Liquid Biopsy-Guided Interventional Oncology: A Proof of Concept with a Special Focus on Radiotherapy and Radiology
Abstract
:Simple Summary
Abstract
1. Introduction
2. Impact of Liquid Biopsy in Radiotherapy
- Characterization and quantifications of CTCs correspond to the identification and quantification of specific MRD [21].
- In oligometastatic patients, the presence of CTCs in peripheral blood reflects the persistence of tumor lesions and their high probable access to the systemic bloodstream [22].
- In patients with multimetastatic disease, CTCs can be identified as a longitudinal scan of the heterogeneous cell clonality [23].
- The endothelial cell subtype, circulating endothelial cells (CECs), and endothelial progenitor cells (EPCs) provide useful information about tumor angiogenesis and when associated with cardiovascular parameters, as well as side effects due to anticancer treatment on heart function [18].
2.1. Minimal Residual Disease Assessment in Radiotherapy by Circulating Tumor DNA
2.2. Minimal Residual Disease Assessment in Radiotherapy by Circulating Tumor Cells
2.3. Minimal Residual Disease Assessment in Radiotherapy by Circulating Exosomes
3. The “Liquid Redundancy” of Interventional Oncology
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Schoenberg, S.O.; Attenberger, U.I.; Solomon, S.B.; Weissleder, R. Developing a Roadmap for interventional Oncology. Oncologist 2018, 23, 1162–1170. [Google Scholar] [CrossRef]
- Aycock, K.N.; Davalos, R.V. Irreversible Electroporation: Background, Theory, and Review of recent developments in Clinical Oncology. Bioelectricity 2019, 1, 214–234. [Google Scholar] [CrossRef]
- Saddawi-Konefka, R.; Simon, A.B.; Sumner, W.; Sharabi, A.; Mell, L.K.; Cohen, E.E.W. Defining the Role of Immunotherapy in the Curative Treatment of Locoregionally Advanced Head and Neck Cancer: Promises, Challenges, and Opportunities. Front. Oncol. 2021, 11, 738626. [Google Scholar] [CrossRef]
- Pessina, F.; Navarria, P.; Cozzi, L.; Ascolese, A.M.; Maggi, G.; Riva, M.; Masci, G.; D’Agostino, G.; Finocchiaro, G.; Santoro, A.; et al. Outcome Evaluation of Oligometastatic Patients Treated with Surgical Resection Followed by Hypofractionated Stereotactic Radiosurgery (HSRS) on the Tumor Bed, for Single, Large Brain Metastases. PLoS ONE 2016, 11, 738626. [Google Scholar] [CrossRef]
- Cowen, D.; Jacquemier, J.; Houvenaeghel, G.; Viens, P.; Puig, B.; Bardou, V.J.; Resbeut, M.; Maraninchi, D. Local and distant recurrence after conservative management of “very low-risk” breast cancer are dependent events: A 10-year follow-up. Int. J. Radiat. Oncol.-Biol.–Phys. 1998, 41, 801–807. [Google Scholar] [CrossRef]
- Luskin, M.R.; Murakami, M.A.; Manalis, S.R.; Weinstock, D.M. Targeting minimal residual disease: A path to cure? Nat. Rev. Cancer 2018, 18, 55–263. [Google Scholar] [CrossRef]
- Hoelzer, D.; Bassan, R.; Dombret, H.; Fielding, A.; Ribera, J.M.; Buske, C. Acute lymphoblastic leukemia in adult patients: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2020, 6, 697–712. [Google Scholar] [CrossRef]
- Alimirzaie, S.; Bagherzadeh, M.; Akbari, M.R. Liquid biopsy in breast cancer: A comprehensive review. Clin. Genet. 2019, 6, 643–660. [Google Scholar] [CrossRef]
- Volpentesta, G.; Donato, G.; Ferraro, E.; Mignogna, C.; Radaelli, R.; Sabatini, U.; La Torre, D.; Malara, N. Pilocytic Astrocytoma-Derived Cells in Peripheral Blood: A Case Report. Front. Oncol. 2021, 11, 737730. [Google Scholar] [CrossRef] [PubMed]
- Malara, N.; Guzzi, G.; Mignogna, C.; Trunzo, V.; Camastra, C.; Della Torre, A.; Di Vito, A.; Lavecchia, A.M.; Gliozzi, M.; Ceccotti, C.; et al. Non-invasive real-time biopsy of intracranial lesions using short time expanded circulating tumor cells on glass slide: Report of two cases. BMC Neurol. 2016, 16, 127. [Google Scholar] [CrossRef] [Green Version]
- Malara, N.M.; Leotta, A.; Sidoti, A.; Lio, S.; D’Angelo, R.; Caparello, B.; Munao, F.; Pino, F.; Amato, A. Ageing, hormonal behaviour and cyclin D1 in ductal breast carcinomas. Breast 2006, 15, 81–89. [Google Scholar] [CrossRef]
- Allin, D.; David, S.; Jacob, A.; Mir, N.; Giles, A.; Gibbins, N. Use of core biopsy in diagnosing cervical lymphadenopathy: A viable alternative to surgical excisional biopsy of lymph nodes? Ann. R. Coll. Surg. Engl. 2017, 99, 242–244. [Google Scholar] [CrossRef]
- Lindeman, N.I.; Cagle, P.T.; Beasley, M.B.; Chitale, D.A.; Dacic, S.; Giaccone, G.; Jenkins, R.B.; Kwiatkowski, D.J.; Saldivar, J.S.; Squire, J.; et al. Molecular testing guideline for selection of lung cancer patients for EGFR and ALK tyrosine kinase inhibitors: Guideline from the College of American Pathologists, International Association for the Study of Lung Cancer, and Association for Molecular Pathology. J. Thorac. Oncol. 2013, 8, 823–859. [Google Scholar] [CrossRef]
- Roy, D.; Lucci, A.; Ignatiadis, M.; Jeffrey, S.S. Cell-free circulating tumor DNA profiling in cancer management. Trends Mol. Med. 2021, 27, 1014–1015. [Google Scholar] [CrossRef]
- Roy, D.; Pascher, A.; Juratli, M.A.; Sporn, J.C. The Potential of Aptamer-Mediated Liquid Biopsy for Early Detection of Cancer. Int. J. Mol. Sci. 2021, 22, 5601. [Google Scholar] [CrossRef]
- Shi, Y.; Qiu, B.; Huang, L.; Li, Y.; Ze, Y.; Yao, Y. Exosomes in Liquid Biopsy: A Nanotool for Postradiotherapy Cancer Monitoring. Front. Biosci. (Landmark Ed.) 2022, 27, 205. [Google Scholar] [CrossRef] [PubMed]
- Malara, N.; Gentile, F.; Coppedè, N.; Coluccio, M.L.; Candeloro, P.; Perozziello, G.; Ferrara, L.; Giannetto, M.; Careri, M.; Castellini, A.; et al. Superhydrophobic lab-on-chip measures secretome protonation state and provides a personalized risk assessment of sporadic tumor. Nat. Precis. Oncol. 2018, 2, 26. [Google Scholar] [CrossRef] [PubMed]
- Lanuti, P.; Simeone, P.; Rotta, G.; Almici, C.; Avvisati, G.; Azzaro, R.; Bologna, G.; Budillon, A.; Di Cerbo, M.; Di Gennaro, E.; et al. A standardized flow cytometry network study for the assessment of circulating endothelial cell physiological ranges. Sci. Rep. 2018, 8, 5823. [Google Scholar] [CrossRef]
- Corrò, C.; Buchs, N.C.; Tihy, M.; Durham-Faivre, A.; Bichard, P.; Frossard, J.; Puppa, G.; McKee, T.; Roth, A.; Zilli, T.; et al. Study protocol of a phase II study to evaluate safety and efficacy of neo-adjuvant pembrolizumab and radiotherapy in localized rectal cancer. BMC Cancer 2022, 22, 772. [Google Scholar] [CrossRef]
- Innaro, N.; Gervasi, R.; Ferrazzo, T.; Garo, N.C.; Curto, L.S.; Lavecchia, A.; Aquila, I.; Donato, G.; Malara, N. Minimal residual disease assessment of papillary thyroid carcinoma through circulating tumor cell-based cytology. Cancer Med. 2022, 1–8. [Google Scholar] [CrossRef]
- Rafal, F. An Update on the Role of Extracellular Vesicles in the Pathogenesis of Necrotizing Enterocolitis and Inflammatory Bowel Diseases. Cells 2021, 10, 3202. [Google Scholar] [CrossRef]
- Coluccio, M.L.; Presta, I.; Greco, M.; Gervasi, R.; La Torre, D.; Renne, M.; Voci, C.P.; Lunelli, L.; Donato, G.; Malara, N. Microenvironment Molecular Profile Combining Glycation Adducts and Cytokines Patterns on Secretome of Short-term Blood-derived Cultures during Tumour Progression. Int. J. Mol. Sci. 2020, 21, 4711. [Google Scholar] [CrossRef]
- Malara, N.; Trunzo, V.; Foresta, U.; Amodio, N.; De Vitis, S.; Roveda, L.; Fava, M.G.; Coluccio, M.L.; Macrì, R.; Di Vito, A.; et al. Ex-Vivo characterization of circulating colon cancer cells distinguished in stem and differentiated subset provides useful biomarker for personalized metastatic risk assessment. J. Transl. Med. 2016, 14, 133. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.Y.; Lee, C.L.; Wu, C.F.; Fu, J.Y.; Yang, C.T.; Wen, C.T.; Liu, Y.H.; Liu, H.P.; Hsieh, J.C. Circulating Tumor Cells as a Tool of Minimal Residual Disease Can Predict Lung Cancer Recurrence: A longitudinal, Prospective Trial. Diagnostics 2020, 10, 144. [Google Scholar] [CrossRef] [PubMed]
- Stelcer, E.; Konkol, M.; Głȩboka, A.; Suchorska, W.M. Liquid Biopsy in Oligometastatic Prostate Cancer-A Biologist’s Point of View. Front. Oncol. 2019, 9, 775. [Google Scholar] [CrossRef]
- Huerta, M.; Roselló, S.; Sabater, L.; Ferrer, A.; Tarazona, N.; Roda, D.; Gambardella, V.; Alfaro-Cervelló, C.; Garcés-Albir, M.; Cervantes, A.; et al. Circulating Tumor DNA Detection by Digital-Droplet PCR in Pancreatic Ductal Adenocarcinoma: A Systematic Review. Cancers 2021, 13, 994. [Google Scholar] [CrossRef]
- Howe, J.R. The impact of DNA testing on management of patients with colorectal cancer. Ann. Gastroenterol. Surg. 2021, 6, 17–28. [Google Scholar] [CrossRef]
- Keller, L.; Belloum, Y.; Wikman, H.; Pantel, K. Clinical relevance of blood-based ctDNA analysis: Mutation detection and beyond. Br. J. Cancer 2021, 124, 345–358. [Google Scholar] [CrossRef]
- Phillips, R.; Shi, W.Y.; Deek, M.; Radwan, N.; Lim, S.J.; Antonarakis, E.S.; Rowe, S.P.; Ross, A.E.; Gorin, M.A.; Deville, C.; et al. Outcomes of Observation vs. Stereotactic Ablative Radiation for Oligometastatic Prostate Cancer: The ORIOLE Phase 2 Randomized Clinical Trial. JAMA Oncol. 2020, 6, 650–659. [Google Scholar] [CrossRef]
- Hasan, H.; Deek, M.P.; Phillips, R.; Hobbs, R.F.; Malek, R.; Radwan, N.; Kiess, A.P.; Dipasquale, S.; Huang, J.; Caldwell, T.; et al. A phase II randomized trial of Radium-223 dichloride and SABR Versus SABR for oligometastatic prostate Cancers (RAVENS). BMC Cancer 2020, 20, 492. [Google Scholar] [CrossRef]
- Olson, R.; Mathews, L.; Liu, M.; Schellenberg, D.; Mou, B.; Berrang, T.; Harrow, S.; Correa, R.J.M.; Bhat, V.; Pai, H.; et al. Stereotactic ablative radiotherapy for the comprehensive treatment of 1–3 Oligometastatic tumors (SABR-COMET-3): Study protocol for a randomized phase III trial. BMC Cancer 2020, 20, 380. [Google Scholar] [CrossRef] [PubMed]
- Palma, D.A.; Olson, R.; Harrow, S.; Correa, R.J.M.; Schneiders, F.; Haasbeek, C.J.A.; Rodrigues, G.B.; Lock, M.; Yaremko, B.P.; Bauman, G.S.; et al. Stereotactic ablative radiotherapy for the comprehensive treatment of 4–10 oligometastatic tumors (SABR-COMET-10): Study protocol for a randomized phase III trial. BMC Cancer 2019, 19, 816. [Google Scholar] [CrossRef] [PubMed]
- Sundahl, N.; Seremet, T.; Dorpe, J.V.; Kruse, V.; Ost, P. Phase 2 Trial of Nivolumab Combined with Stereotactic Body Radiation Therapy in Patients With Metastatic or Locally Advanced Inoperable Melanoma. Clin. Investig. 2019, 104, 828–835. [Google Scholar] [CrossRef] [PubMed]
- Kwan, E.M.; Spain, L.; Anton, A.; Gan, C.L.; Garrett, L.; Chang, D.; Liow, E.; Bennett, C.; Zheng, T.; Yu, J.; et al. Avelumab Combined with Stereotactic Ablative Body Radiotherapy in Metastatic Castration-resistant Prostate cancer: The Phase 2 ICE-PAC Clinical Trial. Eur. Urol. 2021, 81, 253–262. [Google Scholar] [CrossRef]
- Fionda, B.; Iezzi, R.; Tagliaferri, L. Evolutionary game theory and oligometastatic patient: Considering the role of interventional oncology. Eur. Rev. Med. Pharm. Sci. 2021, 25, 7272–7274. [Google Scholar] [CrossRef]
- Iezzi, R.; Casà, C.; Posa, A.; Cornacchione, P.; Carchesio, F.; Boldrini, L.; Tanzilli, A.; Cerrito, L.; Fionda, B.; Longo, V.; et al. Project for interventional Oncology LArge-database in liveR Hepatocellular carcinoma—Preliminary CT-based radiomic analysis (POLAR Liver 1.1). Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 2891–2899. [Google Scholar] [CrossRef]
- Tagliaferri, L.; Vavassori, A.; Lancellotta, V.; De Sanctis, V.; Barbera, F.; Fusco, V.; Vidali, C.; Fionda, B.; Colloca, G.; Gambacorta, M.A.; et al. Can brachytherapy be properly considered in the clinical practice? Trilogy project: The vision of the AIRO (Italian Association of Radiotherapy and Clinical Oncology) Interventional Radiotherapy study group. J. Contemp. Brachyther. 2020, 12, 84–89. [Google Scholar] [CrossRef]
- Martin, O.A.; Anderson, R.L.; Russell, P.A.; Cox, R.A.; Ivashkevich, A.; Swierczak, A.; Doherty, J.P.; Jacobs, D.H.; Smith, J.; Siva, S.; et al. Mobilization of viable tumor cells into the circulation during radiation therapy. Int. J. Radiat. Oncol.—Biol.—Phys. 2014, 88, 395–403. [Google Scholar] [CrossRef]
- Chen, S.; Tauber, G.; Langsenlehner, T.; Schmölzer, L.M.; Pötscher, M.; Riethdorf, S.; Kuske, A.; Leitinger, G.; Kashofer, K.; Czyż, Z.T.; et al. In Vivo Detection of Circulating Tumor Cells in High-Risk Non-Metastatic Prostate Cancer Patients Undergoing Radiotherapy. Cancer 2019, 11, 933. [Google Scholar] [CrossRef]
- Koonce, N.A.; Juratli, M.A.; Cai, C.; Sarimollaoglu, M.; Menyaev, Y.A.; Dent, J.; Quick, C.M.; Dings, R.P.M.; Nedosekin, D.; Zharov, V.; et al. Real-time monitoring of circulating tumor cell (CTC) release after nanodrug or tumor radiotherapy using in vivo flow cytometry. Biochem. Biophys. Res. Commun. 2017, 492, 507–512. [Google Scholar] [CrossRef]
- Clarke, J.L.; Chang, S. Pseudoprogression and pseudoresponse: Challenges in brain tumor imaging. Curr. Neurol. Neurosci. Rep. 2009, 9, 241–246. [Google Scholar] [CrossRef] [PubMed]
- Broncy, L.; Paterlini-Bréchot, P. Clinical Impact of Circulating Tumor Cells in Patients with Localized Prostate Cancer. Cells 2019, 8, 676. [Google Scholar] [CrossRef] [PubMed]
- Budna-Tukan, J.; Świerczewska, M.; Mazel, M.; Cieślikowski, W.A.; Ida, A.; Jankowiak, A.; Antczak, A.; Nowicki, M.; Pantel, K.; Azria, D.; et al. Analysis of Circulating Tumor Cells in Patients with Non-Metastatic High-Risk Prostate Cancer before and after Radiotherapy Using Three Different Enumeration Assays. Cancer 2019, 11, 802. [Google Scholar] [CrossRef] [PubMed]
- Ziv, E.; Erinjeri, J.P.; Yarmohammadi, H.; Boas, F.E.; Petre, E.N.; Gao, S.; Shady, W.; Sofocleous, C.T.; Jones, D.R.; Rudin, C.M.; et al. Lung Adenocarcinoma: Predictive Value of KRAS Mutation Status in Assessing Local Recurrence in Patients Undergoing Image-guided Ablation. Radiology 2017, 282, 251. [Google Scholar] [CrossRef]
- Ziv, E.; Bergen, M.; Yarmohammadi, H.; Boas, F.E.; Petre, E.N.; Sofocleous, C.T.; Yaeger, R.; Solit, D.B.; Solomon, S.B.; Erinjeri, J.P. PI3K pathway mutations are associated with a longer time to local progression after radioembolization of colorectal liver metastases. Oncotarget 2017, 8, 23529–23538. [Google Scholar] [CrossRef]
Biomarkers | Indication | Advantage | Challenges | References |
---|---|---|---|---|
ct-DNA | Treatment resistance evaluation | Established isolation procedure | -High degree of fragmentation -Low levels of ct-DNA in the amount of cf-DNA | Roy D. et al., 2021 [14] |
ct-RNA | Prediction of response | Easy isolation | -Limited stability -RNAs may be tightly linked to EVs | Roy D. et al., 2021 [15] |
EVs | Prediction of response | Protect genomic from degradation | -Technically challenge in isolation procedure -Million of Evs are released every day by many cell types | Yixin Shi et al., 2022 [16] |
CTCs | Minimal residual disease evaluation | Tumour specific information High degree of heterogeneity | -Technically challenge in standardization -Development of appropiates device for high throughput at low cost | Malara N. et al., 2018 [17] |
CECs, EPCs | Treatment/ overtreatment evaluation | Tumour angiogenesis information/side effects therapy | -Technically challenge in standardization | Lanuti P. et al., 2018 [18] |
Clinical Trial Name and Number | Goal | Sample Size | Liquid Biopsy | Source Reference Number |
---|---|---|---|---|
ORIOLE trial NCT02680587 | Evaluated the effect of SABR on hormone-sensitive oligometastatic prostate cancer | 54 randomized patients | Stereotactic ablative radiation ct-DNA | Phillips R. et al. 2020 [29] |
RAVENS trial NCT04037358 | Evaluated progression-free survival of men who have HSOPCa after randomization to SABR versus SABR and radium-223 | 64 randomized patients | Enumeration of CTCs at baseline and day 181. ct-DNA profiling at baseline, Days 91, 181, and 361. | Hamza Hasan et al. 2020 [30] |
SABR-COMET-3 trial NCT03862911 | Compare the effect of SABR versus standard of care (SOC); in patients with 1–3 oligometastatic with a controlled primary tumor of any solid tumor histology | 297 randomized Patients | Enumeration of CTCs and ct-DNA in order to evaluate the correlation between oligometastatic disease and oncological outcomes (at baseline, at 3 months, and at disease progression or at the end of the study) | Robert Olson et al. 2020 [31] |
SABR-COMET-10 trial NCT03721341 | Compare the effect of SABR versus standard of care; in patients with 4–10 oligometastatic with a controlled primary tumor of any solid tumor histology | 159 randomized patients | Enumeration of CTCs and ct-DNA in order to evaluate the correlation between oligometastatic disease and oncological outcomes | David A Palma et al. 2019 [32] |
OPVIDO-SBRT-phase 2 | Compare nivolumab versus nivolumab + radiation therapy in patients with advanced inoperable melanoma. | 20 patients with inoperable or metastatic melanoma. | Detect mutations of BRAF and NRAS on ct-DNA | Nora Sundhl et al. 2019 [33] |
ICE-PAC trial ACTRN12618000954224 | Evaluate the efficacy and safety of the avelumab with stereotactic ablative body radiotherapy (SABR) in mCRPC | 31 patients | Analyses of cf-DNA and cf-RNA (AR splice variants AR-V7 and AR-V9, recognized for their strong association with pathogenicity) | Edmond M. Kwan et al. 2021 [34] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malara, N.; Kovacs, G.; Bussu, F.; Ferrazzo, T.; Garo, V.; Raso, C.; Cornacchione, P.; Iezzi, R.; Tagliaferri, L. Liquid Biopsy-Guided Interventional Oncology: A Proof of Concept with a Special Focus on Radiotherapy and Radiology. Cancers 2022, 14, 4676. https://doi.org/10.3390/cancers14194676
Malara N, Kovacs G, Bussu F, Ferrazzo T, Garo V, Raso C, Cornacchione P, Iezzi R, Tagliaferri L. Liquid Biopsy-Guided Interventional Oncology: A Proof of Concept with a Special Focus on Radiotherapy and Radiology. Cancers. 2022; 14(19):4676. https://doi.org/10.3390/cancers14194676
Chicago/Turabian StyleMalara, Natalia, György Kovacs, Francesco Bussu, Teresa Ferrazzo, Virginia Garo, Cinzia Raso, Patrizia Cornacchione, Roberto Iezzi, and Luca Tagliaferri. 2022. "Liquid Biopsy-Guided Interventional Oncology: A Proof of Concept with a Special Focus on Radiotherapy and Radiology" Cancers 14, no. 19: 4676. https://doi.org/10.3390/cancers14194676
APA StyleMalara, N., Kovacs, G., Bussu, F., Ferrazzo, T., Garo, V., Raso, C., Cornacchione, P., Iezzi, R., & Tagliaferri, L. (2022). Liquid Biopsy-Guided Interventional Oncology: A Proof of Concept with a Special Focus on Radiotherapy and Radiology. Cancers, 14(19), 4676. https://doi.org/10.3390/cancers14194676