Development of a Clinical–Biological Model to Assess Tumor Progression in Metastatic Pancreatic Cancer: Post Hoc Analysis of the PRODIGE4/ACCORD11 Trial
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Anthropometric and Clinical Parameters
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Rahib, L.; Wehner, M.R.; Matrisian, L.M.; Nead, K.T. Estimated Projection of US Cancer Incidence and Death to 2040. JAMA Netw. Open 2021, 4, e214708. [Google Scholar] [CrossRef]
- Conroy, T.; Desseigne, F.; Ychou, M.; Bouché, O.; Guimbaud, R.; Bécouarn, Y.; Adenis, A.; Raoul, J.-L.; Gourgou-Bourgade, S.; de la Fouchardière, C.; et al. FOLFIRINOX versus Gemcitabine for Metastatic Pancreatic Cancer. N. Engl. J. Med. 2011, 364, 1817–1825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Von Hoff, D.D.; Ervin, T.; Arena, F.P.; Chiorean, E.G.; Infante, J.; Moore, M.; Seay, T.; Tjulandin, S.A.; Ma, W.W.; Saleh, M.N.; et al. Increased Survival in Pancreatic Cancer with Nab-Paclitaxel plus Gemcitabine. N. Engl. J. Med. 2013, 369, 1691–1703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Therasse, P.; Arbuck, S.G.; Eisenhauer, E.A.; Wanders, J.; Kaplan, R.S.; Rubinstein, L.; Verweij, J.; Van Glabbeke, M.; van Oosterom, A.T.; Christian, M.C.; et al. New Guidelines to Evaluate the Response to Treatment in Solid Tumors. J. Natl. Cancer Inst. 2000, 92, 205–216. [Google Scholar] [CrossRef] [Green Version]
- Ducreux, M.; Cuhna, A.S.; Caramella, C.; Hollebecque, A.; Burtin, P.; Goéré, D.; Seufferlein, T.; Haustermans, K.; Van Laethem, J.L.; Conroy, T.; et al. Cancer of the Pancreas: ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up. Ann. Oncol. 2015, 26, v56–v68. [Google Scholar] [CrossRef] [PubMed]
- Veer, E. ter; Rijssen, L.B. van; Besselink, M.G.; Mali, R.M.A.; Berlin, J.D.; Boeck, S.; Bonnetain, F.; Chau, I.; Conroy, T.; Cutsem, E.V.; et al. Consensus Statement on Mandatory Measurements in Pancreatic Cancer Trials (COMM-PACT) for Systemic Treatment of Unresectable Disease. Lancet Oncol. 2018, 19, e151–e160. [Google Scholar] [CrossRef]
- Stocken, D.D.; Hassan, A.B.; Altman, D.G.; Billingham, L.J.; Bramhall, S.R.; Johnson, P.J.; Freemantle, N. Modelling Prognostic Factors in Advanced Pancreatic Cancer. Br. J. Cancer 2008, 99, 883–893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stemmler, J.; Stieber, P.; Szymala, A.M.; Schalhorn, A.; Schermuly, M.M.; Wilkowski, R.; Helmberger, T.; Lamerz, R.; Stoffregen, C.; Niebler, K.; et al. Are Serial CA 19-9 Kinetics Helpful in Predicting Survival in Patients with Advanced or Metastatic Pancreatic Cancer Treated with Gemcitabine and Cisplatin? Oncol. Res. Treat. 2003, 26, 462–467. [Google Scholar] [CrossRef] [Green Version]
- Moorcraft, S.Y.; Khan, K.; Peckitt, C.; Watkins, D.; Rao, S.; Cunningham, D.; Chau, I. FOLFIRINOX for Locally Advanced or Metastatic Pancreatic Ductal Adenocarcinoma: The Royal Marsden Experience. Clin. Color. Cancer 2014, 13, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.; Kim, T.-Y.; Lee, K.; Han, S.-W.; Oh, D.-Y.; Im, S.-A.; Kim, T.-Y.; Bang, Y.-J. The Impact of Body Mass Index Dynamics on Survival of Patients with Advanced Pancreatic Cancer Receiving Chemotherapy. J. Pain Symptom Manag. 2014, 48, 13–25. [Google Scholar] [CrossRef]
- Temel, J.S.; Greer, J.A.; Muzikansky, A.; Gallagher, E.R.; Admane, S.; Jackson, V.A.; Dahlin, C.M.; Blinderman, C.D.; Jacobsen, J.; Pirl, W.F.; et al. Early Palliative Care for Patients with Metastatic Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2010, 363, 733–742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Denis, F.; Lethrosne, C.; Pourel, N.; Molinier, O.; Pointreau, Y.; Domont, J.; Bourgeois, H.; Senellart, H.; Trémolières, P.; Lizée, T.; et al. Randomized Trial Comparing a Web-Mediated Follow-up with Routine Surveillance in Lung Cancer Patients. JNCI J. Natl. Cancer Inst. 2017, 109, djx029. [Google Scholar] [CrossRef] [Green Version]
- Gourgou-Bourgade, S.; Bascoul-Mollevi, C.; Desseigne, F.; Ychou, M.; Bouché, O.; Guimbaud, R.; Bécouarn, Y.; Adenis, A.; Raoul, J.-L.; Boige, V.; et al. Impact of FOLFIRINOX Compared With Gemcitabine on Quality of Life in Patients with Metastatic Pancreatic Cancer: Results From the PRODIGE 4/ACCORD 11 Randomized Trial. J. Clin. Oncol. 2013, 31, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Aaronson, N.K.; Ahmedzai, S.; Bergman, B.; Bullinger, M.; Cull, A.; Duez, N.J.; Filiberti, A.; Flechtner, H.; Fleishman, S.B.; de Haes, J.C. The European Organization for Research and Treatment of Cancer QLQ-C30: A Quality-of-Life Instrument for Use in International Clinical Trials in Oncology. J. Natl. Cancer Inst. 1993, 85, 365–376. [Google Scholar] [CrossRef] [PubMed]
- Fayers, P.; Aaronson, N.K.; Bjordal, K.; Groenvold, M.; Curran, D.; Bottomley, A. EORTC QLQ-C30 Scoring Manual; European Organisation for Research and Treatment of Cancer: Brussels, Belgium, 2001; ISBN 978-2-930064-16-1. [Google Scholar]
- Common Terminology Criteria for Adverse Events (CTCAE) Version 5. Published: November 27. US Department of Health and Human Services, National Institutes of Health, National Cancer Institute. Available online: https://ctep.cancer.gov/protocoldevelopment/electronic_applications/docs/CTCAE_v5_Quick_Reference_5x7.pdf (accessed on 29 August 2022).
- Hamada, T.; Nakai, Y.; Yasunaga, H.; Isayama, H.; Matsui, H.; Takahara, N.; Sasaki, T.; Takagi, K.; Watanabe, T.; Yagioka, H.; et al. Prognostic Nomogram for Nonresectable Pancreatic Cancer Treated with Gemcitabine-Based Chemotherapy. Br. J. Cancer 2014, 110, 1943–1949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vivaldi, C.; Caparello, C.; Musettini, G.; Pasquini, G.; Catanese, S.; Fornaro, L.; Lencioni, M.; Falcone, A.; Vasile, E. First-Line Treatment with FOLFOXIRI for Advanced Pancreatic Cancer in Clinical Practice: Patients’ Outcome and Analysis of Prognostic Factors. Int. J. Cancer 2016, 139, 938–945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, P.; Hang, J.; Huang, W.; Li, S.; Li, N.; Kodama, Y.; Matsumoto, S.; Takaori, K.; Zhu, L.; Kanai, M. Validation of Lymphocyte-to-Monocyte Ratio as a Prognostic Factor in Advanced Pancreatic Cancer: An East Asian Cohort Study of 2 Countries. Pancreas 2017, 46, 1011–1017. [Google Scholar] [CrossRef] [PubMed]
- Haas, M.; Heinemann, V.; Kullmann, F.; Laubender, R.P.; Klose, C.; Bruns, C.J.; Holdenrieder, S.; Modest, D.P.; Schulz, C.; Boeck, S. Prognostic Value of CA 19-9, CEA, CRP, LDH and Bilirubin Levels in Locally Advanced and Metastatic Pancreatic Cancer: Results from a Multicenter, Pooled Analysis of Patients Receiving Palliative Chemotherapy. J. Cancer Res. Clin. Oncol. 2013, 139, 681–689. [Google Scholar] [CrossRef] [PubMed]
- Reitz, D.; Gerger, A.; Seidel, J.; Kornprat, P.; Samonigg, H.; Stotz, M.; Szkandera, J.; Pichler, M. Combination of Tumour Markers CEA and CA19-9 Improves the Prognostic Prediction in Patients with Pancreatic Cancer. J. Clin. Pathol. 2015, 68, 427–433. [Google Scholar] [CrossRef] [PubMed]
- Meng, Q.; Shi, S.; Liang, C.; Liang, D.; Xu, W.; Ji, S.; Zhang, B.; Ni, Q.; Xu, J.; Yu, X. Diagnostic and Prognostic Value of Carcinoembryonic Antigen in Pancreatic Cancer: A Systematic Review and Meta-Analysis. Onco Targets Ther. 2017, 10, 4591–4598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, J.C.; Kundranda, M. Novel Diagnostic and Predictive Biomarkers in Pancreatic Adenocarcinoma. Int. J. Mol. Sci. 2017, 18, 667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Proctor, M.J.; Morrison, D.S.; Talwar, D.; Balmer, S.M.; O’Reilly, D.S.J.; Foulis, A.K.; Horgan, P.G.; McMillan, D.C. An Inflammation-Based Prognostic Score (MGPS) Predicts Cancer Survival Independent of Tumour Site: A Glasgow Inflammation Outcome Study. Br. J. Cancer 2011, 104, 726–734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guthrie, G.J.K.; Charles, K.A.; Roxburgh, C.S.D.; Horgan, P.G.; McMillan, D.C.; Clarke, S.J. The Systemic Inflammation-Based Neutrophil–Lymphocyte Ratio: Experience in Patients with Cancer. Crit. Rev. Oncol. Hematol. 2013, 88, 218–230. [Google Scholar] [CrossRef]
- Kang, M.H.; Go, S.-I.; Song, H.-N.; Lee, A.; Kim, S.-H.; Kang, J.-H.; Jeong, B.-K.; Kang, K.M.; Ling, H.; Lee, G.-W. The Prognostic Impact of the Neutrophil-to-Lymphocyte Ratio in Patients with Small-Cell Lung Cancer. Br. J. Cancer 2014, 111, 452–460. [Google Scholar] [CrossRef]
- Dalpiaz, O.; Pichler, M.; Mannweiler, S.; Martín Hernández, J.M.; Stojakovic, T.; Pummer, K.; Zigeuner, R.; Hutterer, G.C. Validation of the Pretreatment Derived Neutrophil–Lymphocyte Ratio as a Prognostic Factor in a European Cohort of Patients with Upper Tract Urothelial Carcinoma. Br. J. Cancer 2014, 110, 2531–2536. [Google Scholar] [CrossRef] [Green Version]
- Ni, X.-C.; Yi, Y.; Fu, Y.-P.; He, H.-W.; Cai, X.-Y.; Wang, J.-X.; Zhou, J.; Cheng, Y.-F.; Jin, J.-J.; Fan, J.; et al. Prognostic Value of the Modified Glasgow Prognostic Score in Patients Undergoing Radical Surgery for Hepatocellular Carcinoma. Medicine 2015, 94, e1486. [Google Scholar] [CrossRef]
- Liu, Y.; He, X.; Pan, J.; Chen, S.; Wang, L. Prognostic Role of Glasgow Prognostic Score in Patients with Colorectal Cancer: Evidence from Population Studies. Sci. Rep. 2017, 7, 6144. [Google Scholar] [CrossRef] [Green Version]
- Martin, H.L.; Ohara, K.; Kiberu, A.; Van Hagen, T.; Davidson, A.; Khattak, M.A. Prognostic Value of Systemic Inflammation-Based Markers in Advanced Pancreatic Cancer. Intern. Med. J. 2014, 44, 676–682. [Google Scholar] [CrossRef]
- Park, H.S.; Lee, H.S.; Park, J.S.; Park, J.S.; Lee, D.K.; Lee, S.-J.; Yoon, D.S.; Lee, M.G.; Jeung, H.-C. Prognostic Scoring Index for Patients with Metastatic Pancreatic Adenocarcinoma. Cancer Res. Treat. 2016, 48, 1253–1263. [Google Scholar] [CrossRef]
- Franczak, C.; Filhine-Tressarieu, P.; Broséus, J.; Gilson, P.; Merlin, J.-L.; Harlé, A. Clinical Interest of Circulating Tumor DNA in Oncology. Arch. Med. Res. 2018, 49, 297–305. [Google Scholar] [CrossRef] [PubMed]
- Chapin, W.J.; Till, J.E.; Hwang, W.-T.; Eads, J.R.; Karasic, T.B.; O’Dwyer, P.J.; Schneider, C.J.; Teitelbaum, U.R.; Romeo, J.; Black, T.A.; et al. Multianalyte Prognostic Signature Including Circulating Tumor DNA and Circulating Tumor Cells in Patients with Advanced Pancreatic Adenocarcinoma. JCO Precis. Oncol. 2022, 6, e2200060. [Google Scholar] [CrossRef] [PubMed]
- Bennett, A.V.; Jensen, R.E.; Basch, E. Electronic Patient-Reported Outcome Systems in Oncology Clinical Practice. CA Cancer J. Clin. 2012, 62, 337–347. [Google Scholar] [CrossRef]
- Aktas, A.; Hullihen, B.; Shrotriya, S.; Thomas, S.; Walsh, D.; Estfan, B. Connected Health: Cancer Symptom and Quality-of-Life Assessment Using a Tablet Computer: A Pilot Study. Am. J. Hosp. Palliat. Med. 2015, 32, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Sawatzky, R.; Laforest, E.; Schick-Makaroff, K.; Stajduhar, K.; Reimer-Kirkham, S.; Krawczyk, M.; Öhlén, J.; McLeod, B.; Hilliard, N.; Tayler, C.; et al. Design and Introduction of a Quality of Life Assessment and Practice Support System: Perspectives from Palliative Care Settings. J. Patient Rep. Outcomes 2017, 2, 36. [Google Scholar] [CrossRef] [PubMed]
- Denis, F.; Basch, E.; Septans, A.-L.; Bennouna, J.; Urban, T.; Dueck, A.C.; Letellier, C. Two-Year Survival Comparing Web-Based Symptom Monitoring vs Routine Surveillance Following Treatment for Lung Cancer. JAMA 2019, 321, 306. [Google Scholar] [CrossRef] [PubMed]
Total (n = 196) | Missing | |
---|---|---|
Chemotherapy arm | - | |
FOLFIRINOX | 100 (51.0) | |
Gemcitabine | 96 (49.0) | |
Sex | - | |
Women | 82 (41.8) | |
Men | 114 (58.2) | |
Age (years) | - | |
Mean ± STD | 58.8 ± 8.8 | |
≥65 | 53 (27) | |
ECOG performance status | - | |
0 | 75 (38.3) | |
1 | 120 (61.2) | |
2 | 1 (0.5) | |
Weight at inclusion (kg) | - | |
Mean ± STD | 68.1 ± 13.4 | |
Body mass index (kg/m2) | - | |
<25 | 121 (61.7) | |
≥25 | 75 (38.3) | |
Initial location | - | |
Head | 74 (37.8) | |
Body | 66 (33.7) | |
Tail | 52 (26.5) | |
Multi-site | 4 (2.0) | |
Metastasis location | - | |
Liver | 172 (87.8) | |
Peritoneal | 33 (16.8) | |
Lung | 53 (27.0) | |
Other | 22 (11.2) | |
CA19-9 Normalized to standard ◊ | 6 | |
Median (interquartile range) | 34.7 (4.9; 388.9) | |
Higher than standard value | 167 (87.9) | |
CEA Normalized to standard ◊ | 4 | |
Median (interquartile range) | 2.8 (0.6; 11.3) | |
Higher than standard value | 125 (65.1) | |
Albumin (g/L) | 34 | |
Higher than standard value | 46 (28.9) |
Missing | All Evaluations (n = 355) | |
---|---|---|
Tumoral progression | ||
N (%) | 92 (25.9) | |
ECOG performance status | 68 | |
≥2 | 47 (16.4) | |
Weight loss since inclusion | - | |
≥5% | 133 (37.5) | |
Body mass index (kg/m2) | - | |
≥25 | 114 (32.1) | |
CA19-9 ‡ | ||
Higher than standard value | 1 | 278 (78.5) |
≥30 times the standard value | - | 154 (43.4) |
Increased since inclusion | 15 | 86 (25.3) |
CEA ‡ | ||
Higher than standard value | 1 | 202 (57.1) |
≥3 times the standard value | 11 | 104 (30.2) |
Increased since inclusion | 5 | 138 (39.4) |
Total bilirubin (µmol/L) ‡ | ||
Higher than standard value | 34 | 30 (9.4) |
AST/SGOT (UI/L) ‡ | ||
Higher than standard value | 30 | 143 (44) |
ALT/SGPT (UI/L) ‡ | ||
Higher than standard value | 31 | 137 (42.3) |
GGT (UI/L) ‡ | ||
Higher than standard value | 49 | 254 (83) |
Quality of life question ¤ | ||
“During the past week, have you had pain?” | 4 | |
Not at all/A little | 285 (81.2) | |
Quite a bit/Very much | 66 (18.8) | |
“How would you rate your overall health during the past week?”, 1 to 7 ¥ | 13 | |
≤4 | 172 (48.5) | |
>4 | 183 (51.5) | |
Hematological toxicity ◊ | 2 | |
Grade 2 | 131 (37) | |
Grade ≥ 3 | 84 (23.7) | |
Other toxicity ∫ | 2 | |
Grade 2 | 101 (28.5) | |
Grade ≥ 3 | 60 (17) | |
All toxicity | 2 | |
Grade 2 | 147 (41.5) | |
Grade ≥ 3 | 128 (36.2) |
OR and Confidence Interval 95% | p-Value | |
---|---|---|
Factor at inclusion | ||
Sex | ||
Men | 1 | |
Women | 0.92 [0.55; 1.53] | 0.744 |
Age (years) | ||
<65 | 1 | |
≥65 | 0.96 [0.54; 1.69] | 0.884 |
Pancreatic tumor location | ||
Head | 1 | |
Body | 1.22 [0.67; 2.23] | 0.507 |
Tail | 0.88 [0.15; 5.09] | 0.887 |
Multi-site | 0.97 [0.51; 1.85] | 0.919 |
Metastasis location | ||
Liver | 1.72 [0.77; 3.83] | 0.184 |
Peritoneal | 0.73 [0.36; 1.50] | 0.388 |
Lung | 0.80 [0.46; 1.42] | 0.451 |
Body mass index (kg/m2) | ||
<25 | 1 | |
≥25 | 0.66 [0.39; 1.13] | 0.130 |
Albumin (g/L) ‡ | ||
Higher than standard value | 1.36 [0.73; 2.51] | 0.329 |
Factor at tumor evaluation | ||
ECOG performance status | ||
0–1 | 1 | |
≥2 | 3.22 [1.58; 6.65] | 0.003 |
Weight loss since inclusion, (kg) | ||
≥5 | 1 | |
<5 | 1.42 [0.82; 2.47] | 0.195 |
Body mass index (kg/m2) | ||
<25 | ||
≥25 | 1.83 [0.95; 3.55] | 0.068 |
CA19-9 ‡ | ||
Higher than standard value | 1.53 [0.74; 3.18] | 0.222 |
≥30 times the standard value | 2.85 [1.63; 4.97] | <0.001 |
Increase since inclusion | 3.17 [1.67; 6.02] | 0.003 |
CEA ‡ | ||
Higher than standard value | 3.09 [1.69; 5.63] | <0.001 |
≥3 times the standard value | 3.80 [2.12; 6.80] | <0.001 |
Increase since inclusion | 2.73 [1.56; 4.78] | <0.001 |
Total bilirubin (µmol/L) ‡ | ||
Higher than normal value | 1.69 [0.67; 4.29] | 0.234 |
AST/SGOT (UI/L) ‡ | ||
Higher than standard value | 1.21 [0.69; 2.12] | 0.489 |
ALT/SGPT (UI/L) ‡ | ||
Higher than standard value | 1.12 [0.63; 1.99] | 0.688 |
GGT (UI/L) ‡ | ||
Higher than standard value | 2.87 [1.05; 7.87] | 0.042 |
Hematological toxicity ◊ | ||
Grade 2 | 1.31 [0.74; 2.33] | 0.353 |
Grade ≥ 3 | 0.79 [0.39; 1.61] | 0.508 |
Other toxicity ∫ | ||
Grade 2 | 1.21 [0.66; 2.22] | 0.523 |
Grade ≥ 3 | 2.08 [1.07; 4.05] | 0.032 |
All toxicity | ||
Grade 2 | 0.91 [0.46; 1.79] | 0.783 |
Grade ≥ 3 | 1.10 [0.56; 2.16] | 0.780 |
Quality of Life Score by Threshold, ≤33; [33 à 66]; ≥67 § | N (%) | OR and Confidence Interval 95% | p-Value |
---|---|---|---|
Physical functioning | |||
≤66 | 97 (27.4%) | 1.37 [0.77; 2.44] | 0.266 |
≥67 | 257 (72.6%) | 1 | |
Role functioning | |||
≤66 | 194 (55.1%) | 1.42 [0.83; 2.44] | 0.190 |
≥67 | 158 (44.9%) | 1 | |
Emotional functioning | |||
≤66 | 109 (31.5%) | 1.32 [0.76; 2.3] | 0.319 |
≥67 | 237 (68.5%) | 1 | |
Cognitive functioning | |||
≤66 | 88 (25.3%) | 2.09 [1.16; 3.77] | 0.017 |
≥67 | 260 (74.7%) | 1 | |
Social functioning | |||
≤66 | 158 (45.9%) | 1.57 [0.92; 2.68] | 0.093 |
≥67 | 186 (54.1%) | 1 | |
Global health status/Quality of life | |||
≤33 | 57 (16.6%) | 3.41 [1.37; 8.48] | 0.010 |
34 to 66 | 203 (59.2%) | 2.53 [1.17; 5.48] | 0.020 |
≥67 | 83 (24.2%) | 1 | |
Fatigue | |||
≤33 | 307 (87.0%) | 1 | |
≥34 | 46 (13.0%) | 1.79 [0.84; 3.82] | 0.123 |
Nausea and vomiting | |||
≤33 | 308 (87%) | 1 | |
≥34 | 46 (13%) | 1.52 [0.71; 3.23] | 0.261 |
Pain | |||
≤33 | 280 (79.1%) | 1 | |
≥34 | 74 (20.9%) | 1.36 [0.73; 2.51] | 0.316 |
Dyspnoea | |||
≤33 | 319 (90.4%) | 1 | |
≥34 | 34 (9.6%) | 0.76 [0.29; 1.99] | 0.550 |
Insomnia | |||
≤33 | 304 (86.4%) | 1 | |
≥34 | 48 (13.6%) | 1.36 [0.64; 2.89] | 0.400 |
Appetite loss | |||
≤33 | 255 (72.2%) | 1 | |
≥34 | 98 (27.8%) | 1.87 [1.07; 3.26] | 0.030 |
Constipation | |||
≤33 | 300 (86.2%) | 1 | |
≥34 | 48 (13.8%) | 1.09 [0.51; 2.32] | 0.822 |
Diarrhea | |||
≤33 | 302 (87%) | 1 | |
≥34 | 45 (13%) | 0.57 [0.22; 1.46] | 0.230 |
Financial difficulties | |||
≤33 | 329 (95.4%) | 1 | |
≥34 | 16 (4.6%) | 1.62 [0.34; 7.78] | 0.445 |
OR and Confidence Interval 95% | p-Value | |
---|---|---|
Chemotherapy | ||
FOLFIRINOX | 1 | |
Gemcitabine | 3.47 [1.94; 6.18] | <0.001 |
Global health status/Quality of life ¤, ø | ||
≤33 | 3.38 [1.15; 9.91] | 0.028 |
34–66 | 2.65 [1.06; 6.59] | 0.037 |
≥67 | 1 | |
CA19-9 at TE > CA19-9inclusion ◊ | 2.63 [1.27; 5.43] | 0.014 |
CEA at TE | <0.001 | |
<3 times CEA laboratory ‡ | 1 | |
≥3 times CEA laboratory ‡ and ≤ CEA inclusion ◊ | 2.46 [1.12; 5.40] | |
≥3 times CEA laboratory ‡ and > CEA inclusion ◊ | 5.94 [2.51; 14.03] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Egea, J.; Salleron, J.; Gourgou, S.; Ayav, A.; Laurent, V.; Juzyna, B.; Harlé, A.; Conroy, T.; Lambert, A. Development of a Clinical–Biological Model to Assess Tumor Progression in Metastatic Pancreatic Cancer: Post Hoc Analysis of the PRODIGE4/ACCORD11 Trial. Cancers 2022, 14, 5068. https://doi.org/10.3390/cancers14205068
Egea J, Salleron J, Gourgou S, Ayav A, Laurent V, Juzyna B, Harlé A, Conroy T, Lambert A. Development of a Clinical–Biological Model to Assess Tumor Progression in Metastatic Pancreatic Cancer: Post Hoc Analysis of the PRODIGE4/ACCORD11 Trial. Cancers. 2022; 14(20):5068. https://doi.org/10.3390/cancers14205068
Chicago/Turabian StyleEgea, Julie, Julia Salleron, Sophie Gourgou, Ahmet Ayav, Valérie Laurent, Béata Juzyna, Alexandre Harlé, Thierry Conroy, and Aurélien Lambert. 2022. "Development of a Clinical–Biological Model to Assess Tumor Progression in Metastatic Pancreatic Cancer: Post Hoc Analysis of the PRODIGE4/ACCORD11 Trial" Cancers 14, no. 20: 5068. https://doi.org/10.3390/cancers14205068
APA StyleEgea, J., Salleron, J., Gourgou, S., Ayav, A., Laurent, V., Juzyna, B., Harlé, A., Conroy, T., & Lambert, A. (2022). Development of a Clinical–Biological Model to Assess Tumor Progression in Metastatic Pancreatic Cancer: Post Hoc Analysis of the PRODIGE4/ACCORD11 Trial. Cancers, 14(20), 5068. https://doi.org/10.3390/cancers14205068