Molecular Mechanisms Driving the Formation of Brain Metastases
Abstract
:Simple Summary
Abstract
1. Epidemiology of Brain Metastases
2. Treatment of Brain Metastases
2.1. Current Standard of Care
2.2. Emerging Treatment Strategies
3. Factors Influencing Brain Organotropism
3.1. Formation of the Pre-Metastatic Niche
3.2. Transendothelial Migration across the Blood–Brain Barrier
3.3. Brain-Specific Cell Types; A Support Network
3.4. Adaptation to the Brain Microenvironment
4. Genomic Alterations Observed in Brain Metastases and Primary Tumors
5. Monoclonal Verses Polyclonal Spread of Brain Metastases
6. Are Brain Metastases Seeded Directly from Primary Tumors or from Other Extracranial Metastases?
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Sperduto, P.W.; Mesko, S.; Li, J.; Cagney, D.; Aizer, A.; Lin, N.U.; Nesbit, E.; Kruser, T.J.; Chan, J.; Braunstein, S.; et al. Survival in Patients with Brain Metastases: Summary Report on the Updated Diagnosis-Specific Graded Prognostic Assessment and Definition of the Eligibility Quotient. J. Clin. Oncol. 2020, 38, 3773–3784. [Google Scholar] [CrossRef] [PubMed]
- Pedrosa, R.M.S.M.; Mustafa, D.A.; Soffietti, R.; Kros, J.M. Breast Cancer Brain Metastasis: Molecular Mechanisms and Directions for Treatment. Neuro Oncol. 2018, 20, 1439. [Google Scholar] [CrossRef] [PubMed]
- Vogelbaum, M.A.; Brown, P.D.; Messersmith, H.; Brastianos, P.K.; Burri, S.; Cahill, D.; Dunn, I.F.; Gaspar, L.E.; Gatson, N.T.N.; Gondi, V.; et al. Treatment for Brain Metastases: ASCO-SNO-ASTRO Guideline. J. Clin. Oncol. 2022, 40, 492–516. [Google Scholar] [CrossRef] [PubMed]
- Cagney, D.N.; Martin, A.M.; Catalano, P.J.; Redig, A.J.; Lin, N.U.; Lee, E.Q.; Wen, P.Y.; Dunn, I.F.; Bi, W.L.; Weiss, S.E.; et al. Incidence and Prognosis of Patients with Brain Metastases at Diagnosis of Systemic Malignancy: A Population-Based Study. Neuro Oncol. 2017, 19, 1511–1521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hatiboglu, M.A.; Wildrick, D.M.; Sawaya, R. The Role of Surgical Resection in Patients with Brain Metastases. Ecancermedicalscience 2013, 7, 308. [Google Scholar] [CrossRef]
- Stelzer, K. Epidemiology and Prognosis of Brain Metastases. Surg. Neurol. Int. 2013, 4, S192. [Google Scholar] [CrossRef] [PubMed]
- Sperduto, P.W.; Yang, T.J.; Beal, K.; Pan, H.; Brown, P.D.; Bangdiwala, A.; Shanley, R.; Yeh, N.; Gaspar, L.E.; Braunstein, S.; et al. Estimating Survival in Patients with Lung Cancer and Brain Metastases: An Update of the Graded Prognostic Assessment for Lung Cancer Using Molecular Markers (Lung-MolGPA). JAMA Oncol. 2017, 3, 827–831. [Google Scholar] [CrossRef]
- Hadjipanteli, A.; Doolan, P.; Kyriacou, E.; Constantinidou, A. Breast Cancer Brain Metastasis: The Potential Role of MRI Beyond Current Clinical Applications. Cancer Manag. Res. 2020, 12, 9953. [Google Scholar] [CrossRef]
- Gutzmer, R.; Vordermark, D.; Hassel, J.C.; Krex, D.; Wendl, C.; Schadendorf, D.; Sickmann, T.; Rieken, S.; Pukrop, T.; Höller, C.; et al. Melanoma Brain Metastases-Interdisciplinary Management Recommendations 2020. Cancer Treat. Rev. 2020, 89, 102083. [Google Scholar] [CrossRef]
- Bander, E.D.; Yuan, M.; Carnevale, J.A.; Reiner, A.S.; Panageas, K.S.; Postow, M.A.; Tabar, V.; Moss, N.S. Melanoma Brain Metastasis Presentation, Treatment, and Outcomes in the Age of Targeted and Immunotherapies. Cancer 2021, 127, 2062–2073. [Google Scholar] [CrossRef]
- Graber, J.J.; Cobbs, C.S.; Olson, J.J. Congress of Neurological Surgeons Systematic Review and Evidence-Based Guidelines on the Use of Stereotactic Radiosurgery in the Treatment of Adults with Metastatic Brain Tumors. Neurosurgery 2019, 84, E168–E170. [Google Scholar] [CrossRef] [Green Version]
- Gaspar, L.E.; Prabhu, R.S.; Hdeib, A.; McCracken, D.J.; Lasker, G.F.; McDermott, M.W.; Kalkanis, S.N.; Olson, J.J. Congress of Neurological Surgeons Systematic Review and Evidence-Based Guidelines on the Role of Whole Brain Radiation Therapy in Adults with Newly Diagnosed Metastatic Brain Tumors. Neurosurgery 2019, 84, E159–E162. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.C.; Rennert, R.C.; Olson, J.J. Congress of Neurological Surgeons Systematic Review and Evidence-Based Guidelines on the Role of Prophylactic Anticonvulsants in the Treatment of Adults with Metastatic Brain Tumors. Neurosurgery 2019, 84, E195–E197. [Google Scholar] [CrossRef] [Green Version]
- Ryken, T.C.; Kuo, J.S.; Prabhu, R.S.; Sherman, J.H.; Kalkanis, S.N.; Olson, J.J. Congress of Neurological Surgeons Systematic Review and Evidence-Based Guidelines on the Role of Steroids in the Treatment of Adults with Metastatic Brain Tumors. Neurosurgery 2019, 84, E189–E191. [Google Scholar] [CrossRef] [Green Version]
- Hatiboglu, M.A.; Akdur, K.; Sawaya, R. Neurosurgical Management of Patients with Brain Metastasis. Neurosurg. Rev. 2020, 43, 483–495. [Google Scholar] [CrossRef]
- Rubino, S.; Oliver, D.E.; Tran, N.D.; Vogelbaum, M.A.; Forsyth, P.A.; Yu, H.H.M.; Ahmed, K.; Etame, A.B. Improving Brain Metastases Outcomes Through Therapeutic Synergy Between Stereotactic Radiosurgery and Targeted Cancer Therapies. Front. Oncol. 2022, 12, 657. [Google Scholar] [CrossRef]
- Hu, X.; Yu, H.; Zheng, Y.; Zhang, Q.; Lin, M.; Wang, J.; Qiu, Y. Immune Checkpoint Inhibitors and Survival Outcomes in Brain Metastasis: A Time Series-Based Meta-Analysis. Front. Oncol. 2020, 10, 564382. [Google Scholar] [CrossRef]
- Yomo, S.; Oda, K. Impacts of EGFR-Mutation Status and EGFR-TKI on the Efficacy of Stereotactic Radiosurgery for Brain Metastases from Non-Small Cell Lung Adenocarcinoma: A Retrospective Analysis of 133 Consecutive Patients. Lung Cancer 2018, 119, 120–126. [Google Scholar] [CrossRef]
- Kim, J.M.; Miller, J.A.; Kotecha, R.; Chao, S.T.; Ahluwalia, M.S.; Peereboom, D.M.; Mohammadi, A.M.; Barnett, G.H.; Murphy, E.S.; Vogelbaum, M.A.; et al. Stereotactic Radiosurgery with Concurrent HER2-Directed Therapy Is Associated with Improved Objective Response for Breast Cancer Brain Metastasis. Neuro Oncol. 2019, 21, 659–668. [Google Scholar] [CrossRef]
- Sperduto, P.W.; Berkey, B.; Gaspar, L.E.; Mehta, M.; Curran, W. A New Prognostic Index and Comparison to Three Other Indices for Patients with Brain Metastases: An Analysis of 1,960 Patients in the RTOG Database. Int. J. Radiat. Oncol. Biol. Phys. 2008, 70, 510–514. [Google Scholar] [CrossRef]
- Sperduto, P.W.; Chao, S.T.; Sneed, P.K.; Luo, X.; Suh, J.; Roberge, D.; Bhatt, A.; Jensen, A.W.; Brown, P.D.; Shih, H.; et al. Diagnosis-Specific Prognostic Factors, Indexes, and Treatment Outcomes for Patients with Newly Diagnosed Brain Metastases: A Multi-Institutional Analysis of 4259 Patients. Int. J. Radiat Oncol. Biol. Phys. 2010, 77, 655–661. [Google Scholar] [CrossRef]
- Barnholtz-Sloan, J.S.; Sloan, A.E.; Davis, F.G.; Vigneau, F.D.; Lai, P.; Sawaya, R.E. Incidence Proportions of Brain Metastases in Patients Diagnosed (1973 to 2001) in the Metropolitan Detroit Cancer Surveillance System. J. Clin. Oncol. 2004, 22, 2865–2872. [Google Scholar] [CrossRef]
- Nayak, L.; Lee, E.Q.; Wen, P.Y. Epidemiology of Brain Metastases. Curr. Oncol. Rep. 2012, 14, 48–54. [Google Scholar] [CrossRef]
- Berghoff, A.S.; Schur, S.; Füreder, L.M.; Gatterbauer, B.; Dieckmann, K.; Widhalm, G.; Hainfellner, J.; Zielinski, C.C.; Birner, P.; Bartsch, R.; et al. Descriptive Statistical Analysis of a Real Life Cohort of 2419 Patients with Brain Metastases of Solid Cancers. ESMO Open 2016, 1, 000024. [Google Scholar] [CrossRef] [Green Version]
- Kanada, M.; Bachmann, M.H.; Contag, C.H. Signaling by Extracellular Vesicles Advances Cancer Hallmarks. Trends Cancer 2016, 2, 84–94. [Google Scholar] [CrossRef]
- Hoshino, A.; Costa-Silva, B.; Shen, T.L.; Rodrigues, G.; Hashimoto, A.; Tesic Mark, M.; Molina, H.; Kohsaka, S.; di Giannatale, A.; Ceder, S.; et al. Tumour Exosome Integrins Determine Organotropic Metastasis. Nature 2015, 527, 329–335. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, G.; Hoshino, A.; Kenific, C.M.; Matei, I.R.; Steiner, L.; Freitas, D.; Kim, H.S.; Oxley, P.R.; Scandariato, I.; Casanova-Salas, I.; et al. Tumour Exosomal CEMIP Protein Promotes Cancer Cell Colonization in Brain Metastasis. Nat. Cell Biol. 2019, 21, 1403–1412. [Google Scholar] [CrossRef]
- Sevenich, L.; Bowman, R.L.; Mason, S.D.; Quail, D.F.; Rapaport, F.; Elie, B.T.; Brogi, E.; Brastianos, P.K.; Hahn, W.C.; Holsinger, L.J.; et al. Analysis of Tumor- and Stroma-Supplied Proteolytic Networks Reveals a Brain Metastasis-Promoting Role for Cathepsin S. Nat. Cell Biol. 2014, 16, 876–888. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Wang, C.; Zhang, Y.; Zhao, X.Y.; Huang, B.; Wu, P.F.; Li, Q.; Li, H.; Liu, Y.S.; Cao, L.Y.; et al. Elevated PLGF Contributes to Small-Cell Lung Cancer Brain Metastasis. Oncogene 2013, 32, 2952–2962. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Chen, L.; Li, L.; Cao, Y. Exosomes Derived from Brain Metastatic Breast Cancer Cells Destroy the Blood-Brain Barrier by Carrying LncRNA GS1-600G8.5. BioMed. Res. Int. 2020, 2020, 7461727. [Google Scholar] [CrossRef]
- Tominaga, N.; Kosaka, N.; Ono, M.; Katsuda, T.; Yoshioka, Y.; Tamura, K.; Lötvall, J.; Nakagama, H.; Ochiya, T. Brain Metastatic Cancer Cells Release MicroRNA-181c-Containing Extracellular Vesicles Capable of Destructing Blood-Brain Barrier. Nat. Commun. 2015, 6, 6716. [Google Scholar] [CrossRef] [Green Version]
- Zhou, W.; Fong, M.Y.; Min, Y.; Somlo, G.; Liu, L.; Palomares, M.R.; Yu, Y.; Chow, A.; O’Connor, S.T.F.; Chin, A.R.; et al. Cancer-Secreted MiR-105 Destroys Vascular Endothelial Barriers to Promote Metastasis. Cancer Cell 2014, 25, 501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xing, F.; Sharma, S.; Liu, Y.; Mo, Y.Y.; Wu, K.; Zhang, Y.Y.; Pochampally, R.; Martinez, L.A.; Lo, H.W.; Watabe, K. MiR-509 Suppresses Brain Metastasis of Breast Cancer Cells by Modulating RhoC and TNF-α. Oncogene 2015, 34, 4890–4900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seike, T.; Fujita, K.; Yamakawa, Y.; Kido, M.A.; Takiguchi, S.; Teramoto, N.; Iguchi, H.; Noda, M. Interaction between Lung Cancer Cells and Astrocytes via Specific Inflammatory Cytokines in the Microenvironment of Brain Metastasis. Clin. Exp. Metastasis 2011, 28, 13–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sierra, A.; Price, J.E.; García-Ramirez, M.; Méndez, O.; López, L.; Fabra, A. Astrocyte-Derived Cytokines Contribute to the Metastatic Brain Specificity of Breast Cancer Cells. Lab. Investig. 1997, 77, 357–368. [Google Scholar] [PubMed]
- Zhang, L.; Zhang, S.; Yao, J.; Lowery, F.J.; Zhang, Q.; Huang, W.C.; Li, P.; Li, M.; Wang, X.; Zhang, C.; et al. Microenvironment-Induced PTEN Loss by Exosomal MicroRNA Primes Brain Metastasis Outgrowth. Nature 2015, 527, 100. [Google Scholar] [CrossRef] [Green Version]
- Schulz, M.; Michels, B.; Niesel, K.; Stein, S.; Farin, H.; Rödel, F.; Sevenich, L. Cellular and Molecular Changes of Brain Metastases-Associated Myeloid Cells during Disease Progression and Therapeutic Response. iScience 2020, 23, 101178. [Google Scholar] [CrossRef]
- Simon, A.; Yang, M.; Marrison, J.L.; James, A.D.; Hunt, M.J.; O’Toole, P.J.; Kaye, P.M.; Whittington, M.A.; Chawla, S.; Brackenbury, W.J. Metastatic Breast Cancer Cells Induce Altered Microglial Morphology and Electrical Excitability In Vivo. J. Neuro Inflamm. 2020, 17, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Pukrop, T.; Dehghani, F.; Chuang, H.N.; Lohaus, R.; Bayanga, K.; Heermann, S.; Regen, T.; van Rossum, D.; Klemm, F.; Schulz, M.; et al. Microglia Promote Colonization of Brain Tissue by Breast Cancer Cells in a Wnt-Dependent Way. Glia 2010, 58, 1477–1489. [Google Scholar] [CrossRef]
- Izraely, S.; Ben-Menachem, S.; Sagi-Assif, O.; Telerman, A.; Zubrilov, I.; Ashkenazi, O.; Meshel, T.; Maman, S.; Orozco, J.I.J.; Salomon, M.P.; et al. The Metastatic Microenvironment: Melanoma–Microglia Cross-Talk Promotes the Malignant Phenotype of Melanoma Cells. Int. J. Cancer 2019, 144, 802–817. [Google Scholar] [CrossRef]
- Chuang, H.N.; van Rossum, D.; Sieger, D.; Siam, L.; Klemm, F.; Bleckmann, A.; Bayerlová, M.; Farhat, K.; Scheffel, J.; Schulz, M.; et al. Carcinoma Cells Misuse the Host Tissue Damage Response to Invade the Brain. Glia 2013, 61, 1331–1346. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, H.; Blacher, E.; Amer, M.; Livneh, N.; Abramovitz, L.; Klein, A.; Ben-Shushan, D.; Soffer, S.; Blazquez, R.; Barrantes-Freer, A.; et al. Incipient Melanoma Brain Metastases Instigate Astrogliosis and Neuroinflammation. Cancer Res. 2016, 76, 4359–4371. [Google Scholar] [CrossRef] [Green Version]
- Qiao, S.; Qian, Y.; Xu, G.; Luo, Q.; Zhang, Z. Long-Term Characterization of Activated Microglia/Macrophages Facilitating the Development of Experimental Brain Metastasis through Intravital Microscopic Imaging. J. Neuro Inflamm. 2019, 16, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Peters, A.; Schweiger, U.; Pellerin, L.; Hubold, C.; Oltmanns, K.M.; Conrad, M.; Schultes, B.; Born, J.; Fehm, H.L. The Selfish Brain: Competition for Energy Resources. Neurosci. Biobehav. Rev. 2004, 28, 143–180. [Google Scholar] [CrossRef]
- Lowery, F.J.; Yu, D. Brain Metastasis: Unique Challenges and Open Opportunities. Biochim. Biophys. Acta Rev. Cancer 2017, 1867, 49–57. [Google Scholar] [CrossRef] [Green Version]
- Winkler, F. The Brain Metastatic Niche. J. Mol. Med. 2015, 93, 1213–1220. [Google Scholar] [CrossRef]
- Neman, J.; Termini, J.; Wilczynski, S.; Vaidehi, N.; Choy, C.; Kowolik, C.M.; Li, H.; Hambrecht, A.C.; Roberts, E.; Jandial, R. Human Breast Cancer Metastases to the Brain Display GABAergic Properties in the Neural Niche. Proc. Natl. Acad. Sci. USA 2014, 111, 984–989. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Lee, H.J.; Wu, X.; Huo, L.; Kim, S.J.; Xu, L.; Wang, Y.; He, J.; Bollu, L.R.; Gao, G.; et al. Gain of Glucose-Independent Growth upon Metastasis of Breast Cancer Cells to the Brain. Cancer Res. 2015, 75, 554. [Google Scholar] [CrossRef] [Green Version]
- Jin, X.; Demere, Z.; Nair, K.; Ali, A.; Ferraro, G.B.; Natoli, T.; Deik, A.; Petronio, L.; Tang, A.A.; Zhu, C.; et al. A Metastasis Map of Human Cancer Cell Lines. Nature 2020, 588, 331–336. [Google Scholar] [CrossRef]
- Ferraro, G.B.; Ali, A.; Luengo, A.; Kodack, D.P.; Deik, A.; Abbott, K.L.; Bezwada, D.; Blanc, L.; Prideaux, B.; Jin, X.; et al. Fatty Acid Synthesis Is Required for Breast Cancer Brain Metastasis. Nat. Cancer 2021, 2, 414–428. [Google Scholar] [CrossRef]
- Song, Z.; Yang, L.; Zhou, Z.; Li, P.; Wang, W.; Cheng, G.; Chen, R.; Chang, L.; Zhang, Y.; Guan, Y.; et al. Genomic Profiles and Tumor Immune Microenvironment of Primary Lung Carcinoma and Brain Oligo-Metastasis. Cell Death Dis. 2021, 12, 106. [Google Scholar] [CrossRef] [PubMed]
- Fukumura, K.; Malgulwar, P.B.; Fischer, G.M.; Hu, X.; Mao, X.; Song, X.; Hernandez, S.D.; Zhang, X.H.F.; Zhang, J.; Parra, E.R.; et al. Multi-Omic Molecular Profiling Reveals Potentially Targetable Abnormalities Shared across Multiple Histologies of Brain Metastasis. Acta Neuropathol. 2021, 141, 303–321. [Google Scholar] [CrossRef] [PubMed]
- Shih, D.J.H.; Nayyar, N.; Bihun, I.; Dagogo-Jack, I.; Gill, C.M.; Aquilanti, E.; Bertalan, M.; Kaplan, A.; D’Andrea, M.R.; Chukwueke, U.; et al. Genomic Characterization of Human Brain Metastases Identifies Drivers of Metastatic Lung Adenocarcinoma. Nat. Genet. 2020, 52, 371–377. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Liu, Z.; Han, R.; Li, L.; Wang, M.; Huang, D.; He, Y. Genetic Heterogeneity Between Paired Primary and Brain Metastases in Lung Adenocarcinoma. Clin. Med. Insights Oncol. 2020, 14, 1179554920947335. [Google Scholar] [CrossRef]
- Dono, A.; Takayasu, T.; Yan, Y.; Bundrant, B.E.; Arevalo, O.; Lopez-Garcia, C.A.; Esquenazi, Y.; Ballester, L.Y. Differences in Genomic Alterations Between Brain Metastases and Primary Tumors. Neurosurgery 2021, 88, 592–602. [Google Scholar] [CrossRef]
- Aljohani, H.M.; Aittaleb, M.; Furgason, J.M.; Amaya, P.; Deeb, A.; Chalmers, J.J.; Bahassi, E.M. Genetic Mutations Associated with Lung Cancer Metastasis to the Brain. Mutagenesis 2018, 33, 137–145. [Google Scholar] [CrossRef]
- Liao, L.; Ji, X.; Ge, M.; Zhan, Q.; Huang, R.; Liang, X.; Zhou, X. Characterization of Genetic Alterations in Brain Metastases from Non-Small Cell Lung Cancer. FEBS Open Bio 2018, 8, 1544–1552. [Google Scholar] [CrossRef]
- Siegel, M.B.; He, X.; Hoadley, K.A.; Hoyle, A.; Pearce, J.B.; Garrett, A.L.; Kumar, S.; Moylan, V.J.; Brady, C.M.; van Swearingen, A.E.D.; et al. Integrated RNA and DNA Sequencing Reveals Early Drivers of Metastatic Breast Cancer. J. Clin. Investig. 2018, 128, 1371–1383. [Google Scholar] [CrossRef]
- Tyran, M.; Carbuccia, N.; Garnier, S.; Guille, A.; Adelaïde, J.; Finetti, P.; Toulzian, J.; Viens, P.; Tallet, A.; Goncalves, A.; et al. A Comparison of DNA Mutation and Copy Number Profiles of Primary Breast Cancers and Paired Brain Metastases for Identifying Clinically Relevant Genetic Alterations in Brain Metastases. Cancers 2019, 11, 665. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Chakravarti, N.; Aardalen, K.; Lazar, A.J.; Tetzlaff, M.T.; Wubbenhorst, B.; Kim, S.B.; Kopetz, S.; Ledoux, A.A.; Vashisht Gopal, Y.N.; et al. Molecular Profiling of Patient-Matched Brain and Extracranial Melanoma Metastases Implicates the PI3K Pathway as a Therapeutic Target. Clin. Cancer Res. 2014, 20, 5537–5546. [Google Scholar] [CrossRef]
- Hu, Z.; Ding, J.; Ma, Z.; Sun, R.; Seoane, J.A.; Scott Shaffer, J.; Suarez, C.J.; Berghoff, A.S.; Cremolini, C.; Falcone, A.; et al. Quantitative Evidence for Early Metastatic Seeding in Colorectal Cancer. Nat. Genet. 2019, 51, 1113–1122. [Google Scholar] [CrossRef]
- Sun, J.; Wang, C.; Zhang, Y.; Xu, L.; Fang, W.; Zhu, Y.; Zheng, Y.; Chen, X.; Xie, X.; Hu, X.; et al. Genomic Signatures Reveal DNA Damage Response Deficiency in Colorectal Cancer Brain Metastases. Nat. Commun. 2019, 10, 3190. [Google Scholar] [CrossRef] [Green Version]
- Choi, Y.J.; Kim, S.Y.; Park, H.C.; Chung, Y.J.; Hur, S.Y.; Lee, S.H. Integrative Immunologic and Genomic Characterization of Brain Metastasis from Ovarian/Peritoneal Cancer. Pathol. Res. Pract. 2019, 215, 152404. [Google Scholar] [CrossRef]
- Brastianos, P.K.; Carter, S.L.; Santagata, S.; Cahill, D.P.; Taylor-Weiner, A.; Jones, R.T.; van Allen, E.M.; Lawrence, M.S.; Horowitz, P.M.; Cibulskis, K.; et al. Genomic Characterization of Brain Metastases Reveals Branched Evolution and Potential Therapeutic Targets. Cancer Discov. 2015, 5, 1164–1177. [Google Scholar] [CrossRef] [Green Version]
- van Allen, E.M.; Wagle, N.; Stojanov, P.; Perrin, D.L.; Cibulskis, K.; Marlow, S.; Jane-Valbuena, J.; Friedrich, D.C.; Kryukov, G.; Carter, S.L.; et al. Whole-Exome Sequencing and Clinical Interpretation of Formalin-Fixed, Paraffin-Embedded Tumor Samples to Guide Precision Cancer Medicine. Nat. Med. 2014, 20, 682–688. [Google Scholar] [CrossRef]
- Song, S.G.; Kim, S.; Koh, J.; Yim, J.; Han, B.; Kim, Y.A.; Jeon, Y.K.; Chung, D.H. Comparative Analysis of the Tumor Immune-Microenvironment of Primary and Brain Metastases of Non-Small-Cell Lung Cancer Reveals Organ-Specific and EGFR Mutation-Dependent Unique Immune Landscape. Cancer Immunol. Immunother. 2021, 70, 2035–2048. [Google Scholar] [CrossRef]
- Jiang, T.; Fang, Z.; Tang, S.; Cheng, R.; Li, Y.; Ren, S.; Su, C.; Min, W.; Guo, X.; Zhu, W.; et al. Mutational Landscape and Evolutionary Pattern of Liver and Brain Metastasis in Lung Adenocarcinoma. J. Thorac. Oncol. 2021, 16, 237–249. [Google Scholar] [CrossRef]
- Saunus, J.M.; Quinn, M.C.J.; Patch, A.M.; Pearson, J.v.; Bailey, P.J.; Nones, K.; McCart Reed, A.E.; Miller, D.; Wilson, P.J.; Al-Ejeh, F.; et al. Integrated Genomic and Transcriptomic Analysis of Human Brain Metastases Identifies Alterations of Potential Clinical Significance. J. Pathol. 2015, 237, 363–378. [Google Scholar] [CrossRef]
- Lee, W.C.; Reuben, A.; Hu, X.; McGranahan, N.; Chen, R.; Jalali, A.; Negrao, M.v.; Hubert, S.M.; Tang, C.; Wu, C.C.; et al. Multiomics Profiling of Primary Lung Cancers and Distant Metastases Reveals Immunosuppression as a Common Characteristic of Tumor Cells with Metastatic Plasticity. Genome. Biol. 2020, 21, 271. [Google Scholar] [CrossRef]
- Hong, M.K.H.; Macintyre, G.; Wedge, D.C.; van Loo, P.; Patel, K.; Lunke, S.; Alexandrov, L.B.; Sloggett, C.; Cmero, M.; Marass, F.; et al. Tracking the Origins and Drivers of Subclonal Metastatic Expansion in Prostate Cancer. Nat. Commun. 2015, 6, 6605. [Google Scholar] [CrossRef] [Green Version]
- Vergara, I.A.; Mintoff, C.P.; Sandhu, S.; McIntosh, L.; Young, R.J.; Wong, S.Q.; Colebatch, A.; Cameron, D.L.; Kwon, J.L.; Wolfe, R.; et al. Evolution of Late-Stage Metastatic Melanoma Is Dominated by Aneuploidy and Whole Genome Doubling. Nat. Commun. 2021, 12, 1434. [Google Scholar] [CrossRef]
Study | Sequencing Method | Cohort | Sample Type | Pathology | Genes Amplified, Overexpressed, Activated, or Gain of Function | Genes Loss, Suppressed, Inactivated, or Loss of Function | Genes Mutated |
---|---|---|---|---|---|---|---|
Z. Song et al. [51] | Next-Gen Panel sequencing | 32 BMs and 25 primaries (24 matched samples plus 8 with only BMs and 1 with only primary) | FFPE | Lung | EGFR | TP53 (50 versus 40%), ZFHX3 (28 versus 40%) | RBM10 * (6 versus 28%), ARID1B, MLL3, FAT2 |
K. Fukumura et al. [52] | WES, RNA-seq | 14 matched samples | Fresh-frozen and FFPE | Lung | EGFR (4/14 versus 1/14) | TP53, ATM (4/14 versus 3/14), LRP1B (9/14 versus 7/14), PTPRD (7/14 versus 6/14), FAT1(6/14 versus 5/14) | MLL2 (3/14 versus 2/14), MLL3 (6/14 versus 4/14) |
D.J.H. Shih et al. [53] | WES | Unmatched 73 BM and 513 primaries LUAD sequenced by TCGA | Fresh-frozen and FFPE | LUAD | MYC * (12 versus 6%), YAP1 * (7 versus 0.8%), MMP13 * (10 versus 0.6%), KEAP1, EGFR, TERT | CDKN2A/B * (27 versus 13%), SKT11, TP53 | KRAS |
L. Li et al. [54] | WES | 7 matched samples with BM and primaries | FFPE | LUAD | EGFR, ADAMTSs, NKX2-1, DDR2, MAPK3, MCL1, MYC | TP53, SMAD2, SMAD4 | FAM129C, NOTCH1, EPHA5, ATP2B1 |
A. Dono et al. [55] | Next-Gen Panel sequencing | 60 unmatched samples | Unspecified | LUAD | -- | TP53 *, APC *, ATR * | -- |
A. Dono et al. [55] | Next-Gen Panel sequencing | 10 unmatched samples | Unspecified | SCLC | FGF10 * | -- | ARID1A* |
H.M. Aljohani et al. [56] | WGS | 5 matched BM and primary | Unspecified | NSCLC | KEAP1, Nrf2 *, EP300 * (4/5 versus 0/5) | -- | -- |
L. Liao et al. [57] | WES, Next-Gen Panel sequencing | 6 matched samples with BM and primaries | FFPE | NSCLC | EGFR | TP53, ATXN1, LRP1B, MSH2, FANCD2 | NOTCH2/NOTCH2NL |
K. Fukumura et al. [52] | WES, RNA-seq | 14 matched samples | Fresh-frozen and FFPE | Breast | HER2 (43 versus 29%), CDK12 (43 versus 29%) | TP53 | -- |
M. B. Siegel et al. [58] | WES, RNA-seq | 16 matched samples | Fresh-frozen and FFPE | Breast | ANGPT1, LYN, SDC2, SHC1, GDNF, TERT. Basal-like (TN) specific: CCNE1, CUL1, CDK5, RBBP4, HDAC1, BCAN | FAS, PIK3R1, AURKB, TP53. Basal-like (TN) specific: RAD51 | ESR1 |
M. Tyran et al. [59] | Whole genome array comparative genomic hybridization | 14 matched samples | Fresh-frozen | Breast | CCND1, MYC, HER2, PIK3CA | TP53, RB1 | MLL2, MLL3, COL6A3, MDM4 |
A. Dono et al. [55] | Next-Gen Panel sequencing | 21 BMs and primary data sequenced by COSMIC and TCGA | Unspecified | Breast | HER2 *, ASXL1 * | BRCA2 * | -- |
A. Dono et al. [55] | Next-Gen Panel sequencing | 14 BMs and primary data sequenced by COSMIC and TCGA | Unspecified | Melanoma | AXL *, FLT4 * | CDKN2A/B *, PTEN * | RUNX1T1 * |
G. Chen et al. [60] | Whole genome wide expression profiling | 16 matched melanoma BM and extracranial metastases | Fresh-frozen and FFPE | Melanoma | TBX2, SGK3, SGSM2, ELOVL2 | CDKN2A *, PTEN | -- |
Z. Hu et al. [61] | WES | 10 matched CRC BM and primary | FFPE | CRC | PIK3CA, GNAS, SRC, FXR1, MUC4, GPC6, MECOM, HTR2A * | -- | -- |
J. Sun et al. [62] | WES, WGS | 19 matched CRC BM and primary | FFPE | CRC | -- | RAD51, PAXIP1, XRCC4 | MUC19, SCN7A, SCN5A, SCN2A, IKZF1, PDZRN4 |
K. Fukumura et al. [52] | WES, RNA-seq | 6 matched samples | Fresh-frozen and FFPE | RCC | PIK3CB | BAP1, VHL | TP53 |
Y. J. Choi et al. [63] | WES | 1 matched BM and primary | FFPE | Peritoneal | -- | RAP1GDS1, TET2, IL2 | -- |
Y. J. Choi et al. [63] | WES | 1 matched BM and primary | FFPE | Ovarian | -- | RAP1GDS1, TET2, IL2 | -- |
Gene | Gene Function | Types of BM | Targeted Therapy |
---|---|---|---|
EGFR | Epithelial growth factor receptor, cell growth and proliferation | Lung | EGFR inhibitors: Erlotinib, Gefitinib, etc. |
TP53 | Tumor suppressor | Lung, breast, CRC | -- |
APC | Tumor suppressor | LUAD, CRC | -- |
PTEN | Tumor suppressor | Lung, breast, melanoma | -- |
ATR | Tumor suppressor | LUAD | -- |
RB1 | Tumor suppressor, cell cycle regulator | Breast | -- |
MSH2 | DNA repair, tumor suppressor | Lung | |
RBM10 | RNA-binding Motifs (RBM) which belong to a large family of RNA-binding proteins, post-translational processing, probably mRNA splicing | Lung | -- |
ZFHX3 | Tumor suppressor, transcription factor | Lung | -- |
ARID1A/ARID1B | Tumor suppressor, member of SWI/SNF chromatin remodeling complex | Lung | -- |
FAT1/FAT2 | FAT atypical cadherin 1, FAT atypical cadherin 2, cell proliferation, migration, and invasion | Lung | Potential target for therapy |
MLL3 | Lysine methyltransferase, chromatin-regulating gene | Lung | -- |
MLL2 | Lysine methyltransferase, chromatin-regulating gene | Lung | -- |
ATM | Serine/threonine protein kinase, DNA repair, cell cycle checkpoint | Lung | Potential targeted therapy: PARP inhibitor such as Rucaparib |
LRP1B | Tumor suppressor, member of low-density lipoprotein receptor family | Lung | -- |
ATXN1 | Chromatin-binding factor that represses Notch signaling | Lung | -- |
PTPRD | Protein tyrosine phosphatases receptor D, tumor suppressor | Lung | -- |
MYC | Cell progression, apoptosis, and cellular transformation in EGFR pathway | LUAD, breast | -- |
YAP1 | Regulatory factor in the Hippo signaling pathway that regulate cell proliferation, death, and migration | LUAD | -- |
MMP13 | Matrix degradation, cell invasion | LUAD | -- |
CDKN2A/B | Tumor suppressor, cell cycle checkpoint | LUAD, melanoma | CD4/6 inhibitors |
KRAS | Cell proliferation | LUAD | KRAS inhibitors |
SKT11 | Tumor suppressor, serine/threonine-protein kinases | LUAD | Potential target of Bemcentinib, Everolimus, Talazoparib |
KEAP1, Nrf-2, EP300 | Involved in KEAP-Nrf2-ARE pathway, cell survival signaling under oxidative stress | LUAD, NSCLC | -- |
CREBBP | Transcriptional factor | LUAD | -- |
FAM129C | Niban apoptosis regulator 3, unclear function | LUAD | -- |
DDR2 | Receptor tyrosine kinase, ECM remodeling by up-regulating collagenases | LUAD | TKIs such as Sorafenib |
MAPK3 | Mitogen-activated protein kinase | LUAD | EGFR inhibitor |
MCL1 | Anti-apoptotic protein, enhance survival by inhibiting apoptosis | LUAD | CDK inhibitors |
NOTCH1, NOTCH2/NOTCH2NL | Notch receptor family in Notch signaling pathway | Lung | Notch inhibitors |
FANCD2 | Tumor suppressor, DNA repair, | NSCLC | -- |
ADAMTS6/ ADAMTS20 | ADAMTS family of zinc-dependent proteases, ECM remodeling | LUAD | -- |
FGF10 | Fibroblast growth factor 10, cell proliferation and differentiation | SCLC | -- |
NKX2-1 | Thyroid transcription factor 1 | LUAD | -- |
SMAD2/SMAD4 | Transcription regulator, involved in TGF-beta receptor signaling pathway | LUAD | -- |
HER2/HER3 | Human epithelial growth factors, tyrosine kinase | Breast | HER2 inhibitors, tyrosine kinase inhibitors |
ANGPT1 | Vascular development, angiogenesis | Breast | Angioprotien-1 inhibitor: Trebananib |
LYN | Protein tyrosine kinase, proto-oncogene | Breast | TKIs such as Bafetinib |
SDC2 | Cell surface proteoglycan | Breast | -- |
SHC1 | Signaling adaptor, participate in angiogenesis and endothelial cells recruitment | Breast | -- |
GDNF | Glial cell line-derived neurotrophic factor, promotes survival and differentiation of neurons | Breast | -- |
TERT | Telomerase reverse transcriptase, telomere ends maintenance, cell senescence | Breast | -- |
CUL1 | Cullin 1, enables ubiquitin protein ligase-binding activity | Breast | -- |
PIK3R1 | Regulatory subunit of PIK3CA | Breast | |
FAS | Critical in apoptosis cascade | Breast | |
AURKB | Cell cycle pathway inhibitor | Breast | |
CDK5 | Cyclin-dependent kinase 5 | Basal-like breast | -- |
RBBP4 | Chromatin remodeling factor, cell cycle progression | Basal-like breast | |
HDAC1 | Histone deacetylase, transcriptional regulation, cell cycle progression | Basal-like breast | |
BCAN | Proteoglycan, involved with formation of ECM in brain, promote growth and motility in brain tumor cells | Basal-like breast | |
RAD51 | Tumor suppressor, DNA repair | Basal-like breast | -- |
ESR1 | Estrogen receptor 1 | Luminal breast | Estrogen receptor antagonist/Hormone replacement agents |
CCND1/CCNE1 | Cyclin D1, E1 cell cycle progression | Breast | -- |
FGFR4 | Fibroblast growth factor receptor 4 | Breast | -- |
PIK3CA/PIK3CB | Protein tyrosine kinase | Breast, CRC | TKIs such as Idelalisib, Copanlisib |
ASXL1 | Chromatin-binding protein, transcription regulator | Breast | -- |
COL6A3 | Encoding for one of the 3 alpha-3 chain of type VI collagen, important for ECM organization | Breast | -- |
MDM4 | Regulator of TP53, cell apoptosis | Breast | -- |
BRCA2 | Tumor suppressor | Breast | -- |
RUNX1/RUNX1T1 | RUNX family transcription factor/RUNX family transcription factor co-Repressor | Melanoma | -- |
AXL | Receptor tyrosine kinase | Melanoma | TKIs such as Bemcentinib, Crizontibin |
FLT4 | Protein tyrosine kinase, lymphangiogenesis | Melanoma | TKIs such as Lenvatinib |
TBX2 | T box transcription factor, EMT, cell invasion | Melanoma | -- |
SGK3 | Serine/threonine-protein kinase, cell growth, proliferation, and migration | Melanoma | -- |
SGSM2 | GTPase activator that regulates melanogenesis | Melanoma | -- |
ELOVL2 | Fatty acid elongation, process membrane lipids | CRC | |
GNAS | Guanine nucleotide-binding protein | CRC | |
SRC | Proto-oncogene, non-receptor tyrosine kinase | CRC | Dasatinib, Bosutinib, Tirbanibulin |
FXR1 | RNA-binding protein | CRC | |
MUC4/MUC19/MUC17 | Gel-forming mucin protein family, major constitutes of mucus | CRC | |
GPC6 | Proteoglycans | CRC | |
MECOM | Transcriptional regulator, oncogene, cell proliferation and differentiation | CRC | |
HTR2A | Serotonin receptor | CRC | -- |
SCN7A/SCN5A/SCN2A | Voltage-gated sodium channel proteins | CRC | Sodium channel blocker |
IKZF1 | Transcriptional factor, chromatin remodeling, hematopoietic cell differentiation | CRC | -- |
PDZRN4 | Expressed in normal colon and nerves, tumor suppressor in liver cancer | CRC | -- |
PAXIP1 | DNA repair, tumor suppressor | CRC | -- |
XRCC4 | DNA repair, tumor suppressor | CRC | -- |
RAP1GDS1 | Rap1 GTPase-GDP Dissociation Stimulator 1 | Ovarian, peritoneal | -- |
TET2 | Methylcytosine dioxygenase, myelopoiesis | Ovarian, peritoneal | -- |
IL2 | Interleukin 2 | Ovarian, peritoneal | -- |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campbell, B.K.; Gao, Z.; Corcoran, N.M.; Stylli, S.S.; Hovens, C.M. Molecular Mechanisms Driving the Formation of Brain Metastases. Cancers 2022, 14, 4963. https://doi.org/10.3390/cancers14194963
Campbell BK, Gao Z, Corcoran NM, Stylli SS, Hovens CM. Molecular Mechanisms Driving the Formation of Brain Metastases. Cancers. 2022; 14(19):4963. https://doi.org/10.3390/cancers14194963
Chicago/Turabian StyleCampbell, Bethany K., Zijie Gao, Niall M. Corcoran, Stanley S. Stylli, and Christopher M. Hovens. 2022. "Molecular Mechanisms Driving the Formation of Brain Metastases" Cancers 14, no. 19: 4963. https://doi.org/10.3390/cancers14194963
APA StyleCampbell, B. K., Gao, Z., Corcoran, N. M., Stylli, S. S., & Hovens, C. M. (2022). Molecular Mechanisms Driving the Formation of Brain Metastases. Cancers, 14(19), 4963. https://doi.org/10.3390/cancers14194963