Mutations in AML: Prognostic and therapeutic implications. Hematol. Am. Soc. Hematol. Educ. Program. 2016, 2016, 348–355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, C.C. Genetic abnormalities and challenges in the treatment of acute myeloid leukemia. Genes Cancer 2011, 2, 95–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swaminathan, M.; Morita, K.; Yuanqing, Y.; Wang, W.; Burks, J.K.; Gumbs, C.; Little, L.; Tippen, S.; Thornton, R.; Coyle, M.; et al. Clinical heterogeneity of acute myeloid leukemia is associated with mutational heterogeneity. Blood 2018, 132 (Suppl. S1), 5240. [Google Scholar] [CrossRef]
- Papaemmanuil, E.; Gerstung, M.; Bullinger, L.; Gaidzik, V.I.; Paschka, P.; Roberts, N.D.; Potter, N.E.; Heuser, M.; Thol, F.; Bolli, N.; et al. Genomic Classification and Prognosis in Acute Myeloid Leukemia. N. Engl. J. Med. 2016, 374, 2209–2221. [Google Scholar] [CrossRef] [PubMed]
- Döhner, H.; Wei, A.H.; Appelbaum, F.R.; Craddock, C.; DiNardo, C.D.; Dombret, H.; Ebert, B.L.; Fenaux, P.; Godley, L.A.; Hasserjian, R.P.; et al. Diagnosis and Management of AML in Adults: 2022 ELN Recommendations from an International Expert Panel. Blood 2022, 140, 1345–1377. [Google Scholar] [CrossRef] [PubMed]
- Okuda, T.; van Deursen, J.; Hiebert, S.W.; Grosveld, G.; Downing, J.R. AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 1996, 84, 321–330. [Google Scholar] [CrossRef] [Green Version]
- Yokota, A.; Huo, L.; Lan, F.; Wu, J.; Huang, G. The Clinical, Molecular, and Mechanistic Basis of RUNX1 Mutations Identified in Hematological Malignancies. Mol. Cells 2020, 43, 145–152. [Google Scholar] [CrossRef]
- Arber, D.A.; Orazi, A.; Hasserjian, R.; Thiele, J.; Borowitz, M.J.; Le Beau, M.M.; Bloomfield, C.D.; Cazzola, M.; Vardiman, J.W. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 2016, 127, 2391–2405. [Google Scholar] [CrossRef]
- Gaidzik, V.I.; Teleanu, V.; Papaemmanuil, E.; Weber, D.; Paschka, P.; Hahn, J.; Wallrabenstein, T.; Kolbinger, B.; Köhne, C.H.; Horst, H.A.; et al. RUNX1 mutations in acute myeloid leukemia are associated with distinct clinico-pathologic and genetic features. Leukemia 2016, 30, 2160–2168. [Google Scholar] [CrossRef]
- Haferlach, T.; Stengel, A.; Eckstein, S.; Perglerová, K.; Alpermann, T.; Kern, W.; Haferlach, C.; Meggendorfer, M. The new provisional WHO entity ’RUNX1 mutated AML’ shows specific genetics but no prognostic influence of dysplasia. Leukemia 2016, 30, 2109–2112. [Google Scholar] [CrossRef]
- Khoury, J.D.; Solary, E.; Abla, O.; Akkari, Y.; Alaggio, R.; Apperley, J.F.; Bejar, R.; Berti, E.; Busque, L.; Chan, J.K.C.; et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia 2022, 36, 1703–1719. [Google Scholar] [CrossRef] [PubMed]
- Jalili, M.; Yaghmaie, M.; Ahmadvand, M.; Alimoghaddam, K.; Mousavi, S.A.; Vaezi, M.; Ghavamzadeh, A. Prognostic Value of RUNX1 Mutations in AML: A Meta-Analysis. Asian Pac. J. Cancer Prev. 2018, 19, 325–329. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.; Cortes, J.; Kadia, T.; Naqvi, K.; Brandt, M.; Pierce, S.; Patel, K.P.; Borthakur, G.; Ravandi, F.; Konopleva, M.; et al. Clinical Outcomes and Co-Occurring Mutations in Patients with RUNX1-Mutated Acute Myeloid Leukemia. Int. J. Mol. Sci. 2017, 18, 1618. [Google Scholar] [CrossRef] [Green Version]
- Quesada, A.E.; Montalban-Bravo, G.; Luthra, R.; Patel, K.P.; Sasaki, K.; Bueso-Ramos, C.E.; Khoury, J.D.; Routbort, M.J.; Bassett, R.; Hidalgo-Lopez, J.E.; et al. Clinico-pathologic characteristics and outcomes of the World Health Organization (WHO) provisional entity de novo acute myeloid leukemia with mutated RUNX1. Mod. Pathol. 2020, 33, 1678–1689. [Google Scholar] [CrossRef] [PubMed]
- Venugopal, S.; Loghavi, S.; Dinardo, C.; Konopleva, M.; Kadia, T.; Bhalla, K.; Issa, G.C.; Ravandi, F.; Daver, N.; Borthakur, G.; et al. RUNX1 Mutations in newly diagnosed acute myeloid leukemia do not adversely impact clinical outcomes in the modern era. HemaSphere 2021, 5 (Suppl. S2), 18–19. [Google Scholar]
- Kent, W.J.; Sugnet, C.W.; Furey, T.S.; Roskin, K.M.; Pringle, T.H.; Zahler, A.M.; Haussler, D. The human genome browser at UCSC. Genome Res. 2002, 12, 996–1006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sherry, S.T.; Ward, M.H.; Kholodov, M.; Baker, J.; Phan, L.; Smigielski, E.M.; Sirotkin, K. dbSNP: The NCBI database of genetic variation. Nucleic Acids Res. 2001, 29, 308–311. [Google Scholar] [CrossRef] [Green Version]
- Tate, J.G.; Bamford, S.; Jubb, H.C.; Sondka, Z.; Beare, D.M.; Bindal, N.; Boutselakis, H.; Cole, C.G.; Creatore, C.; Dawson, E.; et al. COSMIC: The Catalogue Of Somatic Mutations In Cancer. Nucleic Acids Res. 2019, 47, D941–D947. [Google Scholar] [CrossRef] [Green Version]
- Stone, R.M.; Mandrekar, S.J.; Sanford, B.L.; Laumann, K.; Geyer, S.; Bloomfield, C.D.; Thiede, C.; Prior, T.W.; Döhner, K.; Marcucci, G.; et al. Midostaurin plus Chemotherapy for Acute Myeloid Leukemia with a FLT3 Mutation. N. Engl. J. Med. 2017, 377, 454–464. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Döhner, H.; Estey, E.; Grimwade, D.; Amadori, S.; Appelbaum, F.R.; Büchner, T.; Dombret, H.; Ebert, B.L.; Fenaux, P.; Larson, R.A.; et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood 2017, 129, 424–447. [Google Scholar] [CrossRef] [PubMed]
- Sterne, J.A.; Hernán, M.A.; Reeves, B.C.; Savović, J.; Berkman, N.D.; Viswanathan, M.; Henry, D.; Altman, D.G.; Ansari, M.T.; Boutron, I.; et al. ROBINS-I: A tool for assessing risk of bias in non-randomised studies of interventions. BMJ 2016, 355, i4919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathes, T.; Kuss, O. A comparison of methods for meta-analysis of a small number of studies with binary outcomes. Res. Synth. Methods 2018, 9, 366–381. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.T.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suurmond, R.; van Rhee, H.; Hak, T. Introduction, comparison, and validation of Meta-Essentials: A free and simple tool for meta-analysis. Res. Synth. Methods 2017, 8, 537–553. [Google Scholar] [CrossRef] [Green Version]
- Winer, E.S. Secondary Acute Myeloid Leukemia: A Primary Challenge of Diagnosis and Treatment. Hematol. Oncol. Clin. North Am. 2020, 34, 449–463. [Google Scholar] [CrossRef]
- Cheson, B.D.; Bennett, J.M.; Kopecky, K.J.; Büchner, T.; Willman, C.L.; Estey, E.H.; Schiffer, C.A.; Doehner, H.; Tallman, M.S.; Lister, T.A.; et al. Revised recommendations of the International Working Group for Diagnosis, Standardization of Response Criteria, Treatment Outcomes, and Reporting Standards for Therapeutic Trials in Acute Myeloid Leukemia. J. Clin. Oncol. 2003, 21, 4642–4649. [Google Scholar] [CrossRef]
- Schnittger, S.; Dicker, F.; Kern, W.; Wendland, N.; Sundermann, J.; Alpermann, T.; Haferlach, C.; Haferlach, T. RUNX1 mutations are frequent in de novo AML with noncomplex karyotype and confer an unfavorable prognosis. Blood 2011, 117, 2348–2357. [Google Scholar] [CrossRef] [Green Version]
- Tang, J.-L.; Hou, H.-A.; Chen, C.-Y.; Liu, C.-Y.; Chou, W.-C.; Tseng, M.-H.; Huang, C.-F.; Lee, F.-Y.; Liu, M.-C.; Yao, M.; et al. AML1/RUNX1 mutations in 470 adult patients with de novo acute myeloid leukemia: Prognostic implication and interaction with other gene alterations. Blood 2009, 114, 5352–5361. [Google Scholar] [CrossRef] [Green Version]
- Mendler, J.H.; Maharry, K.; Radmacher, M.D.; Mrózek, K.; Becker, H.; Metzeler, K.H.; Schwind, S.; Whitman, S.P.; Khalife, J.; Kohlschmidt, J.; et al. RUNX1 mutations are associated with poor outcome in younger and older patients with cytogenetically normal acute myeloid leukemia and with distinct gene and MicroRNA expression signatures. J. Clin. Oncol. 2012, 30, 3109–3118. [Google Scholar] [CrossRef] [Green Version]
- Greif, P.A.; Konstandin, N.P.; Metzeler, K.H.; Herold, T.; Pasalic, Z.; Ksienzyk, B.; Dufour, A.; Schneider, F.; Schneider, S.; Kakadia, P.M.; et al. RUNX1 mutations in cytogenetically normal acute myeloid leukemia are associated with a poor prognosis and up-regulation of lymphoid genes. Haematologica 2012, 97, 1909–1915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grossmann, V.; Schnittger, S.; Kohlmann, A.; Eder, C.; Roller, A.; Dicker, F.; Schmid, C.; Wendtner, C.-M.; Staib, P.; Serve, H.; et al. A novel hierarchical prognostic model of AML solely based on molecular mutations. Blood 2012, 120, 2963–2972. [Google Scholar] [CrossRef] [PubMed]
- You, E.; Cho, Y.-U.; Jang, S.; Seo, E.-J.; Lee, J.-H.; Lee, J.-H.; Lee, K.-H.; Koh, K.-N.; Im, H.-J.; Seo, J.-J.; et al. Frequency and Clinicopathologic Features of RUNX1 Mutations in Patients With Acute Myeloid Leukemia Not Otherwise Specified. Am. J. Clin. Pathol. 2017, 148, 64–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsai, C.-H.; Hou, H.-A.; Tang, J.-L.; Kuo, Y.-Y.; Chiu, Y.-C.; Lin, C.-C.; Liu, C.-Y.; Tseng, M.-H.; Lin, T.-Y.; Liu, M.-C.; et al. Prognostic impacts and dynamic changes of cohesin complex gene mutations in de novo acute myeloid leukemia. Blood Cancer J. 2017, 7, 663. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Dai, Y.; Zhang, Y.; Wang, X.; Wang, L.; Ma, D.; Zhang, L.; Pang, Y.; Jiao, Y.; Niu, M.; et al. Mutational spectrum and prognostic stratification of intermediate-risk acute myeloid leukemia. Cancer Gene Ther. 2018, 25, 207–213. [Google Scholar] [CrossRef]
- Ni, J.; Hong, J.; Long, Z.; Li, Q.; Xia, R.; Zeng, Q. Mutation profile and prognostic relevance in elderly patients with de novo acute myeloid leukemia treated with decitabine-based chemotherapy. Int. J. Lab. Hematol. 2020, 42, 849–857. [Google Scholar] [CrossRef]
- Lee, S.-S.; Ahn, J.-S.; Kim, T.; Kim, H.-J.; Kim, Y.-K.; Ahn, S.-Y.; Jung, S.-H.; Yang, D.-H.; Lee, J.-J.; Park, H.J.; et al. RUNX1 Mutation in Cytogenetically Normal Acute Myeloid Leukaemia: Clinical Implications, Co-Mutation Analysis. Blood 2016, 128, 5253. [Google Scholar] [CrossRef]
- Shin, S.-Y.; Lee, S.-T.; Kim, H.-J.; Cho, E.H.; Kim, J.-W.; Park, S.; Jung, C.W.; Kim, S.-H. Mutation profiling of 19 candidate genes in acute myeloid leukemia suggests significance of DNMT3A mutations. Oncotarget 2016, 7, 54825–54837. [Google Scholar] [CrossRef] [Green Version]
- Metzeler, K.H.; Herold, T.; Rothenberg-Thurley, M.; Amler, S.; Sauerland, M.C.; Görlich, D.; Schneider, S.; Konstandin, N.P.; Dufour, A.; Bräundl, K.; et al. Spectrum and prognostic relevance of driver gene mutations in acute myeloid leukemia. Blood 2016, 128, 686–698. [Google Scholar] [CrossRef] [Green Version]
- Lin, P.-H.; Li, H.-Y.; Fan, S.-C.; Yuan, T.-H.; Chen, M.; Hsu, Y.-H.; Yang, Y.-H.; Li, L.-Y.; Yeh, S.-P.; Bai, L.-Y.; et al. A targeted next-generation sequencing in the molecular risk stratification of adult acute myeloid leukemia: Implications for clinical practice. Cancer Med. 2017, 6, 349–360. [Google Scholar] [CrossRef]
- Weinberg, O.K.; Gibson, C.J.; Blonquist, T.M.; Neuberg, D.; Pozdnyakova, O.; Kuo, F.; Ebert, B.L.; Hasserjian, R.P. NPM1 mutation but not RUNX1 mutation or multilineage dysplasia defines a prognostic subgroup within de novo acute myeloid leukemia lacking recurrent cytogenetic abnormalities in the revised 2016 WHO classification. Am. J. Hematol. 2017, 92, E123–E124. [Google Scholar] [CrossRef] [PubMed]
- Saygin, C.; Hirsch, C.; Przychodzen, B.; Sekeres, M.A.; Hamilton, B.K.; Kalaycio, M.; Carraway, H.E.; Gerds, A.T.; Mukherjee, S.; Nazha, A.; et al. Mutations in DNMT3A, U2AF1, and EZH2 identify intermediate-risk acute myeloid leukemia patients with poor outcome after CR1. Blood Cancer J. 2018, 8, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hout, F.E.M.I.; Gerritsen, M.; Bullinger, L.; Van der Reijden, B.A.; Huls, G.; Vellenga, E.; Jansen, J.H. Transcription factor 4 (TCF4) expression predicts clinical outcome in RUNX1 mutated and translocated acute myeloid leukemia. Haematologica 2020, 105, e454–e457. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhu, H.; Qiao, C.; Zhao, S.; Liu, L.; Wang, Y.; Jin, H.; Qian, S.; Wu, Y. Next-generation sequencing reveals gene mutations landscape and clonal evolution in patients with acute myeloid leukemia. Hematology 2021, 26, 111–122. [Google Scholar] [CrossRef] [PubMed]
- Ni, Z.F.; Ma, L.J.; Shi, L.L.; Shen, P.L.; Zhao, J.Q. [Clinical Characteristics of Acute Myeloid Leukemia Patients with RUNX1 Gene Mutation]. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2021, 29, 1411–1416. [Google Scholar] [CrossRef]
- Rehman, A.; Akram, A.M.; Chaudhary, A.; Sheikh, N.; Hussain, Z.; Alsanie, W.F.; Rehman, R.A.; Hameed, N.; Saleem, T.; Zafar, A.; et al. RUNX1 mutation and elevated FLT3 gene expression cooperates to induce inferior prognosis in cytogenetically normal acute myeloid leukemia patients. Saudi J. Biol. Sci. 2021, 28, 4845–4851. [Google Scholar] [CrossRef]
- Kang, D.; Jung, J.; Park, S.; Cho, B.-S.; Kim, H.-J.; Kim, Y.; Lee, J.-M.; Kim, H.S.; Ahn, A.; Kim, M.; et al. Genetic Characteristics According to Subgroup of Acute Myeloid Leukemia with Myelodysplasia-Related Changes. J. Clin. Med. 2022, 11, 2378. [Google Scholar] [CrossRef]
- Sterne, J.A.C.; Sutton, A.J.; Ioannidis, J.P.A.; Terrin, N.; Jones, D.R.; Lau, J.; Carpenter, J.; Rücker, G.; Harbord, R.M.; Schmid, C.H.; et al. Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. BMJ 2011, 343, d4002. [Google Scholar] [CrossRef] [Green Version]
- Cheung, E.; Perissinotti, A.J.; Bixby, D.L.; Burke, P.W.; Pettit, K.M.; Benitez, L.L.; Brown, J.; Scappaticci, G.B.; Marini, B.L. The leukemia strikes back: A review of pathogenesis and treatment of secondary AML. Ann. Hematol. 2019, 98, 541–559. [Google Scholar] [CrossRef]
- Rücker, F.G.; Schlenk, R.F.; Bullinger, L.; Kayser, S.; Teleanu, V.; Kett, H.; Habdank, M.; Kugler, C.M.; Holzmann, K.; Gaidzik, V.I.; et al. TP53 alterations in acute myeloid leukemia with complex karyotype correlate with specific copy number alterations, monosomal karyotype, and dismal outcome. Blood 2012, 119, 2114–2121. [Google Scholar] [CrossRef] [Green Version]
- Middeke, J.M.; Herold, S.; Rücker-Braun, E.; Berdel, W.E.; Stelljes, M.; Kaufmann, M.; Schäfer-Eckart, K.; Baldus, C.D.; Stuhlmann, R.; Ho, A.D.; et al. TP53 mutation in patients with high-risk acute myeloid leukaemia treated with allogeneic haematopoietic stem cell transplantation. Br. J. Haematol. 2016, 172, 914–922. [Google Scholar] [CrossRef] [PubMed]
- Montalban-Bravo, G.; Benton, C.B.; Wang, S.A.; Ravandi, F.; Kadia, T.; Cortes, J.; Daver, N.; Takahashi, K.; DiNardo, C.; Jabbour, E.; et al. More than 1 TP53 abnormality is a dominant characteristic of pure erythroid leukemia. Blood 2017, 129, 2584–2587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Short, N.J.; Montalban-Bravo, G.; Hwang, H.; Ning, J.; Franquiz, M.J.; Kanagal-Shamanna, R.; Patel, K.P.; DiNardo, C.D.; Ravandi, F.; Garcia-Manero, G.; et al. Prognostic and therapeutic impacts of mutant TP53 variant allelic frequency in newly diagnosed acute myeloid leukemia. Blood Adv. 2020, 4, 5681–5689. [Google Scholar] [CrossRef] [PubMed]
- Grob, T.; Al Hinai, A.S.A.; Sanders, M.A.; Kavelaars, F.G.; Rijken, M.; Gradowska, P.L.; Biemond, B.J.; Breems, D.A.; Maertens, J.; van Marwijk Kooy, M.; et al. Molecular characterization of mutant TP53 acute myeloid leukemia and high-risk myelodysplastic syndrome. Blood 2022, 139, 2347–2354. [Google Scholar] [CrossRef] [PubMed]
- Weinberg, O.K.; Siddon, A.; Madanat, Y.F.; Gagan, J.; Arber, D.A.; Cin, P.D.; Narayanan, D.; Ouseph, M.M.; Kurzer, J.H.; Hasserjian, R.P. TP53 mutation defines a unique subgroup within complex karyotype de novo and therapy-related MDS/AML. Blood Adv. 2022, 6, 2847–2853. [Google Scholar] [CrossRef]
- Heuser, M.; Freeman, S.D.; Ossenkoppele, G.J.; Buccisano, F.; Hourigan, C.S.; Ngai, L.L.; Tettero, J.M.; Bachas, C.; Baer, C.; Béné, M.-C.; et al. 2021 Update on MRD in acute myeloid leukemia: A consensus document from the European LeukemiaNet MRD Working Party. Blood 2021, 138, 2753–2767. [Google Scholar] [CrossRef]
- Venditti, A.; Piciocchi, A.; Candoni, A.; Melillo, L.; Calafiore, V.; Cairoli, R.; de Fabritiis, P.; Storti, G.; Salutari, P.; Lanza, F.; et al. GIMEMA AML1310 trial of risk-adapted, MRD-directed therapy for young adults with newly diagnosed acute myeloid leukemia. Blood 2019, 134, 935–945. [Google Scholar] [CrossRef]
Factor | Total (N = 135) | RUNX1mut (N = 27) (20%) | RUNX1wt (N = 108) (80%) | p Value |
---|---|---|---|---|
Sex | 0.832 | |||
-Female | 67 (49.6%) | 14 (51.9%) | 53 (49.1%) | |
-Male | 68 (50.4%) | 13 (48.1%) | 55 (50.9%) | |
Median age (IQR) (years) | 55 (40–64) | 62 (55–75) | 53 (40–61) | 0.008 |
Comorbidities | ||||
-Hypertension | 37 (34.3%) | 7 (29.2%) | 30 (35.7%) | 0.631 |
-Diabetes mellitus | 20 (18.4%) | 4 (16.7%) | 16 (18.8%) | 1.000 |
-Chronic kidney disease | 2 (1.9%) | 0 (0%) | 2 (2.4%) | 1.000 |
ECOG | 0.067 | |||
-ECOG 0 | 4 (3.3%) | 1 (5.0%) | 3 (3.0%) | |
-ECOG 1 | 100 (83.3%) | 13 (65.0%) | 87 (87.0%) | |
-ECOG 2 | 12 (10.0%) | 5 (25.0%) | 7 (7.0%) | |
-ECOG 3 | 3 (2.5%) | 1 (5.0%) | 2 (2.0%) | |
-ECOG 4 | 1 (0.8%) | 0 (0%) | 1 (1.0%) | |
Cytogenetic risk | 0.237 | |||
-Favorable | 11 (8.2%) | 0 (0%) | 11 (10.2%) | |
-Intermediate | 99 (73.3%) | 22 (81.5%) | 77 (71.3%) | |
-Adverse | 25 (18.5%) | 5 (18.5%) | 20 (18.5%) | |
Type of AML | 0.002 | |||
De novo AML | 110 (81.5%) | 16 (59.3%) | 94 (87.0%) | |
Secondary AML | 25 (18.5%) | 11 (40.7%) | 14 (13.0%) | |
Laboratory at diagnosis | ||||
Mean ± SD | ||||
-Hemoglobin (g/dL) | 7.6 ± 2.5 | 7.7 ± 2.2 | 7.6 ± 2.6 | 0.903 |
Median ± IQR | ||||
-WBC (/cumm.) | 16,740 | 5260 | 23,000 | 0.731 |
(4400–78,070) | (2500–27,890) | (7300–81,110) | ||
-Platelet (/cumm.) | 48,000 | 38,500 | 50,000 | 0.570 |
(22,000–115,000) | (14,000–71,000) | (25,000–124,000) | ||
-Bone marrow blast (%) | 69.5 | 50.0 | 60.0 | 0.118 |
(34.0–90.0) | (26.0–80.0) | (34.0–90.0) | ||
Common molecular mutation (%) | ||||
-FLT3-ITD | 30 (22.2%) | 6 (22.2%) | 24 (22.2%) | 1.000 |
-NPM1 | 22 (17.3%) | 0 (0%) | 22 (21.8%) | 0.007 |
-TP53 | 13 (9.6%) | 2 (7.4%) | 11 (10.2%) | 0.740 |
-Biallelic CEBPA | 7 (5.2%) | 0 (0%) | 7 (6.5%) | 0.344 |
-DNMT3A | 30 (22.2%) | 8 (29.6%) | 22 (20.4%) | 0.438 |
-EZH2 | 7 (5.2%) | 3 (11.1%) | 4 (3.7%) | 0.143 |
-ASXL1 | 6 (4.4%) | 4 (14.8%) | 2 (1.9%) | 0.015 |
-IDH1 | 6 (4.4%) | 2 (7.4%) | 4 (3.7%) | 0.599 |
-IDH2 | 11 (8.1%) | 2 (7.4%) | 9 (8.3%) | 1.000 |
Treatment (%) | 0.083 | |||
-Low-intensity treatment | 37 (28.7%) | 11 (44.0%) | 26 (25.0%) | |
-High-intensity treatment | 92 (71.3%) | 15 (56.0%) | 78 (75.0%) | |
Allogeneic stem cell transplantation | 16 (11.9%) | 2 (7.4%) | 14 (13.0%) | 0.075 |
Treatment response | ||||
-Complete remission | 76/92 (82.6%) | 13/19 (68.4%) | 63/73 (86.3%) | 0.075 |
-Relapse | 52 (38.5%) | 14 (51.9%) | 38 (35.2%) | 0.115 |
Variables | Overall Survival | Relapse-Free Survival | ||||
---|---|---|---|---|---|---|
Univariate Analysis | ||||||
HR | 95% CI | p Value | HR | 95% CI | p Value | |
Age group | 2.77 | 1.74–4.41 | <0.001 | 2.66 | 1.22–5.81 | 0.014 |
Cytogenetic risk | 2.43 | 1.44–4.10 | <0.001 | 3.34 | 1.39–8.01 | 0.007 |
RUNX1 mutation | 1.42 | 0.77–2.62 | 0.268 | 1.37 | 0.41–4.62 | 0.604 |
FLT3-ITD mutation | 2.04 | 1.25–3.34 | 0.005 | 3.29 | 1.50–7.21 | 0.003 |
NPM1 mutation | 0.97 | 0.52–1.81 | 0.927 | 1.27 | 0.57–1.27 | 0.549 |
Biallelic CEBPA mutation | 0.48 | 0.22–1.04 | 0.062 | 0.90 | 0.27–2.98 | 0.872 |
DNMT3A mutation | 1.84 | 1.08–3.13 | 0.024 | 1.56 | 0.54–4.55 | 0.407 |
EZH2 mutation | 2.86 | 1.13–7.21 | 0.027 | 0.04 | 0–3394.50 | 0.794 |
IDH1 mutation | 3.34 | 1.33–8.40 | 0.010 | 1.81 | 0.24–13.37 | 0.560 |
ASXL1 mutation | 1.04 | 0.33–3.31 | 0.946 | 1.08 | 0.14–7.98 | 0.935 |
SRSF2 mutation | 2.01 | 0.73–5.55 | 0.180 | 10.04 | 2.13–47.18 | 0.003 |
TP53 mutation | 3.10 | 1.56–6.17 | <0.001 | 1.91 | 0.45–8.15 | 0.379 |
Treatment regimen | 2.87 | 1.76–4.69 | <0.001 | 1.54 | 0.46–5.12 | 0.474 |
Variables | Multivariate Analysis | |||||
HR | 95% CI | p Value | HR | 95% CI | p Value | |
Age group | 2.80 | 1.44–5.45 | 0.002 | 3.11 | 1.32–7.34 | 0.009 |
Cytogenetic risk | 1.64 | 0.85–3.17 | 0.138 | 2.77 | 1.10–6.93 | 0.029 * |
FLT3-ITD mutation | 2.74 | 1.58–4.74 | <0.001 | 4.34 | 1.89–9.96 | 0.001 |
Biallelic CEBPA mutation | 0.43 | 0.10–1.80 | 0.248 | - | - | - |
DNMT3A mutation | 2.19 | 1.23–3.89 | 0.007 | - | - | - |
EZH2 mutation | 3.93 | 1.46–10.54 | 0.007 | - | - | - |
IDH1 mutation | 3.72 | 1.36–10.12 | 0.010 | - | - | - |
SRSF2 mutation | 2.10 | 0.69–6.39 | 0.190 | 23.06 | 4.41–120.49 | <0.001 |
TP53 mutation | 3.15 | 1.30–7.59 | 0.011 | - | - | - |
Treatment regimen | 1.35 | 0.67–2.71 | 0.400 | - | - | - |
First Author’s Name, Year of Publication [Reference] | Group | No. | Sex (M/F) | Median Age (Years, Range) | Type of AML | Cytogenetic Risk | Molecular Mutations | Induction Treatment | HSCT | Study Period | Type |
---|---|---|---|---|---|---|---|---|---|---|---|
Tang, 2009 [29] | RUNX1mut | 62 | 49/13 | 62 (15–89) | De novo AML | Intermediate: 48 Poor: 8 Unknown: 6 | NPM1: 3 CEBPA: 2 FLT3-ITD: 14 FLT3-TKD: 6 NRAS: 5 KRAS: 2 PTPN11: 4 WT1: 2 MLL-PTD: 9 | 3 + 7 regimen: 330 Low-intensity therapy: 140 | 11/62 | 1995–2007 | PRO |
RUNX1wt | 408 | 217/191 | 48 (15–90) | Favorable: 59 Intermediate: 279 Poor: 58 Unknown: 12 | NPM1: 103 CEBPA: 64 FLT3-ITD: 96 FLT3-TKD: 27 NRAS: 49 KRAS: 14 PTPN11: 17 JAK2: 4 KIT: 14 WT1: 30 MLL-PTD: 19 | 85/408 | |||||
Schnittger, 2011 [28] | RUNX1mut | 147 | 79/169 | 70.5 (18.3–90.1) | De novo AML | Intermediate: 125 Poor: 22 | NPM1: 1 CEBPA: 2 FLT3-ITD: 24 NRAS: 14 | NA | 59/449 | 2005–2009 | PRO |
RUNX1wt | 302 | 68/133 | 67.1 (20.4–88.1) | Intermediate: 263 Poor: 39 | NPM1: 57 CEBPA: 39 FLT3-ITD: 49 NRAS: 46 | NA | |||||
Greif, 2012 [31] | RUNX1mut | 10 | 9/1 | 73 (54–78) | De novo AML: 8 Unknown: 2 | Intermediate (Chromosome- negative AML) | Monoalleic CEBPA: 2 FLT3-ITD: 3 FLT3-TKD: 2 MLL-PTD: 3 NRAS: 1 IDH1 or IDH2: 2 | Intensive Ara-C based regimen | NA | 1999–2012 | PRO |
RUNX1wt | 63 | 26/37 | 54 (27–83) | De novo AML: 57 Unknown: 6 | NPM1: 42 Monoalleic CEBPA: 3 Bialleic CEBPA: 6 FLT3-ITD: 31 FLT3-TKD: 5 MLL-PTD: 2 NRAS: 9 KIT: 1 IDH1 or IDH2: 16 | ||||||
Grossman, 2012 [32] | RUNX1mut | 162 | NA | NA | NA | Intermediate: 137 Poor: 25 | Monoalleic CEBPA: 31 Bialleic CEBPA: 44 TP53: 115 NPM1: 282 FLT3-ITD: 159 MLL-PTD: 57 ASXL1: 144 | AML-specific intensive treatment regimen (Standard-dose or high-dose cytarabine and anthracycline) | NA | 2005–2011 | PRO |
RUNX1wt | 745 | NA | NA | NA | |||||||
Mendler, 2012 (Same population as Metzeler, 2016, but included only intermediate risk cytogenetics) [30] | RUNX1mut | 49 | 28/21 | 68 (30–81) | NA | Intermediate (Chromosome- negative AML) | NPM1: 3 Monoalleic CEBPA: 2 Bialleic CEBPA: 1 FLT3-ITD: 17 FLT3-TKD: 1 WT1: 5 DNMT3A: 12 ASXL1: 17 MLL-PTD: 3 IDH1 or IDH2: 11 TET2: 11 | Intensive Ara-C or anthracycline based regimen | NA | NA | PRO |
RUNX1wt | 343 | 169/174 | 61 (18–83) | NPM1: 238 Monoalleic CEBPA: 26 Bialleic CEBPA: 34 FLT3-ITD: 125 FLT3-TKD: 29 WT1: 34 DNMT3A: 121 ASXL1: 21 MLL-PTD: 19 IDH1 or IDH2: 104 TET2: 79 | |||||||
Gaidzik, 2016 [9] | RUNX1mut | 245 | 147/98 | 59.2 (19.2–79.1) | De novo AML: 194 Secondary AML: 38 Therapy-related AML: 12 | Favorable: 2 Intermediate: 112 Poor: 85 Missing: 46 | NPM1: 13 Monoalleic CEBPA: 10 Bialleic CEBPA: 2 FLT3-ITD: 47 FLT3-TKD: 9 DNMT3A: 43 ASXL1: 50 KMT2A-PTD: 33 IDH1 or IDH2: 59 BCOR: 13 EZH2: 7 SRSF2: 29 PHF6: 9 SF3B1: 6 | 3 + 7 regimen or ICE (idarubicin, Ara-C, etoposide) ± ATRA or idarubicin/Ara-C/ATRA ± valproic acid | 36/245 | 1998–2013 | PRO |
RUNX1wt | 2194 | 1137/1057 | 53.6 (16.3–84.5) | De novo AML: 1920 Secondary AML: 119 Therapy-related AML: 131 | Favorable: 303 Intermediate: 463 Poor: 813 Missing: 615 | NPM1: 651 Monoalleic CEBPA: 70 Bialleic CEBPA: 86 FLT3-ITD: 446 FLT3-TKD: 153 DNMT3A: 49 ASXL1: 129 KMT2A-PTD: 68 IDH1 or IDH2: 379 BCOR: 19 EZH2: 34 SRSF2: 50 PHF6: 33 SF3B1: 21 | NA | ||||
Lee, 2016 [37] | RUNX1mut | 22 | NA | 53 (15–84) | De novo AML | Intermediate | NPM1: 142 CEBPA: 47 FLT3-ITD: 51 IDH2: 63 DNMT3A: 127 NRAS: 85 | 3 + 7 regimen: 406 Others: 13 | NA | NA | RET |
RUNX1wt | 397 | NA | |||||||||
Shin, 2016 [38] | RUNX1mut | 5 | NA | 49.6 | De novo AML | Intermediate (Chromosome- negative AML) | NA | Intensive chemotherapy: 46 Low-intensity chemotherapy: 6 Supportive treatment: 4 | NA | 2008–2012 | RET |
RUNX1wt | 51 | NA | |||||||||
Metzeler, 2016 [39] | RUNX1mut | 102 | 334/330 | 57 (18–86) | De novo AML: 570 Secondary AML: 59 Therapy-related AML: 35 | Favorable: 65 Intermediate: 452 Poor: 129 | NPM1: 221 Monoalleic CEBPA: 25 Bialleic CEBPA: 27 FLT3-ITD: 197 DNMT3A: 209 TP53: 63 | TAD followed by HAM or HAM for 2 cycles: | NA | 1999–2012 | RET |
RUNX1wt | 562 | ||||||||||
Lin, 2017 [40] | RUNX1mut | 7 | 67/45 | 42.6 (11.7–79) | De novo AML | Favorable: 22 Intermediate: 69 Poor: 21 | CEBPA: 7 DNMT3A: 14 IDH1/2: 18 GATA2: 7 NPM1: 17 WT1: 13 FLT3-ITD: 24 ASXL1: 18 TET: 12 TP53: 9 KIT: 5 NPM1: 10 | 3 + 7 regimen: 112 | 19/112 | NA | RET |
RUNX1wt | 105 | ||||||||||
Khan, 2017 [13] | RUNX1mut | 33 | NA | (31–92) | De novo AML: 20 Secondary AML: 9 Therapy-related AML: 4 | NA | FLT3-ITD: 7 | Chemotherapy: younger HMAs: elderly | NA | 2013–2016 | PRO |
RUNX1wt | 295 | NA | (17–91) | De novo AML: 246 Secondary AML: 31 Therapy-related AML: 28 | FLT3-ITD: 55 | ||||||
Weinberg, 2017 [41] | RUNX1mut | 22 | NA | 58.5 | De novo AML | NA | NPM1: 56 CEBPA: 2 | Standard induction chemotherapy: 137 | 92/137 | 2009–2015 | RET |
RUNX1wt | 115 | ||||||||||
You, 2017 [33] | RUNX1mut | 33 | 22/11 | 61 (12–80) | De novo AML | Intermediate | FLT3-ITD: 9 FLT3-TKD: 1 MLL-PTD: 2 | 3 + 7 regimen | NA | 2008–2015 | PRO |
RUNX1wt | 186 | 102/84 | 55 (1–84) | NPM1: 49 CEBPA: 13 FLT3-ITD: 51 FLT3-TKD: 4 MLL-PTD: 11 | |||||||
Tsai, 2017 [34] | RUNX1mut | 53 | NA | NA | De novo AML | Favorable: 55 Intermediate: 263 Poor: 57 | FLT3-ITD: 86 FLT3-TKD: 24 DNMT3A: 65 IDH1: 26 IDH2: 45 TET2: 47 NPM1: 84 ASXL1: 46 NRAS: 48 KRAS: 14 PTPN11: 18 KIT: 13 WT1: 25 CEBPA: 58 MLL/PTD: 25 TP53: 32 | NA | NA | NA | PRO |
RUNX1wt | 338 | ||||||||||
Saygin, 2018 [42] | RUNX1mut | 22 | NA | NA | NA | Intermediate | FLT3-ITD: 28 DNMT3A: 28 IDH2: 18 TET2: 18 NPM1: 18 ASXL1: 16 U2AF1:16 | 3 + 7 regimen | NA | 2002–2016 | RET |
RUNX1wt | 126 | NA | NA | ||||||||
Wu, 2018 [35] | RUNX1mut | 17 | 57/49 | 60 (21–88) | NA | Intermediate | NPM1: 48 Monoallelic CEBPA: 5 Biallelic CEBPA: 5 FLT3-ITD: 24 DNMT3A: 42 NRAS or KRAS: 14 IDH1 or IDH2: 29 TET2: 13 MLL: 9 WT1: 7 | NA | 44/106 | NA | PRO |
RUNX1wt | 89 | ||||||||||
In’t Hout, 2020 [43] | RUNX1mut | 26 | NA | <60 years: 15 ≥60 years: 11 | NA | Intermediate: 24 Poor: 2 | NA | NA | NA | NA | RET |
RUNX1wt | 304 | NA | <60 years: 249 ≥60 years: 55 | Favorable: 87 Intermediate: 165 Poor: 52 | |||||||
Quesada, 2020 [14] | RUNX1mut | 46 | 32/14 | 66.5 (20–87) | De novo AML | Intermediate | FLT3-ITD: 19 DNMT3A: 10 ASXL1: 14 NRAS: 13 IDH2: 12 TET2: 6 EZH2: 4 CEBPA: 1 SRSF2: 9 SRSF2/SF3B1: 12 | 3 + 7 regimen: 20 Nucleoside analogue-based regimen: 10 HMAs: 14 Unknown: 2 | 15/46 | NA | PRO |
RUNX1wt | 94 | 45/49 | 60.5 (20–86) | Favorable: 21 Intermediate: 46 Poor: 27 | FLT3-ITD: 21 DNMT3A: 19 ASXL1: 6 NRAS: 14 IDH2: 18 TET2: 10 EZH2: 1 NPM1: 20 CEBPA: 11 SRSF2: 1 SRSF2/SF3B1: 1 | 3 + 7 regimen: 34 Nucleoside analogue-based regimen: 30 Adriamycin/daunorubicin/etoposide: 1 Idarubicin/Ara-C/suberoylanilide/hydroxamic acid: 1 HMAs: 24 Unknown: 4 | 39/94 | ||||
Ni, 2020 [36] | RUNX1mut | 16 | 52/40 | 67 (60–75) | De novo AML | Favorable: 6 Intermediate: 54 Poor: 15 | FLT3-ITD: 17 DNMT3A: 25 ASXL1: 24 IDH1 or IDH2: 30 NRAS: 12 NPM1: 21 TET2: 16 TP53: 13 | Decitabine combined with G-CSF/Ara-C/idarubicin priming regimen | 0 | 2016–2019 | PRO |
RUNX1wt | 76 | 0 | |||||||||
Chen, 2021 [44] | RUNX1mut | 11 | 103/101 | 54.5 (20–86) | De novo AML | Favorable: 15 Intermediate: 163 Poor: 26 | NA | 3 + 7 regimen: 135 Homoharringtonine/Ara-C: 49 Low-intensity therapy: 20 | NA | NA | RET |
RUNX1wt | 193 | ||||||||||
Ni, 2021 [45] | RUNX1mut | 17 | NA | adults | NA | NA | NA | NA | NA | NA | RET |
RUNX1wt | 154 | ||||||||||
Rehman, 2021 [46] | RUNX1mut | 8 | 7/1 | 65 (52–79) | NA | Intermediate (Chromosome-negative AML) | FLT3-ITD: 2 No FLT3-ITD: 6 | 3 + 7 regimen: age <60 years or >60 years with ECOG 0–2 Low-dose Ara-C: >60 years with ECOG 3–4 | NA | NA | RET |
RUNX1wt | 24 | 19/5 | 52 (25–82) | FLT3-ITD: 1 No FLT3-ITD: 23 | |||||||
Kang, 2022 [47] | RUNX1mut | 4 | 29/16 | 60 (26–87) | Secondary AML: 45 | Intermediate: 11 Poor: 34 | FLT3-ITD: 5 PTPN11: 5 CEBPA: 5 SRSF2: 7 ASXL1: 9 TP53: 11 IDH1: 4 IDH2: 9 | Intensive chemotherapy: 31 HMA: 5 Low-dose Ara-C: 3 | 19 | 2003–2018 | RET |
RUNX1wt | 41 | ||||||||||
Current study | RUNX1mut | 27 | 13/14 | 62 (55–75) | De novo AML: 16 Secondary AML: 11 | Intermediate: 22 Poor: 5 | FLT3-ITD: 6 NPM1: 0 Biallleic CEBPA: 0 ASXL1: 4 | 3 + 7 regimen: age < 65 years Low-intensity chemotherapy: age ≥ 65 years | 2/27 | 2018–2021 | PRO |
RUNX1wt | 108 | 55/53 | 55 (40–61) | De novo AML: 94 Secondary AML: 14 | Favorable: 11 Intermediate: 77 Poor: 20 | FLT3-ITD: 24 NPM1: 22 Biallleic CEBPA: 7 ASXL1: 2 | 14/108 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rungjirajittranon, T.; Siriwannangkul, T.; Kungwankiattichai, S.; Leelakanok, N.; Rotchanapanya, W.; Vittayawacharin, P.; Mekrakseree, B.; Kulchutisin, K.; Owattanapanich, W. Clinical Outcomes of Acute Myeloid Leukemia Patients Harboring the RUNX1 Mutation: Is It Still an Unfavorable Prognosis? A Cohort Study and Meta-Analysis. Cancers 2022, 14, 5239. https://doi.org/10.3390/cancers14215239
Rungjirajittranon T, Siriwannangkul T, Kungwankiattichai S, Leelakanok N, Rotchanapanya W, Vittayawacharin P, Mekrakseree B, Kulchutisin K, Owattanapanich W. Clinical Outcomes of Acute Myeloid Leukemia Patients Harboring the RUNX1 Mutation: Is It Still an Unfavorable Prognosis? A Cohort Study and Meta-Analysis. Cancers. 2022; 14(21):5239. https://doi.org/10.3390/cancers14215239
Chicago/Turabian StyleRungjirajittranon, Tarinee, Theerapat Siriwannangkul, Smith Kungwankiattichai, Nattawut Leelakanok, Wannaphorn Rotchanapanya, Pongthep Vittayawacharin, Benjamaporn Mekrakseree, Kamolchanok Kulchutisin, and Weerapat Owattanapanich. 2022. "Clinical Outcomes of Acute Myeloid Leukemia Patients Harboring the RUNX1 Mutation: Is It Still an Unfavorable Prognosis? A Cohort Study and Meta-Analysis" Cancers 14, no. 21: 5239. https://doi.org/10.3390/cancers14215239
APA StyleRungjirajittranon, T., Siriwannangkul, T., Kungwankiattichai, S., Leelakanok, N., Rotchanapanya, W., Vittayawacharin, P., Mekrakseree, B., Kulchutisin, K., & Owattanapanich, W. (2022). Clinical Outcomes of Acute Myeloid Leukemia Patients Harboring the RUNX1 Mutation: Is It Still an Unfavorable Prognosis? A Cohort Study and Meta-Analysis. Cancers, 14(21), 5239. https://doi.org/10.3390/cancers14215239