DNA Damage Repair Classifier Defines Distinct Groups in Hepatocellular Carcinoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Study Population and Datasets
2.2. Classification of DNA Repair Groups in RNA Expression Data
2.3. Define Mitotic and Regeneration Patterns in HCC
2.4. Interrogation of the Biological States and Processes in DNA Repair Groups
2.5. Association of p53 and HRD
2.6. Low-Repair Tumor Classification
2.7. Clinical Variables and Survival Analysis
3. Results
3.1. HCC Tumors Exhibit Two Groups Based on Expression of 199 DNA Repair Genes
3.2. High-Repair Classes Are Associated with p53 Functional Status and TP53 Mutation Status
3.3. Clustering Analysis, Which Reveals Three Subgroups within Low-Repair Groups
3.4. High-Repair Group Has Worse Overall Survival and Progression-Free Survival
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hoshida, Y.; Nijman, S.M.; Kobayashi, M.; Chan, J.A.; Brunet, J.P.; Chiang, D.Y.; Villanueva, A.; Newell, P.; Ikeda, K.; Hashimoto, M.; et al. Integrative transcriptome analysis reveals common molecular subclasses of human hepatocellular carcinoma. Cancer Res. 2009, 69, 7385–7392. [Google Scholar] [CrossRef] [PubMed]
- Cancer Genome Atlas Research Network; Wheeler, D.A.; Roberts, L.R. Comprehensive and Integrative Genomic Characterization of Hepatocellular Carcinoma. Cell 2017, 169, 1327–1341.e23. [Google Scholar] [CrossRef]
- Lee, J.S.; Heo, J.; Libbrecht, L.; Chu, I.S.; Kaposi-Novak, P.; Calvisi, D.F.; Mikaelyan, A.; Roberts, L.R.; Demetris, A.J.; Sun, Z.; et al. A novel prognostic subtype of human hepatocellular carcinoma derived from hepatic progenitor cells. Nat. Med. 2006, 12, 410–416. [Google Scholar] [CrossRef]
- Boyault, S.; Rickman, D.S.; de Reynies, A.; Balabaud, C.; Rebouissou, S.; Jeannot, E.; Herault, A.; Saric, J.; Belghiti, J.; Franco, D.; et al. Transcriptome classification of HCC is related to gene alterations and to new therapeutic targets. Hepatology 2007, 45, 42–52. [Google Scholar] [CrossRef] [PubMed]
- Sia, D.; Jiao, Y.; Martinez-Quetglas, I.; Kuchuk, O.; Villacorta-Martin, C.; Castro de Moura, M.; Putra, J.; Camprecios, G.; Bassaganyas, L.; Akers, N.; et al. Identification of an Immune-specific Class of Hepatocellular Carcinoma, Based on Molecular Features. Gastroenterology 2017, 153, 812–826. [Google Scholar] [CrossRef]
- Chaisaingmongkol, J.; Budhu, A.; Dang, H.; Rabibhadana, S.; Pupacdi, B.; Kwon, S.M.; Forgues, M.; Pomyen, Y.; Bhudhisawasdi, V.; Lertprasertsuke, N.; et al. Common Molecular Subtypes among Asian Hepatocellular Carcinoma and Cholangiocarcinoma. Cancer Cell 2017, 32, 57–70.e3. [Google Scholar] [CrossRef] [PubMed]
- Xue, R.; Chen, L.; Zhang, C.; Fujita, M.; Li, R.; Yan, S.M.; Ong, C.K.; Liao, X.; Gao, Q.; Sasagawa, S.; et al. Genomic and Transcriptomic Profiling of Combined Hepatocellular and Intrahepatic Cholangiocarcinoma Reveals Distinct Molecular Subtypes. Cancer Cell 2019, 35, 932–947.e8. [Google Scholar] [CrossRef]
- Lin, Z.; Xu, S.H.; Wang, H.Q.; Cai, Y.J.; Ying, L.; Song, M.; Wang, Y.Q.; Du, S.J.; Shi, K.Q.; Zhou, M.T. Prognostic value of DNA repair based stratification of hepatocellular carcinoma. Sci. Rep. 2016, 6, 25999. [Google Scholar] [CrossRef]
- Zhu, W.; Zhang, Q.; Liu, M.; Yan, M.; Chu, X.; Li, Y. Identification of DNA repair-related genes predicting pathogenesis and prognosis for liver cancer. Cancer Cell Int. 2021, 21, 81. [Google Scholar] [CrossRef]
- Zheng, Q.; Yang, Q.; Zhou, J.; Gu, X.; Zhou, H.; Dong, X.; Zhu, H.; Chen, Z. Immune signature-based hepatocellular carcinoma subtypes may provide novel insights into therapy and prognosis predictions. Cancer Cell Int. 2021, 21, 330. [Google Scholar] [CrossRef]
- Zhuang, W.; Sun, H.; Zhang, S.; Zhou, Y.; Weng, W.; Wu, B.; Ye, T.; Huang, W.; Lin, Z.; Shi, L.; et al. An immunogenomic signature for molecular classification in hepatocellular carcinoma. Mol. Ther. Nucleic Acids 2021, 25, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Oshi, M.; Kim, T.H.; Tokumaru, Y.; Yan, L.; Matsuyama, R.; Endo, I.; Cherkassky, L.; Takabe, K. Enhanced DNA Repair Pathway is Associated with Cell Proliferation and Worse Survival in Hepatocellular Carcinoma (HCC). Cancers 2021, 13, 323. [Google Scholar] [CrossRef] [PubMed]
- Lin, P.; Gao, R.Z.; Wen, R.; He, Y.; Yang, H. DNA Damage Repair Profiles Alteration Characterize a Hepatocellular Carcinoma Subtype with Unique Molecular and Clinicopathologic Features. Front. Immunol. 2021, 12, 715460. [Google Scholar] [CrossRef] [PubMed]
- Damrauer, J.S.; Smith, M.A.; Walter, V.; Thennavan, A.; Mose, L.E.; Selitsky, S.R.; Hoadley, K.A. Genomic characterization of rare molecular subclasses of hepatocellular carcinoma. Commun. Biol. 2021, 4, 1150. [Google Scholar] [CrossRef]
- Schulze, R.J.; Schott, M.B.; Casey, C.A.; Tuma, P.L.; McNiven, M.A. The cell biology of the hepatocyte: A membrane trafficking machine. J. Cell Biol. 2019, 218, 2096–2112. [Google Scholar] [CrossRef]
- Weglarz, T.C.; Sandgren, E.P. Timing of hepatocyte entry into DNA synthesis after partial hepatectomy is cell autonomous. Proc. Natl. Acad. Sci. USA 2000, 97, 12595–12600. [Google Scholar] [CrossRef]
- Caldez, M.J.; Bjorklund, M.; Kaldis, P. Cell cycle regulation in NAFLD: When imbalanced metabolism limits cell division. Hepatol. Int. 2020, 14, 463–474. [Google Scholar] [CrossRef]
- Greenbaum, L.E. Cell cycle regulation and hepatocarcinogenesis. Cancer Biol. Ther. 2004, 3, 1200–1207. [Google Scholar] [CrossRef]
- Yang, S.Q.; Lin, H.Z.; Mandal, A.K.; Huang, J.; Diehl, A.M. Disrupted signaling and inhibited regeneration in obese mice with fatty livers: Implications for nonalcoholic fatty liver disease pathophysiology. Hepatology 2001, 34, 694–706. [Google Scholar] [CrossRef]
- Zhao, G.; Nakano, K.; Chijiiwa, K.; Ueda, J.; Tanaka, M. Inhibited activities in CCAAT/enhancer-binding protein, activating protein-1 and cyclins after hepatectomy in rats with thioacetamide-induced liver cirrhosis. Biochem. Biophys. Res. Commun. 2002, 292, 474–481. [Google Scholar] [CrossRef]
- Fausto, N.; Campbell, J.S.; Riehle, K.J. Liver regeneration. Hepatology 2006, 43, S45–S53. [Google Scholar] [CrossRef]
- Furchtgott, L.A.; Chow, C.C.; Periwal, V. A model of liver regeneration. Biophys. J. 2009, 96, 3926–3935. [Google Scholar] [CrossRef] [PubMed]
- Dewhurst, M.R.; Ow, J.R.; Zafer, G.; van Hul, N.K.M.; Wollmann, H.; Bisteau, X.; Brough, D.; Choi, H.; Kaldis, P. Loss of hepatocyte cell division leads to liver inflammation and fibrosis. PLoS Genet. 2020, 16, e1009084. [Google Scholar] [CrossRef] [PubMed]
- Miyaoka, Y.; Miyajima, A. To divide or not to divide: Revisiting liver regeneration. Cell Div. 2013, 8, 8. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.F.; Chang, C.W.; Wei, R.J.; Shiue, Y.L.; Wang, S.N.; Yeh, Y.T. Involvement of DNA damage response pathways in hepatocellular carcinoma. BioMed Res. Int. 2014, 2014, 153867. [Google Scholar] [CrossRef]
- Fortini, P.; Ferretti, C.; Dogliotti, E. The response to DNA damage during differentiation: Pathways and consequences. Mutat. Res. 2013, 743–744, 160–168. [Google Scholar] [CrossRef] [PubMed]
- Chung, Y.L.; Wu, M.L. Promyelocytic leukaemia protein links DNA damage response and repair to hepatitis B virus-related hepatocarcinogenesis. J. Pathol. 2013, 230, 377–387. [Google Scholar] [CrossRef] [PubMed]
- Bayram, S.; Akkiz, H.; Bekar, A.; Akgollu, E.; Yildirim, S. The significance of Exonuclease 1 K589E polymorphism on hepatocellular carcinoma susceptibility in the Turkish population: A case-control study. Mol. Biol. Rep. 2012, 39, 5943–5951. [Google Scholar] [CrossRef] [PubMed]
- Lees-Miller, S.P.; Meek, K. Repair of DNA double strand breaks by non-homologous end joining. Biochimie 2003, 85, 1161–1173. [Google Scholar] [CrossRef]
- Okamura, R.; Kurzrock, R.; Mallory, R.J.; Fanta, P.T.; Burgoyne, A.M.; Clary, B.M.; Kato, S.; Sicklick, J.K. Comprehensive genomic landscape and precision therapeutic approach in biliary tract cancers. Int. J. Cancer 2021, 148, 702–712. [Google Scholar] [CrossRef]
- Rao, S.; Beckman, R.A.; Riazi, S.; Yabar, C.S.; Boca, S.M.; Marshall, J.L.; Pishvaian, M.J.; Brody, J.R.; Madhavan, S. Quantification and expert evaluation of evidence for chemopredictive biomarkers to personalize cancer treatment. Oncotarget 2017, 8, 37923–37934. [Google Scholar] [CrossRef]
- Ellrott, K.; Bailey, M.H.; Saksena, G.; Covington, K.R.; Kandoth, C.; Stewart, C.; Hess, J.; Ma, S.; Chiotti, K.E.; McLellan, M.; et al. Scalable Open Science Approach for Mutation Calling of Tumor Exomes Using Multiple Genomic Pipelines. Cell Syst. 2018, 6, 271–281.e7. [Google Scholar] [CrossRef]
- Hoadley, K.A.; Yau, C.; Hinoue, T.; Wolf, D.M.; Lazar, A.J.; Drill, E.; Shen, R.; Taylor, A.M.; Cherniack, A.D.; Thorsson, V.; et al. Cell-of-Origin Patterns Dominate the Molecular Classification of 10,000 Tumors from 33 Types of Cancer. Cell 2018, 173, 291–304.e6. [Google Scholar] [CrossRef]
- Gao, Y.; Mutter-Rottmayer, E.; Greenwalt, A.M.; Goldfarb, D.; Yan, F.; Yang, Y.; Martinez-Chacin, R.C.; Pearce, K.H.; Tateishi, S.; Major, M.B.; et al. A neomorphic cancer cell-specific role of MAGE-A4 in trans-lesion synthesis. Nat. Commun. 2016, 7, 12105. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Kardos, J.; Yang, Y.; Tamir, T.Y.; Mutter-Rottmayer, E.; Weissman, B.; Major, M.B.; Kim, W.Y.; Vaziri, C. The Cancer/Testes (CT) Antigen HORMAD1 promotes Homologous Recombinational DNA Repair and Radioresistance in Lung adenocarcinoma cells. Sci. Rep. 2018, 8, 15304. [Google Scholar] [CrossRef]
- Scrucca, L.; Fop, M.; Murphy, T.B.; Raftery, A.E. mclust 5: Clustering, Classification and Density Estimation Using Gaussian Finite Mixture Models. R J. 2016, 8, 289–317. [Google Scholar] [CrossRef]
- Selitsky, S.R.; Marron, D.; Hollern, D.; Mose, L.E.; Hoadley, K.A.; Jones, C.; Parker, J.S.; Dittmer, D.P.; Perou, C.M. Virus expression detection reveals RNA-sequencing contamination in TCGA. BMC Genom. 2020, 21, 79. [Google Scholar] [CrossRef] [PubMed]
- Gu, Z.; Eils, R.; Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 2016, 32, 2847–2849. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. In R Foundation for Statistical Computing; R Core Team: Vienna, Austria, 2021. [Google Scholar]
- Colak, D.; Al-Harazi, O.; Mustafa, O.M.; Meng, F.; Assiri, A.M.; Dhar, D.K.; Broering, D.C. RNA-Seq transcriptome profiling in three liver regeneration models in rats: Comparative analysis of partial hepatectomy, ALLPS, and PVL. Sci. Rep. 2020, 10, 5213. [Google Scholar] [CrossRef] [PubMed]
- Mootha, V.K.; Lindgren, C.M.; Eriksson, K.F.; Subramanian, A.; Sihag, S.; Lehar, J.; Puigserver, P.; Carlsson, E.; Ridderstrale, M.; Laurila, E.; et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 2003, 34, 267–273. [Google Scholar] [CrossRef]
- Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 2005, 102, 15545–15550. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Huang, T.; Liu, M.; Liao, W.; Fu, M.; Yang, B.; Duan, J.; Chen, S.; Guo, Y. The prognostic value of HRD mutations in liver cancer. J. Clin. Oncol. 2020, 38, e13546. [Google Scholar] [CrossRef]
- Abkevich, V.; Timms, K.M.; Hennessy, B.T.; Potter, J.; Carey, M.S.; Meyer, L.A.; Smith-McCune, K.; Broaddus, R.; Lu, K.H.; Chen, J.; et al. Patterns of genomic loss of heterozygosity predict homologous recombination repair defects in epithelial ovarian cancer. Br. J. Cancer 2012, 107, 1776–1782. [Google Scholar] [CrossRef] [PubMed]
- Popova, T.; Manié, E.; Rieunier, G.; Caux-Moncoutier, V.; Tirapo, C.; Dubois, T.; Delattre, O.; Sigal-Zafrani, B.; Bollet, M.; Longy, M.; et al. Ploidy and large-scale genomic instability consistently identify basal-like breast carcinomas with BRCA1/2 inactivation. Cancer Res. 2012, 72, 5454. [Google Scholar] [CrossRef] [PubMed]
- Birkbak, N.J.; Wang, Z.C.; Kim, J.-Y.; Eklund, A.C.; Li, Q.; Tian, R.; Bowman-Colin, C.; Li, Y.; Greene-Colozzi, A.; Iglehart, J.D.; et al. Telomeric Allelic Imbalance Indicates Defective DNA Repair and Sensitivity to DNA-Damaging Agents. Cancer Discov. 2012, 2, 366. [Google Scholar] [CrossRef] [PubMed]
- Knijnenburg, T.A.; Wang, L.; Zimmermann, M.T.; Chambwe, N.; Gao, G.F.; Cherniack, A.D.; Fan, H.; Shen, H.; Way, G.P.; Greene, C.S.; et al. Genomic and Molecular Landscape of DNA Damage Repair Deficiency across The Cancer Genome Atlas. Cell Rep. 2018, 23, 239–254.e6. [Google Scholar] [CrossRef] [PubMed]
- Telli, M.L.; Metzger, O.; Timms, K.; Evans, B.; Vogel, D.; Wei, H.; Jones, J.T.; Wenstrup, R.J.; McKee, M.D.; Sullivan, D.M.; et al. Evaluation of homologous recombination deficiency (HRD) status with pathological response to carboplatin +/− veliparib in BrighTNess, a randomized phase 3 study in early stage TNBC. J. Clin. Oncol. 2018, 36, 519. [Google Scholar] [CrossRef]
- Takaya, H.; Nakai, H.; Takamatsu, S.; Mandai, M.; Matsumura, N. Homologous recombination deficiency status-based classification of high-grade serous ovarian carcinoma. Sci. Rep. 2020, 10, 2757. [Google Scholar] [CrossRef]
- Wen, H.; Feng, Z.; Ma, Y.; Liu, R.; Ou, Q.; Guo, Q.; Shen, Y.; Wu, X.; Shao, Y.; Bao, H.; et al. Homologous recombination deficiency in diverse cancer types and its correlation with platinum chemotherapy efficiency in ovarian cancer. BMC Cancer 2022, 22, 550. [Google Scholar] [CrossRef]
- Wilkerson, M.D.; Hayes, D.N. ConsensusClusterPlus: A class discovery tool with confidence assessments and item tracking. Bioinformatics 2010, 26, 1572–1573. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Lichtenberg, T.; Hoadley, K.A.; Poisson, L.M.; Lazar, A.J.; Cherniack, A.D.; Kovatich, A.J.; Benz, C.C.; Levine, D.A.; Lee, A.V.; et al. An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics. Cell 2018, 173, 400–416.e11. [Google Scholar] [CrossRef] [PubMed]
- Edge, S.B.; American Joint Committee on Cancer. AJCC Cancer Staging Manual, 7th ed.; Springer: New York, NY, USA; London, UK, 2010; Volume XIV, 648p. [Google Scholar]
- Greene, F.L.; American Joint Committee on Cancer; American Cancer Society; Sadie Jenkins Harmon Collection. AJCC Cancer Staging Manual, 6th ed.; Springer: New York, NY, USA, 2002; Volume XIV, 421p. [Google Scholar]
- Fleming, I.D.; American Joint Committee on Cancer; National Cancer Institute (U.S.); College of American Pathologists; American College of Radiology; American College of Surgeons; American Cancer Society. AJCC Cancer Staging Manual, 5th ed.; Lippincott-Raven: Philadelphia, PA, USA, 1997; Volume XV, 294p.
- Beahrs, O.H.; American Joint Committee on Cancer; National Cancer Institute (U.S.); College of American Pathologists; American College of Radiology; American College of Surgeons; American Cancer Society. AJCC Cancer Staging Manual, 4th ed.; Lippincott-Raven: Philadelphia, PA, USA, 1977; Volume XV, 293p.
- Kassambara, A.; Kosinski, M.; Biecek, P. Survminer: Drawing Survival Curves using ‘ggplot2’. In R Package Version 0.4.9; R Package: Madison, WI, USA, 2021. [Google Scholar]
- Schulze, K.; Imbeaud, S.; Letouzé, E.; Alexandrov, L.B.; Calderaro, J.; Rebouissou, S.; Couchy, G.; Meiller, C.; Shinde, J.; Soysouvanh, F.; et al. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets. Nat. Genet. 2015, 47, 505–511. [Google Scholar] [CrossRef]
- Troester, M.A.; Herschkowitz, J.I.; Oh, D.S.; He, X.; Hoadley, K.A.; Barbier, C.S.; Perou, C.M. Gene expression patterns associated with p53 status in breast cancer. BMC Cancer 2006, 6, 276. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Huang, M.; Zhu, J.; Xu, L.; Cheng, W.; Lu, X.; Yan, F. Identification of a DNA Damage Response and Repair-Related Gene-Pair Signature for Prognosis Stratification Analysis in Hepatocellular Carcinoma. Front. Pharmacol. 2022, 13, 857060. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.X.; Pan, Y.Y.; You, C.G. CDK1, CCNB1, CDC20, BUB1, MAD2L1, MCM3, BUB1B, MCM2, and RFC4 May Be Potential Therapeutic Targets for Hepatocellular Carcinoma Using Integrated Bioinformatic Analysis. BioMed Res. Int. 2019, 2019, 1245072. [Google Scholar] [CrossRef]
- Zhu, L.J.; Pan, Y.; Chen, X.Y.; Hou, P.F. BUB1 promotes proliferation of liver cancer cells by activating SMAD2 phosphorylation. Oncol. Lett. 2020, 19, 3506–3512. [Google Scholar] [CrossRef]
- Qiu, J.; Zhang, S.; Wang, P.; Wang, H.; Sha, B.; Peng, H.; Ju, Z.; Rao, J.; Lu, L. BUB1B promotes hepatocellular carcinoma progression via activation of the mTORC1 signaling pathway. Cancer Med. 2020, 9, 8159–8172. [Google Scholar] [CrossRef]
- Zhuang, L.; Zhang, Y.; Meng, Z.; Yang, Z. Oncogenic Roles of RAD51AP1 in Tumor Tissues Related to Overall Survival and Disease-Free Survival in Hepatocellular Carcinoma. Cancer Control. 2020, 27, 1073274820977149. [Google Scholar] [CrossRef]
- Duan, X.; Cai, Y.; He, T.; Shi, X.; Zhao, J.; Zhang, H.; Shen, Y.; Zhang, H.; Zhang, H.; Duan, W.; et al. The effect of the TP53 and RB1 mutations on the survival of hepatocellular carcinoma patients with different racial backgrounds. J. Gastrointest. Oncol. 2021, 12, 1786–1796. [Google Scholar] [CrossRef]
- Zong, B.; Sun, L.; Peng, Y.; Wang, Y.; Yu, Y.; Lei, J.; Zhang, Y.; Guo, S.; Li, K.; Liu, S. HORMAD1 promotes docetaxel resistance in triple negative breast cancer by enhancing DNA damage tolerance. Oncol. Rep. 2021, 46, 138. [Google Scholar] [CrossRef]
- Michalopoulos, G.K.; Bhushan, B. Liver regeneration: Biological and pathological mechanisms and implications. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 40–55. [Google Scholar] [CrossRef]
- Barash, H.; Gross, E.R.; Edrei, Y.; Ella, E.; Israel, A.; Cohen, I.; Corchia, N.; Ben-Moshe, T.; Pappo, O.; Pikarsky, E.; et al. Accelerated carcinogenesis following liver regeneration is associated with chronic inflammation-induced double-strand DNA breaks. Proc. Natl. Acad. Sci. USA 2010, 107, 2207–2212. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.H.; Line, P.D. Effect of liver regeneration on malignant hepatic tumors. World J. Gastroenterol. 2014, 20, 16167–16177. [Google Scholar] [CrossRef] [PubMed]
- Zhong, C.; Wei, W.; Su, X.K.; Li, H.D.; Xu, F.B.; Guo, R.P. Serum and tissue vascular endothelial growth factor predicts prognosis in hepatocellular carcinoma patients after partial liver resection. Hepatogastroenterology 2012, 59, 93–97. [Google Scholar] [CrossRef] [PubMed]
- Ding, T.; Xu, J.; Zhang, Y.; Guo, R.P.; Wu, W.C.; Zhang, S.D.; Qian, C.N.; Zheng, L. Endothelium-coated tumor clusters are associated with poor prognosis and micrometastasis of hepatocellular carcinoma after resection. Cancer 2011, 117, 4878–4889. [Google Scholar] [CrossRef]
- Krizhanovsky, V.; Yon, M.; Dickins, R.A.; Hearn, S.; Simon, J.; Miething, C.; Yee, H.; Zender, L.; Lowe, S.W. Senescence of activated stellate cells limits liver fibrosis. Cell 2008, 134, 657–667. [Google Scholar] [CrossRef]
- Ha, G.H.; Breuer, E.K. Mitotic Kinases and p53 Signaling. Biochem. Res. Int. 2012, 2012, 195903. [Google Scholar] [CrossRef]
- Bisteau, X.; Caldez, M.J.; Kaldis, P. The Complex Relationship between Liver Cancer and the Cell Cycle: A Story of Multiple Regulations. Cancers 2014, 6, 79–111. [Google Scholar] [CrossRef]
- Kay, J.; Thadhani, E.; Samson, L.; Engelward, B. Inflammation-induced DNA damage, mutations and cancer. DNA Repair 2019, 83, 102673. [Google Scholar] [CrossRef] [PubMed]
- Mei, J.; Wang, R.; Xia, D.; Yang, X.; Zhou, W.; Wang, H.; Liu, C. BRCA1 Is a Novel Prognostic Indicator and Associates with Immune Cell Infiltration in Hepatocellular Carcinoma. DNA Cell Biol. 2020, 39, 1838–1849. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Wang, X.; Wang, J.; Sun, X.; Liu, X.; Hu, H.; Fan, W.; Zhang, X.; Wu, D. Cyclin B1 acts as a tumor microenvironment-related cancer promoter and prognostic biomarker in hepatocellular carcinoma. J. Int. Med. Res. 2021, 49, 3000605211016265. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.J.; Ye, F.; Li, X.Y.; Liu, W.T.; Jing, Y.Y.; Han, Z.P.; Wei, L.X. Immune response involved in liver damage and the activation of hepatic progenitor cells during liver tumorigenesis. Cell. Immunol. 2018, 326, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Oh, I.S.; Park, S.H. Immune-mediated Liver Injury in Hepatitis B Virus Infection. Immune Netw. 2015, 15, 191–198. [Google Scholar] [CrossRef]
- Shin, E.C.; Sung, P.S.; Park, S.H. Immune responses and immunopathology in acute and chronic viral hepatitis. Nat. Rev. Immunol. 2016, 16, 509–523. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, X.; Deng, X.; Zhang, Y.; Liao, R.; Li, Y.; Yang, H.; Chen, K. DNA Damage Repair Status Predicts Opposite Clinical Prognosis Immunotherapy and Non-Immunotherapy in Hepatocel-lular Carcinoma. Front. Immunol. 2021, 12, 676922. [Google Scholar] [CrossRef] [PubMed]
Overall | Low | High | p-Value | RFD [95% CI] | |
---|---|---|---|---|---|
n | 374 | 216 | 158 | ||
Age at diagnosis | |||||
Mean ± SD | 59.48 (13.47) | 60.74 (± 13.89) | 57.75 (± 12.71) | 0.034 | - |
Sex | |||||
Female | 121 (32.4) | 65 (30.1) | 56 (35.4) | 0.327 | REF |
Male | 253 (67.6) | 151 (69.9) | 102 (64.6) | −5.35 [−15.0–4.3] | |
Race a | |||||
White | 185 (51.1) | 117 (57.1) | 68 (43.3) | 0.025 | REF |
Asian | 160 (44.1) | 78 (38.0) | 82 (52.2) | 14.2 [3.92–24.4] | |
Black | 17 (4.7) | 10 (4.9) | 7 (4.5) | −0.42 [−4.79–3.95] | |
Molecular Subtype | |||||
HCC | 275 (73.5) | 198 (91.7) | 77 (48.7) | <0.001 | REF |
Blast-Like | 66 (17.6) | 9 (4.2) | 57 (36.1) | 31.9 [24.0–39.9] | |
CCA-Like | 33 (8.8) | 9 (4.2) | 24 (15.2) | 11.0 [4.82–17.2] | |
AJCC Pathologic Tumor Stage b | |||||
I | 173 (49.4) | 116 (57.7) | 57 (38.3) | 0.001 | REF |
II | 87 (24.9) | 44 (21.9) | 43 (28.9) | 6.97 [−2.28–16.2] | |
III/IV | 90 (25.7) | 41 (20.4) | 49 (32.9) | 12.5 [3.11–21.9] | |
AJCC Pathologic Primary Tumor (pT) c | |||||
T1 | 178 (51.4) | 120 (61.9) | 58 (38.2) | <0.001 | REF |
T2 | 88 (25.4) | 40 (20.6) | 48 (31.6) | 11.0 [1.68–20.3] | |
T3/T4 | 80 (23.1) | 34 (17.5) | 46 (30.3) | 12.7 [3.74–21.9] | |
Grade d | |||||
G1/G2 | 233 (62.3) | 155 (73.1) | 78 (49.7) | <0.001 | REF |
G3/G4 | 136 (36.4) | 57 (26.9) | 79 (50.3) | 23.4 [13.6–33.3] | |
Cirrhosis/Fibrosis e | |||||
None | 75 (34.9) | 49 (36.6) | 26 (32.1) | 0.604 | REF |
Cirrhosis/Fibrosis | 140 (65.1) | 85 (63.4) | 55 (67.9) | 4.47 [−8.56–17.5] | |
HBV infection f | |||||
Negative | 217 (59.0) | 146 (68.9) | 71 (45.5) | <0.001 | REF |
Positive | 151 (41.0) | 66 (31.1) | 85 (54.5) | 23.4 [13.4–33.4] | |
Vascular invasion g | |||||
None | 208 (65.4) | 115 (65.0) | 93 (66.0) | 0.948 | REF |
Micro/Macro | 110 (34.6) | 62 (35.0) | 48 (34.0) | 0.98 [−9.57–11.4] |
Frequently Mutated Genes | |||
---|---|---|---|
Gene | Low Repair (n = 216) | High Repair (n = 158) | |
TP53 | 41 (19.0%) | 71 (44.9%) | *** |
CTNNB1 | 70 (32.4%) | 29 (18.4%) | *** |
Liver-metabolic-mutated genes | |||
ALB | 42 (19.4%) | 18 (11.4%) | ns |
HRD-mutated genes | |||
AXIN1 | 13 (6.00%) | 15 (9.50%) | ns |
ATM | 7 (3.24%) | 7 (4.43%) | ns |
POLE | 4 (1.85%) | 1 (0.63%) | ns |
BRCA1 | 4 (1.85%) | 1 (0.63%) | ns |
BRCA2 | 6 (2.80%) | 2 (1.30%) | ns |
BARD1 | 2 (0.93%) | 5 (3.20%) | ns |
BRIP1 | 3 (1.40%) | 3 (1.90%) | ns |
L1 | L2 | L3 | p-Value | |
---|---|---|---|---|
n | 86 | 56 | 74 | |
Age | ||||
Mean (± SD) | 60.30 (± 15.04) | 58.23 (± 13.84) | 63.15 (± 12.23) | 0.126 |
Gender | ||||
Female | 24 (36.9) | 18 (27.7) | 23 (35.4) | 0.843 |
Male | 62 (41.0) | 38 (25.2) | 51 (33.8) | |
Race a | ||||
White | 56 (47.9) | 21 (17.9) | 40 (34.2) | 0.002 * |
Asian | 21 (26.9) | 29 (37.2) | 28 (35.9) | |
Black | 5 (50.0) | 0 (0.0) | 5 (50.0) | |
Molecular subtype | ||||
HCC | 81 (40.9) | 50 (25.3) | 67 (33.8) | 0.192 |
Blast-Like | 1 (11.1) | 5 (55.6) | 3 (33.3) | |
CCA-Like | 4 (44.4) | 1 (11.2) | 4 (44.4) | |
AJCC Pathologic Tumor Stage b | ||||
I | 45 (38.8) | 27 (23.3) | 44 (37.9) | 0.446 |
II | 17 (38.6) | 16 (36.4) | 11 (25.0) | |
III/IV | 16 (39.0) | 12 (29.3) | 13 (31.7) | |
AJCC Pathologic Primary Tumor (pT) c | ||||
T1 | 48 (64.0) | 26 (54.2) | 46 (64.8) | 0.691 |
T2 | 15 (20.0) | 13 (27.1) | 12 (16.9) | |
T3/T4 | 12 (16.0) | 9 (18.8) | 13 (18.3) | |
Grade d | ||||
G1/G2 | 74 (47.7) | 33 (21.3) | 48 (31.0) | <0.001 |
G3/G4 | 10 (17.5) | 23 (40.4) | 24 (42.1) | |
Cirrhosis/Fibrosis e | ||||
Cirrhosis/Fibrosis | 31 (36.5) | 20 (23.5) | 34 (40.0) | 0.028 |
No | 27 (55.1) | 13 (26.5) | 9 (18.4) | |
HBV status f | ||||
Negative | 69 (47.3) | 30 (20.5) | 47 (32.2) | 0.001 |
Positive | 15 (22.7) | 26 (39.4) | 25 (37.9) | |
Vascular invasion g | ||||
None | 21 (29.6) | 18 (39.1) | 23 (38.3) | 0.46 |
Micro/Macro | 50 (70.4) | 28 (60.9) | 37 (61.7) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smith, M.A.; Van Alsten, S.C.; Walens, A.; Damrauer, J.S.; Maduekwe, U.N.; Broaddus, R.R.; Love, M.I.; Troester, M.A.; Hoadley, K.A. DNA Damage Repair Classifier Defines Distinct Groups in Hepatocellular Carcinoma. Cancers 2022, 14, 4282. https://doi.org/10.3390/cancers14174282
Smith MA, Van Alsten SC, Walens A, Damrauer JS, Maduekwe UN, Broaddus RR, Love MI, Troester MA, Hoadley KA. DNA Damage Repair Classifier Defines Distinct Groups in Hepatocellular Carcinoma. Cancers. 2022; 14(17):4282. https://doi.org/10.3390/cancers14174282
Chicago/Turabian StyleSmith, Markia A., Sarah C. Van Alsten, Andrea Walens, Jeffrey S. Damrauer, Ugwuji N. Maduekwe, Russell R. Broaddus, Michael I. Love, Melissa A. Troester, and Katherine A. Hoadley. 2022. "DNA Damage Repair Classifier Defines Distinct Groups in Hepatocellular Carcinoma" Cancers 14, no. 17: 4282. https://doi.org/10.3390/cancers14174282
APA StyleSmith, M. A., Van Alsten, S. C., Walens, A., Damrauer, J. S., Maduekwe, U. N., Broaddus, R. R., Love, M. I., Troester, M. A., & Hoadley, K. A. (2022). DNA Damage Repair Classifier Defines Distinct Groups in Hepatocellular Carcinoma. Cancers, 14(17), 4282. https://doi.org/10.3390/cancers14174282