The Role of Perineural Invasion in Prostate Cancer and Its Prognostic Significance
Abstract
:Simple Summary
Abstract
1. Introduction
2. Pathogenesis of PNI in PCa
3. Molecular Mechanisms of PNI
3.1. Tumor-Nerve Signaling Interaction
3.2. Chemokines, Cytokines, and Related Pathways
3.3. Other Potential Mechanisms
4. Prognostic Significance of PNI in Prostate Cancer
4.1. Missing Consensus Definition of PNI
4.2. PNI Analysis in Biopsy vs. Radical Prostatectomy Specimens
4.3. Qualitative vs. Quantitative PNI Reporting
4.4. Study Focus and Choice of Endpoint
4.5. Statistical Analysis: Univariate vs. Multivariate
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Sejda, A.; Sigorski, D.; Gulczyński, J.; Wesołowski, W.; Kitlińska, J.; Iżycka-Świeszewska, E. Complexity of Neural Component of Tumor Microenvironment in Prostate Cancer. Pathobiol. J. Immunopathol. Mol. Cell. Biol. 2020, 87, 87–99. [Google Scholar] [CrossRef] [PubMed]
- Bründl, J.; Schneider, S.; Weber, F.; Zeman, F.; Wieland, W.F.; Ganzer, R. Computerized quantification and planimetry of prostatic capsular nerves in relation to adjacent prostate cancer foci. Eur. Urol. 2014, 65, 802–808. [Google Scholar] [CrossRef] [PubMed]
- Liebig, C.; Ayala, G.; Wilks, J.A.; Berger, D.H.; Albo, D. Perineural invasion in cancer: A review of the literature. Cancer 2009, 115, 3379–3391. [Google Scholar] [CrossRef] [PubMed]
- Marchesi, F.; Piemonti, L.; Mantovani, A.; Allavena, P. Molecular mechanisms of perineural invasion, a forgotten pathway of dissemination and metastasis. Cytokine Growth Factor Rev. 2010, 21, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Martinez, C.H.; Williams, A.K.; Chin, J.L.; Stitt, L.; Izawa, J.I. Perineural invasion and TRUS findings are complementary in predicting prostate cancer biology. Can. J. Urol. 2013, 20, 6696–6701. [Google Scholar]
- Fromont, G.; Godet, J.; Pires, C.; Yacoub, M.; Dore, B.; Irani, J. Biological significance of perineural invasion (PNI) in prostate cancer. Prostate 2012, 72, 542–548. [Google Scholar] [CrossRef]
- Sigorski, D.; Gulczyński, J.; Sejda, A.; Rogowski, W.; Iżycka-Świeszewska, E. Investigation of Neural Microenvironment in Prostate Cancer in Context of Neural Density, Perineural Invasion, and Neuroendocrine Profile of Tumors. Front. Oncol. 2021, 11, 710899. [Google Scholar] [CrossRef]
- Lee, S.R.; Choi, Y.D.; Cho, N.H. Association between pathologic factors and ERG expression in prostate cancer: Finding pivotal networking. J. Cancer Res. Clin. Oncol. 2018, 144, 1665–1683. [Google Scholar] [CrossRef]
- Carretero, F.J.; Del Campo, A.B.; Flores-Martín, J.F.; Mendez, R.; García-Lopez, C.; Cozar, J.M.; Adams, V.; Ward, S.; Cabrera, T.; Ruiz-Cabello, F.; et al. Frequent HLA class I alterations in human prostate cancer: Molecular mechanisms and clinical relevance. Cancer Immunol. Immunother. 2016, 65, 47–59. [Google Scholar] [CrossRef]
- Grivas, N.; Goussia, A.; Stefanou, D.; Giannakis, D. Microvascular density and immunohistochemical expression of VEGF, VEGFR-1 and VEGFR-2 in benign prostatic hyperplasia, high-grade prostate intraepithelial neoplasia and prostate cancer. Cent. Eur. J. Urol. 2016, 69, 63–71. [Google Scholar]
- Ghinea, N.; Robin, B.; Pichon, C.; Leclere, R.; Nicolas, A.; Chnecker, C.; Côté, J.F.; Guillonneau, B.; Radu, A. Vasa nervorum angiogenesis in prostate cancer with perineural invasion. Prostate 2019, 79, 640–646. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Wheeler, T.; Dai, H.; Ayala, G. Neural cell adhesion molecule is upregulated in nerves with prostate cancer invasion. Hum. Pathol. 2003, 34, 457–461. [Google Scholar] [CrossRef]
- Chen, S.H.; Zhang, B.Y.; Zhou, B.; Zhu, C.Z.; Sun, L.Q.; Feng, Y.J. Perineural invasion of cancer: A complex crosstalk between cells and molecules in the perineural niche. Am. J. Cancer Res. 2019, 9, 1–21. [Google Scholar] [PubMed]
- Amit, M.; Na’ara, S.; Gil, Z. Mechanisms of cancer dissemination along nerves. Nat. Rev. Cancer 2016, 16, 399–408. [Google Scholar] [CrossRef]
- Ayala, G.E.; Wheeler, T.M.; Shine, H.D.; Schmelz, M.; Frolov, A.; Chakraborty, S.; Rowley, D. In vitro dorsal root ganglia and human prostate cell line interaction: Redefining perineural invasion in prostate cancer. Prostate 2001, 49, 213–223. [Google Scholar] [CrossRef]
- Cornell, R.J.; Rowley, D.; Wheeler, T.; Ali, N.; Ayala, G. Neuroepithelial interactions in prostate cancer are enhanced in the presence ofprostatic stroma. Urology 2003, 61, 870–875. [Google Scholar] [CrossRef]
- Burcham, G.N.; Cresswell, G.M.; Snyder, P.W.; Chen, L.; Liu, X.; Crist, S.A.; Henry, M.D.; Ratliff, T.L. Impact of prostate inflammation on lesion development in the POET3(+)Pten(+/−) mouse model of prostate carcinogenesis. Am. J. Pathol. 2014, 184, 3176–3191. [Google Scholar] [CrossRef] [Green Version]
- Kuang, A.G.; Nickel, J.C.; Andriole, G.L.; Castro-Santamaria, R.; Freedland, S.J.; Moreira, D.M. Both acute and chronic inflammation are associated with less perineural invasion in men with prostate cancer on repeat biopsy. BJU Int. 2019, 123, 91–97. [Google Scholar] [CrossRef]
- Magnon, C.; Hall, S.J.; Lin, J.; Xue, X.; Gerber, L.; Freedland, S.J.; Frenette, P.S. Autonomic nerve development contributes to prostate cancer progression. Science 2013, 341, 1236361. [Google Scholar] [CrossRef] [Green Version]
- Palm, D.; Lang, K.; Niggemann, B.; Drell, T.L.T.; Masur, K.; Zaenker, K.S.; Entschladen, F. The norepinephrine-driven metastasis development of PC-3 human prostate cancer cells in BALB/c nude mice is inhibited by beta-blockers. Int. J. Cancer 2006, 118, 2744–2749. [Google Scholar] [CrossRef] [PubMed]
- Lu, D.; Sinnott, J.A.; Valdimarsdóttir, U.; Fang, F.; Gerke, T.; Tyekucheva, S.; Fiorentino, M.; Lambe, M.; Sesso, H.D.; Sweeney, C.J.; et al. Stress-Related Signaling Pathways in Lethal and Nonlethal Prostate Cancer. Clin. Cancer Res. 2016, 22, 765–772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mauffrey, P.; Tchitchek, N.; Barroca, V.; Bemelmans, A.P.; Firlej, V.; Allory, Y.; Roméo, P.H.; Magnon, C. Progenitors from the central nervous system drive neurogenesis in cancer. Nature 2019, 569, 672–678. [Google Scholar] [CrossRef] [PubMed]
- Edwards, G.; Campbell, T.; Henderson, V.; Danaher, A.; Wu, D.; Srinivasan, R.; Rezvani, K.; Odero-Marah, V.A. SNAIL Transctiption factor in prostate cancer cells promotes neurite outgrowth. Biochimie 2021, 180, 1–9. [Google Scholar] [CrossRef]
- Eksi, S.E.; Chitsazan, A.; Sayar, Z.; Thomas, G.V.; Fields, A.J.; Kopp, R.P.; Spellman, P.T.; Adey, A.C. Epigenetic loss of heterogeneity from low to high grade localized prostate tumours. Nat. Commun. 2021, 12, 7292. [Google Scholar] [CrossRef]
- Bizzozero, L.; Pergolizzi, M.; Pascal, D.; Maldi, E.; Villari, G.; Erriquez, J.; Volante, M.; Serini, G.; Marchiò, C.; Bussolino, F.; et al. Tumoral Neuroligin 1 Promotes Cancer-Nerve Interactions and Synergizes with the Glial Cell Line-Derived Neurotrophic Factor. Cells 2022, 11, 280. [Google Scholar] [CrossRef]
- Frunza, A.; Slavescu, D.; Lascar, I. Perineural invasion in head and neck cancers—A review. J. Med. Life 2014, 7, 121–123. [Google Scholar]
- Jobling, P.; Pundavela, J.; Oliveira, S.M.; Roselli, S.; Walker, M.M.; Hondermarck, H. Nerve-Cancer Cell Cross-talk: A Novel Promoter of Tumor Progression. Cancer Res. 2015, 75, 1777–1781. [Google Scholar] [CrossRef] [Green Version]
- Mo, R.J.; Han, Z.D.; Liang, Y.K.; Ye, J.H.; Wu, S.L.; Lin, S.X.; Zhang, Y.Q.; Song, S.D.; Jiang, F.N.; Zhong, W.D.; et al. Expression of PD-L1 in tumor-associated nerves correlates with reduced CD8(+) tumor-associated lymphocytes and poor prognosis in prostate cancer. Int. J. Cancer 2019, 144, 3099–3110. [Google Scholar] [CrossRef]
- Ayala, G.E.; Dai, H.; Ittmann, M.; Li, R.; Powell, M.; Frolov, A.; Wheeler, T.M.; Thompson, T.C.; Rowley, D. Growth and survival mechanisms associated with perineural invasion in prostate cancer. Cancer Res. 2004, 64, 6082–6090. [Google Scholar] [CrossRef] [Green Version]
- Dai, H.; Li, R.; Wheeler, T.; Diaz de Vivar, A.; Frolov, A.; Tahir, S.; Agoulnik, I.; Thompson, T.; Rowley, D.; Ayala, G. Pim-2 upregulation: Biological implications associated with disease progression and perinueral invasion in prostate cancer. Prostate 2005, 65, 276–286. [Google Scholar] [CrossRef] [PubMed]
- Cibull, T.L.; Jones, T.D.; Li, L.; Eble, J.N.; Ann Baldridge, L.; Malott, S.R.; Luo, Y.; Cheng, L. Overexpression of Pim-1 during progression of prostatic adenocarcinoma. J. Clin. Pathol. 2006, 59, 285–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, Y.; He, D.; Florentin, D.; Frolov, A.; Hilsenbeck, S.; Ittmann, M.; Kadmon, D.; Miles, B.; Rowley, D.; Ayala, G. Semaphorin 4F as a critical regulator of neuroepithelial interactions and a biomarker of aggressive prostate cancer. Clin. Cancer Res. 2013, 19, 6101–6111. [Google Scholar] [CrossRef] [Green Version]
- Ayala, G.E.; Dai, H.; Powell, M.; Li, R.; Ding, Y.; Wheeler, T.M.; Shine, D.; Kadmon, D.; Thompson, T.; Miles, B.J.; et al. Cancer-related axonogenesis and neurogenesis in prostate cancer. Clin. Cancer Res. 2008, 14, 7593–7603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, L.; Li, J.; Wang, J.; Pu, T.; Wei, J.; Li, Q.; Wu, B.J. MAOA promotes prostate cancer cell perineural invasion through SEMA3C/PlexinA2/NRP1-cMET signaling. Oncogene 2021, 40, 1362–1374. [Google Scholar] [CrossRef] [PubMed]
- Adekoya, T.O.; Richardson, R.M. Cytokines and Chemokines as Mediators of Prostate Cancer Metastasis. Int. J. Mol. Sci. 2020, 21, 4449. [Google Scholar] [CrossRef]
- He, S.; He, S.; Chen, C.H.; Deborde, S.; Bakst, R.L.; Chernichenko, N.; McNamara, W.F.; Lee, S.Y.; Barajas, F.; Yu, Z.; et al. The chemokine (CCL2-CCR2) signaling axis mediates perineural invasion. Mol. Cancer Res. 2015, 13, 380–390. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Qi, L.; Li, M.; Zhang, D.; Xu, S.; Wang, N.; Sun, B. Chemokine CXCL12 and its receptor CXCR4 expression are associated with perineural invasion of prostate cancer. J. Exp. Clin. Cancer Res. 2008, 27, 62. [Google Scholar] [CrossRef] [Green Version]
- Marchesi, F.; Locatelli, M.; Solinas, G.; Erreni, M.; Allavena, P.; Mantovani, A. Role of CX3CR1/CX3CL1 axis in primary and secondary involvement of the nervous system by cancer. J. Neuroimmunol. 2010, 224, 39–44. [Google Scholar] [CrossRef]
- Liu, P.; Liang, Y.; Jiang, L.; Wang, H.; Wang, S.; Dong, J. CX3CL1/fractalkine enhances prostate cancer spinal metastasis by activating the Src/FAK pathway. Int. J. Oncol. 2018, 53, 1544–1556. [Google Scholar] [CrossRef]
- Ha, H.K.; Lee, W.; Park, H.J.; Lee, S.D.; Lee, J.Z.; Chung, M.K. Clinical significance of CXCL16/CXCR6 expression in patients with prostate cancer. Mol. Med. Rep. 2011, 4, 419–424. [Google Scholar] [PubMed] [Green Version]
- Chen, Q.; Gu, M.; Cai, Z.K.; Zhao, H.; Sun, S.C.; Liu, C.; Zhan, M.; Chen, Y.B.; Wang, Z. TGF-β1 promotes epithelial-to-mesenchymal transition and stemness of prostate cancer cells by inducing PCBP1 degradation and alternative splicing of CD44. Cell. Mol. Life Sci. 2021, 78, 949–962. [Google Scholar] [CrossRef]
- Dongre, A.; Weinberg, R.A. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat. Rev. Mol. Cell Biol. 2019, 20, 69–84. [Google Scholar] [CrossRef]
- Atılgan, A.O.; Özdemir, B.H.; Akçay, E.Y.; Ataol Demirkan, Ö.; Tekindal, M.A.; Özkardeş, H. Role of tumor-associated macrophages in the Hexim1 and TGFβ/SMAD pathway, and their influence on progression of prostatic adenocarcinoma. Pathol. Res. Pract. 2016, 212, 83–92. [Google Scholar] [CrossRef]
- Kakies, C.; Hakenberg, O.W.; Gunia, S.; Erbersdobler, A. Prostate cancer with Paneth cell-like neuroendocrine differentiation and extensive perineural invasion: Coincidence or causal relationship? Pathol. Res. Pract. 2011, 207, 715–717. [Google Scholar] [CrossRef] [PubMed]
- Quintanal-Villalonga, Á.; Chan, J.M.; Yu, H.A.; Pe’er, D.; Sawyers, C.L.; Sen, T.; Rudin, C.M. Lineage plasticity in cancer: A shared pathway of therapeutic resistance. Nat. Rev. Clin. Oncol. 2020, 17, 360–371. [Google Scholar] [CrossRef] [PubMed]
- Yasumizu, Y.; Rajabi, H.; Jin, C.; Hata, T.; Pitroda, S.; Long, M.D.; Hagiwara, M.; Li, W.; Hu, Q.; Liu, S.; et al. MUC1-C regulates lineage plasticity driving progression to neuroendocrine prostate cancer. Nat. Commun. 2020, 11, 338. [Google Scholar] [CrossRef] [Green Version]
- Kaarijärvi, R.; Kaljunen, H.; Ketola, K. Molecular and Functional Links between Neurodevelopmental Processes and Treatment-Induced Neuroendocrine Plasticity in Prostate Cancer Progression. Cancers 2021, 13, 692. [Google Scholar] [CrossRef]
- Cindolo, L.; Franco, R.; Cantile, M.; Schiavo, G.; Liguori, G.; Chiodini, P.; Salzano, L.; Autorino, R.; Di Blasi, A.; Falsaperla, M.; et al. NeuroD1 expression in human prostate cancer: Can it contribute to neuroendocrine differentiation comprehension? Eur. Urol. 2007, 52, 1365–1373. [Google Scholar] [CrossRef]
- Ayala, G.E.; Dai, H.; Tahir, S.A.; Li, R.; Timme, T.; Ittmann, M.; Frolov, A.; Wheeler, T.M.; Rowley, D.; Thompson, T.C. Stromal antiapoptotic paracrine loop in perineural invasion of prostatic carcinoma. Cancer Res. 2006, 66, 5159–5164. [Google Scholar] [CrossRef] [Green Version]
- Zhu, W.; Shao, Y.; Yang, M.; Jia, M.; Peng, Y. Asparaginyl endopeptidase promotes proliferation and invasiveness of prostate cancer cells via PI3K/AKT signaling pathway. Gene 2016, 594, 176–182. [Google Scholar] [CrossRef] [PubMed]
- Ohno, Y.; Nakashima, J.; Izumi, M.; Ohori, M.; Hashimoto, T.; Tachibana, M. Association of legumain expression pattern with prostate cancer invasiveness and aggressiveness. World J. Urol. 2013, 31, 359–364. [Google Scholar] [CrossRef] [PubMed]
- Babasaki, T.; Sentani, K.; Sekino, Y.; Kobayashi, G.; Thang Pham, Q.; Katsuya, N.; Akabane, S.; Taniyama, D.; Hayashi, T.; Shiota, M.; et al. Overexpression of claspin promotes docetaxel resistance and is associated with prostate-specific antigen recurrence in prostate cancer. Cancer Med. 2021, 10, 5574–5588. [Google Scholar] [CrossRef] [PubMed]
- Le Page, C.; Koumakpayi, I.H.; Alam-Fahmy, M.; Mes-Masson, A.M.; Saad, F. Expression and localisation of Akt-1, Akt-2 and Akt-3 correlate with clinical outcome of prostate cancer patients. Br. J. Cancer 2006, 94, 1906–1912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hassounah, N.B.; Nagle, R.; Saboda, K.; Roe, D.J.; Dalkin, B.L.; McDermott, K.M. Primary cilia are lost in preinvasive and invasive prostate cancer. PLoS ONE 2013, 8, e68521. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.J.; Lee, J.Y.; Hwang, T.K.; Kang, C.S.; Choi, Y.J. Hedgehog signaling protein expression and its association with prognostic parameters in prostate cancer: A retrospective study from the view point of new 2010 anatomic stage/prognostic groups. J. Surg. Oncol. 2011, 104, 472–479. [Google Scholar] [CrossRef] [PubMed]
- Aaltomaa, S.; Eskelinen, M.; Lipponen, P. Expression of cyclin A and D proteins in prostate cancer and their relation to clinopathological variables and patient survival. Prostate 1999, 38, 175–182. [Google Scholar] [CrossRef]
- Nakamura, Y.; Felizola, S.J.; Kurotaki, Y.; Fujishima, F.; McNamara, K.M.; Suzuki, T.; Arai, Y.; Sasano, H. Cyclin D1 (CCND1) expression is involved in estrogen receptor beta (ERβ) in human prostate cancer. Prostate 2013, 73, 590–595. [Google Scholar] [CrossRef]
- Ahmed, E.S.; Elnour, L.S.; Hassan, R.; Siddig, E.E.; Chacko, M.E.; Ali, E.T.; Mohamed, M.A.; Munir, A.; Muneer, M.S.; Mohamed, N.S.; et al. Immunohistochemical expression of Cyclin D1 among Sudanese patients diagnosed with benign and malignant prostatic lesions. BMC Res. Notes 2020, 13, 295. [Google Scholar] [CrossRef]
- Nie, D.; Che, M.; Zacharek, A.; Qiao, Y.; Li, L.; Li, X.; Lamberti, M.; Tang, K.; Cai, Y.; Guo, Y.; et al. Differential expression of thromboxane synthase in prostate carcinoma: Role in tumor cell motility. Am. J. Pathol. 2004, 164, 429–439. [Google Scholar] [CrossRef] [Green Version]
- Jansson, K.H.; Castillo, D.G.; Morris, J.W.; Boggs, M.E.; Czymmek, K.J.; Adams, E.L.; Schramm, L.P.; Sikes, R.A. Identification of beta-2 as a key cell adhesion molecule in PCa cell neurotropic behavior: A novel ex vivo and biophysical approach. PLoS ONE 2014, 9, e98408. [Google Scholar]
- Ayala, G.E.; Dai, H.; Li, R.; Ittmann, M.; Thompson, T.C.; Rowley, D.; Wheeler, T.M. Bystin in perineural invasion of prostate cancer. Prostate 2006, 66, 266–272. [Google Scholar] [CrossRef] [PubMed]
- Bullock, N.; Potts, J.; Simpkin, A.J.; Koupparis, A.; Harper, S.J.; Oxley, J.; Oltean, S. Serine-arginine protein kinase 1 (SRPK1), a determinant of angiogenesis, is upregulated in prostate cancer and correlates with disease stage and invasion. J. Clin. Pathol. 2016, 69, 171–175. [Google Scholar] [CrossRef] [Green Version]
- Lounglaithong, K.; Bychkov, A.; Sampatanukul, P. Aberrant promoter methylation of the PAQR3 gene is associated with prostate cancer. Pathol. Res. Pract. 2018, 214, 126–129. [Google Scholar] [CrossRef] [PubMed]
- Yan, K.; Hou, L.; Liu, T.; Jiao, W.; Ma, Q.; Fang, Z.; Zhang, S.; Song, D.; Liu, J.; Gao, X.; et al. lncRNA OGFRP1 functions as a ceRNA to promote the progression of prostate cancer by regulating SARM1 level via miR-124-3p. Aging 2020, 12, 8880–8892. [Google Scholar] [CrossRef]
- Hu, J.C.; Lin, C.Y.; Wang, S.S.; Chiu, K.Y.; Li, J.R.; Chen, C.S.; Hung, S.C.; Yang, C.K.; Ou, Y.C.; Cheng, C.L.; et al. Impact of H19 Polymorphisms on Prostate Cancer Clinicopathologic Characteristics. Diagnostics 2020, 10, 656. [Google Scholar] [CrossRef]
- Lee, Y.J.; Oh, H.; Kim, E.; Ahn, B.; Lee, J.H.; Lee, Y.; Chae, Y.S.; Kang, S.G.; Kim, C.H. Long noncoding RNA HOTTIP overexpression: A potential prognostic biomarker in prostate cancer. Pathol. Res. Pract. 2019, 215, 152649. [Google Scholar] [CrossRef]
- Prueitt, R.L.; Yi, M.; Hudson, R.S.; Wallace, T.A.; Howe, T.M.; Yfantis, H.G.; Lee, D.H.; Stephens, R.M.; Liu, C.G.; Calin, G.A.; et al. Expression of microRNAs and protein-coding genes associated with perineural invasion in prostate cancer. Prostate 2008, 68, 1152–1164. [Google Scholar] [CrossRef] [Green Version]
- Bozgeyik, E.; Ceylan, O. Distinct expression signatures of miR-130a, miR-301a, miR-454 in formalin fixed paraffin embedded tissue samples of prostate cancer patients. Pathol. Res. Pract. 2022, 234, 153897. [Google Scholar] [CrossRef]
- Yu, H.H.; Song, D.Y.; Tsai, Y.Y.; Thompson, T.; Frassica, D.A.; DeWeese, T.L. Perineural invasion affects biochemical recurrence-free survival in patients with prostate cancer treated with definitive external beam radiotherapy. Urology 2007, 70, 111–116. [Google Scholar] [CrossRef]
- DeLancey, J.O.; Wood, D.P., Jr.; He, C.; Montgomery, J.S.; Weizer, A.Z.; Miller, D.C.; Jacobs, B.L.; Montie, J.E.; Hollenbeck, B.K.; Skolarus, T.A. Evidence of perineural invasion on prostate biopsy specimen and survival after radical prostatectomy. Urology 2013, 81, 354–357. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Xie, L.; Lin, S.X.; Wirth, G.J.; Lu, M.; Zhang, Y.; Blute, M.L.; Dahl, D.M.; Wu, C.L. Quantification of perineural invasion focus after radical prostatectomy could improve predictive power of recurrence. Hum. Pathol. 2020, 104, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Harnden, P.; Shelley, M.D.; Clements, H.; Coles, B.; Tyndale-Biscoe, R.S.; Naylor, B.; Mason, M.D. The prognostic significance of perineural invasion in prostatic cancer biopsies: A systematic review. Cancer 2007, 109, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.J.; Wu, B.; Zha, Z.L.; Qu, W.; Zhao, H.; Yuan, J.; Feng, Y.J. Perineural invasion as an independent predictor of biochemical recurrence in prostate cancer following radical prostatectomy or radiotherapy: A systematic review and meta-analysis. BMC Urol. 2018, 18, 5. [Google Scholar] [CrossRef]
- Meng, Y.; Liao, Y.B.; Xu, P.; Wei, W.R.; Wang, J. Perineural invasion is an independent predictor of biochemical recurrence of prostate cancer after local treatment: A meta-analysis. Int. J. Clin. Exp. Med. 2015, 8, 13267–13274. [Google Scholar]
- Batsakis, J.G. Nerves and neurotropic carcinomas. Ann. Otol. Rhinol. Laryngol. 1985, 94, 426–427. [Google Scholar]
- Lee, J.T.; Lee, S.; Yun, C.J.; Jeon, B.J.; Kim, J.M.; Ha, H.K.; Lee, W.; Chung, M.K. Prediction of perineural invasion and its prognostic value in patients with prostate cancer. Korean J. Urol. 2010, 51, 745–751. [Google Scholar] [CrossRef] [Green Version]
- Lubig, S.; Thiesler, T.; Müller, S.; Vorreuther, R.; Leipner, N.; Kristiansen, G. Quantitative perineural invasion is a prognostic marker in prostate cancer. Pathology 2018, 50, 298–304. [Google Scholar] [CrossRef]
- Ahmad, A.S.; Parameshwaran, V.; Beltran, L.; Fisher, G.; North, B.V.; Greenberg, D.; Soosay, G.; Møller, H.; Scardino, P.; Cuzick, J.; et al. Should reporting of peri-neural invasion and extra prostatic extension be mandatory in prostate cancer biopsies? Correlation with outcome in biopsy cases treated conservatively. Oncotarget 2018, 9, 20555–20562. [Google Scholar] [CrossRef] [Green Version]
- Egevad, L.; Judge, M.; Delahunt, B.; Humphrey, P.A.; Kristiansen, G.; Oxley, J.; Rasiah, K.; Takahashi, H.; Trpkov, K.; Varma, M.; et al. Dataset for the reporting of prostate carcinoma in core needle biopsy and transurethral resection and enucleation specimens: Recommendations from the International Collaboration on Cancer Reporting (ICCR). Pathology 2019, 51, 11–20. [Google Scholar] [CrossRef]
- Delahunt, B.; Murray, J.D.; Steigler, A.; Atkinson, C.; Christie, D.; Duchesne, G.; Egevad, L.; Joseph, D.; Matthews, J.; Oldmeadow, C.; et al. Perineural invasion by prostate adenocarcinoma in needle biopsies predicts bone metastasis: Ten year data from the TROG 03.04 RADAR Trial. Histopathology 2020, 77, 284–292. [Google Scholar] [CrossRef] [PubMed]
- Cohn, J.A.; Dangle, P.P.; Wang, C.E.; Brendler, C.B.; Novakovic, K.R.; McGuire, M.S.; Helfand, B.T. The prognostic significance of perineural invasion and race in men considering active surveillance. BJU Int. 2014, 114, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Egevad, L.; Delahunt, B.; Samaratunga, H.; Tsuzuki, T.; Olsson, H.; Ström, P.; Lindskog, C.; Häkkinen, T.; Kartasalo, K.; Eklund, M.; et al. Interobserver reproducibility of perineural invasion of prostatic adenocarcinoma in needle biopsies. Virchows Arch. Int. J. Pathol. 2021, 478, 1109–1116. [Google Scholar] [CrossRef]
- Celik, S.; Bozkurt, O.; Demir, O.; Gurboga, O.; Tuna, B.; Yorukoglu, K.; Aslan, G. Effects of perineural invasion in prostate needle biopsy on tumor grade and biochemical recurrence rates after radical prostatectomy. Kaohsiung J. Med. Sci. 2018, 34, 385–390. [Google Scholar] [CrossRef] [Green Version]
- Loeb, S.; Epstein, J.I.; Humphreys, E.B.; Walsh, P.C. Does perineural invasion on prostate biopsy predict adverse prostatectomy outcomes? BJU Int. 2010, 105, 1510–1513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merrick, G.S.; Butler, W.M.; Wallner, K.E.; Galbreath, R.W.; Allen, Z.A.; Adamovich, E. Prognostic significance of perineural invasion on biochemical progression-free survival after prostate brachytherapy. Urology 2005, 66, 1048–1053. [Google Scholar] [CrossRef] [PubMed]
- Ramos, N.; Macedo, A.; Rosa, J.; Carvalho, M. Perineural invasion in prostate needle biopsy: Prognostic value on radical prostatectomy and active surveillance. Arch. Ital. Urol. Androl. 2020, 92, 330–334. [Google Scholar] [CrossRef] [PubMed]
- Saeter, T.; Bogaard, M.; Vlatkovic, L.; Waaler, G.; Servoll, E.; Nesland, J.M.; Axcrona, K.; Axcrona, U. The relationship between perineural invasion, tumor grade, reactive stroma and prostate cancer-specific mortality: A clinicopathologic study on a population-based cohort. Prostate 2016, 76, 207–214. [Google Scholar] [CrossRef]
- Ström, P.; Nordström, T.; Delahunt, B.; Samaratunga, H.; Grönberg, H.; Egevad, L.; Eklund, M. Prognostic value of perineural invasion in prostate needle biopsies: A population-based study of patients treated by radical prostatectomy. J. Clin. Pathol. 2020, 73, 630–635. [Google Scholar] [CrossRef] [Green Version]
- Lian, Z.; Zhang, H.; He, Z.; Ma, S.; Wang, X.; Liu, R. Impact of positive surgical margin location and perineural invasion on biochemical recurrence in patients undergoing radical prostatectomy. World J. Surg. Oncol. 2020, 18, 201. [Google Scholar] [CrossRef]
- Maru, N.; Ohori, M.; Kattan, M.W.; Scardino, P.T.; Wheeler, T.M. Prognostic significance of the diameter of perineural invasion in radical prostatectomy specimens. Hum. Pathol. 2001, 32, 828–833. [Google Scholar] [CrossRef] [PubMed]
- Masieri, L.; Lanciotti, M.; Nesi, G.; Lanzi, F.; Tosi, N.; Minervini, A.; Lapini, A.; Carini, M.; Serni, S. Prognostic role of perineural invasion in 239 consecutive patients with pathologically organ-confined prostate cancer. Urol. Int. 2010, 85, 396–400. [Google Scholar] [CrossRef] [PubMed]
- Kraus, R.D.; Barsky, A.; Ji, L.; Garcia Santos, P.M.; Cheng, N.; Groshen, S.; Vapiwala, N.; Ballas, L.K. The Perineural Invasion Paradox: Is Perineural Invasion an Independent Prognostic Indicator of Biochemical Recurrence Risk in Patients with pT2N0R0 Prostate Cancer? A Multi-Institutional Study. Adv. Radiat. Oncol. 2019, 4, 96–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozcan, F. Correlation of perineural invasion on radical prostatectomy specimens with other pathologic prognostic factors and PSA failure. Eur. Urol. 2001, 40, 308–312. [Google Scholar] [PubMed]
- Bell, P.D.; Teramoto, Y.; Gurung, P.M.S.; Numbere, N.; Yang, Z.; Miyamoto, H. The Clinical Significance of Perineural Invasion by Prostate Cancer on Needle Core Biopsy. Arch. Pathol. Lab. Med. 2022. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, J.; Zhang, M.; Tang, X.; Sun, G.; Zhu, S.; Liu, J.; Zhang, H.; Zhang, X.; Yin, X.; et al. The clinical significance of perineural invasion in patients with de novo metastatic prostate cancer. Andrology 2019, 7, 184–192. [Google Scholar] [CrossRef]
- Merrilees, A.D.; Bethwaite, P.B.; Russell, G.L.; Robinson, R.G.; Delahunt, B. Parameters of perineural invasion in radical prostatectomy specimens lack prognostic significance. Mod. Pathol. 2008, 21, 1095–1100. [Google Scholar] [CrossRef] [Green Version]
- Zareba, P.; Flavin, R.; Isikbay, M.; Rider, J.R.; Gerke, T.A.; Finn, S.; Pettersson, A.; Giunchi, F.; Unger, R.H.; Tinianow, A.M.; et al. Perineural Invasion and Risk of Lethal Prostate Cancer. Cancer Epidemiol. Biomark. Prev. 2017, 26, 719–726. [Google Scholar] [CrossRef] [Green Version]
- Peng, L.C.; Narang, A.K.; Gergis, C.; Radwan, N.A.; Han, P.; Marciscano, A.E.; Robertson, S.P.; He, P.; Trieu, J.; Ram, A.N.; et al. Effects of perineural invasion on biochemical recurrence and prostate cancer-specific survival in patients treated with definitive external beam radiotherapy. Urol. Oncol. 2018, 36, 309.e7–309.e14. [Google Scholar] [CrossRef]
- Huang, J.; Vicini, F.A.; Williams, S.G.; Ye, H.; McGrath, S.; Ghilezan, M.; Krauss, D.; Martinez, A.A.; Kestin, L.L. Percentage of positive biopsy cores: A better risk stratification model for prostate cancer? Int. J. Radiat. Oncol. Biol. Phys. 2012, 83, 1141–1148. [Google Scholar] [CrossRef]
- De la Taille, A.; Rubin, M.A.; Bagiella, E.; Olsson, C.A.; Buttyan, R.; Burchardt, T.; Knight, C.; O’Toole, K.M.; Katz, A.E. Can perineural invasion on prostate needle biopsy predict prostate specific antigen recurrence after radical prostatectomy? J. Urol. 1999, 162, 103–106. [Google Scholar] [CrossRef] [PubMed]
- Katz, B.; Srougi, M.; Dall’Oglio, M.; Nesrallah, A.J.; Sant’anna, A.C.; Pontes, J., Jr.; Antunes, A.A.; Reis, S.T.; Viana, N.; Sañudo, A.; et al. Perineural invasion detection in prostate biopsy is related to recurrence-free survival in patients submitted to radical prostatectomy. Urol. Oncol. 2013, 31, 175–179. [Google Scholar] [CrossRef] [PubMed]
- Anderson, P.R.; Hanlon, A.L.; Patchefsky, A.; Al-Saleem, T.; Hanks, G.E. Perineural invasion and Gleason 7–10 tumors predict increased failure in prostate cancer patients with pretreatment PSA <10 ng/mL treated with conformal external beam radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 1998, 41, 1087–1092. [Google Scholar] [PubMed]
- Bonin, S.R.; Hanlon, A.L.; Lee, W.R.; Movsas, B.; Al-Saleem, T.I.; Hanks, G.E. Evidence of increased failure in the treatment of prostate carcinoma patients who have perineural invasion treated with three-dimensional conformal radiation therapy. Cancer 1997, 79, 75–80. [Google Scholar] [CrossRef] [Green Version]
- Tollefson, M.K.; Karnes, R.J.; Kwon, E.D.; Lohse, C.M.; Rangel, L.J.; Mynderse, L.A.; Cheville, J.C.; Sebo, T.J. Prostate cancer Ki-67 (MIB-1) expression, perineural invasion, and gleason score as biopsy-based predictors of prostate cancer mortality: The Mayo model. Mayo Clin. Proc. 2014, 89, 308–318. [Google Scholar] [CrossRef]
- Wu, S.; Lin, X.; Lin, S.X.; Lu, M.; Deng, T.; Wang, Z.; Olumi, A.F.; Dahl, D.M.; Wang, D.; Blute, M.L.; et al. Impact of biopsy perineural invasion on the outcomes of patients who underwent radical prostatectomy: A systematic review and meta-analysis. Scand. J. Urol. 2019, 53, 287–294. [Google Scholar] [CrossRef]
- Bakst, R.L.; Lee, N.; He, S.; Chernichenko, N.; Chen, C.H.; Linkov, G.; Le, H.C.; Koutcher, J.; Vakiani, E.; Wong, R.J. Radiation impairs perineural invasion by modulating the nerve microenvironment. PLoS ONE 2012, 7, e39925. [Google Scholar] [CrossRef] [Green Version]
- Chatzistefanou, I.; Lubek, J.; Markou, K.; Ord, R.A. The role of perineural invasion in treatment decisions for oral cancer patients: A review of the literature. J. Cranio-Maxillo-Fac. Surg. 2017, 45, 821–825. [Google Scholar] [CrossRef]
Reference | PNI Definition | Sample Type | PNI Positivity * |
---|---|---|---|
Ahmad et al., 2018 [79] | Cancer tracking along or around a nerve within the perineural space | Biopsy | 288/988 (29.1%) |
Celik et al., 2018 [84] | Extension of PCa cells along the nerve bundle | Biopsy | 87/380 (22.9%) |
Cohn et al., 2014 [82] | Adenocarcinomas observed within the perineural space adjacent to an intraprostatic nerve fiber | Biopsy | 14/165 (8.5%) |
Hsiang-Hsuan et al., 2007 [70] | Presence of carcinoma in a gland that encircles an intraprostatic nerve | Biopsy | 112/586 (19.1%) |
Loeb et al., 2010 [85] | PCa extension along the perineural sheath | Biopsy | 188/1256 (15.0%) |
Merrick et al., 2005 [86] | Carcinoma tracking along, or around, a nerve within the perineural space | Biopsy | 133/512 (26.0%) |
Ramos et al., 2020 [87] | Circumferential or longitudinal tracking of PCa cell along a nerve, within the perineural space | Biopsy | 57/107 (53.3%) |
Saeter et al., 2015 [88] | Growth of cancer in the surrounding perineural space of nerves | Biopsy | 141/281 (50.2%) |
Ström et al., 2020 [89] | Prostatic carcinoma found immediately adjacent to a nerve, either along the nerve or surrounding it | Biopsy | 146/918 (15.9%) |
Lee et al., 2010 [77] | Tumor cells within any layer of the nerve sheath or tumor cells in the perineural space that involves at least one-third of the nerve circumference | Biopsy Prostatectomy | 14/361 (3.9%) 188/361 (52.1%) |
Lian et al., 2020 [90] | Trajectory of tumor cells along or around nerve fibers | Prostatectomy | 127/416 (30.5%) |
Maru et al., 2001 [91] | Carcinoma within the perineural space adjacent to a nerve | Prostatectomy | 477/640 (75%) |
Masieri et al., 2009 [92] | Adenocarcinoma within the perineural space adjacent to a nerve; focal contact between the tumor and a nerve was disregarded | Prostatectomy | 157/239 (65.7%) |
Kraus et al., 2019 [93] | Infiltration of cancer cells into the perineural space where they track along or around a nerve | Prostatectomy + | 936/1549 (60.4%) |
Özcan et al., 2001 [94] | Adenocarcinoma glands in the perineural space within the prostate tissue | Prostatectomy + | 61/178 (34.3%) |
Wu et al., 2020 [72] | PCa infiltration in any layer of the nerve sheath or tumor invasion involved at least one-third of nerve circumference | Prostatectomy | 530/721 (73.5%) |
Reference | Mean/Median Follow Up in Years | Endpoint | No. of Patients Reaching Endpoint (% of Cohort) | Prognostic Significance of PNI for Endpoint (Univariate Analysis) | PNI as Independent Predictor for Endpoint (Multivariate Analysis) |
---|---|---|---|---|---|
Cohn et al., 2014 [82] | -/0.5 | AS failure | 40 (24.2%) | Yes | Yes |
De la Taille et al., 1999 [101] | 2.1/- | BCR | 46 (14.4%) | Yes | Yes |
Katz et al., 2013 [102] | 4.3/3.9 | BCR | 56 (19.6% | Yes | N/A |
Kraus et al., 2019 [93] | -/2.2 | BCR | 96 (6.2) | Yes | No |
Lee et al., 2010 [77] | 3.5/- | BCR | 83 (23.0%) | No | - |
Lian et al., 2020 [90] | -/2.3 | BCR | 94 (22.6%) | Yes | No |
Loeb et al., 2010 [85] | 2.8/- | BCR | 57 (4.5%) | Yes | No |
Masieri et al., 2009 [92] | 5.5/5.2 | BCR | 11 (4.6%) | No | - |
Merrilees et al., 2008 [97] | 2.4/2.2 | BCR | 27 (25.7%) | No | - |
Ramos et al., 2020 [87] | 5.9/- | BCR | 31 (29.0%) | Yes | No |
Andersen et al., 1999 [103] | -/4.0 | bNED | 35 (12.2%) | Yes | Yes |
Bonin et al., 1997 [104] | 2.4/2.3 | bNED | 109 (22.5%) + | Yes | No |
Delahunt et al., 2020 [81] | -/10.6 | Bone Met | 212 (21.7%) | Yes | Yes |
Soft Tissue Met | 171 (17.5%) | Yes | No | ||
DOD | 130 (13.3%) | Yes | No | ||
Death | 344 (35.3%) | Yes | No | ||
Tollefson et al., 2014 [105] | -/12.9 | Cancer Progression | 135 (29.9%) | Yes | Yes |
Local or systemic progression | 46 (10.2%) | N/A | Yes | ||
DOD | 18 (4.1%) | Yes | Yes | ||
Ahmad et al., 2018 [79] | -/9.7 | DOD | 169 (17.1%) | No | - |
Saeter et al., 2015 [88] | -/9.2 | DOD | 58 (20.6%) | Yes | Yes/No (dependent on model) |
Peng et al., 2018 [99] | -/11.3 | RFS | N/A | Yes | Yes |
MTS | N/A | Yes | No | ||
CSS | 74 (8.3%) | Yes | No | ||
OS | 368 (41.4%) | No | No |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niu, Y.; Förster, S.; Muders, M. The Role of Perineural Invasion in Prostate Cancer and Its Prognostic Significance. Cancers 2022, 14, 4065. https://doi.org/10.3390/cancers14174065
Niu Y, Förster S, Muders M. The Role of Perineural Invasion in Prostate Cancer and Its Prognostic Significance. Cancers. 2022; 14(17):4065. https://doi.org/10.3390/cancers14174065
Chicago/Turabian StyleNiu, Yuequn, Sarah Förster, and Michael Muders. 2022. "The Role of Perineural Invasion in Prostate Cancer and Its Prognostic Significance" Cancers 14, no. 17: 4065. https://doi.org/10.3390/cancers14174065
APA StyleNiu, Y., Förster, S., & Muders, M. (2022). The Role of Perineural Invasion in Prostate Cancer and Its Prognostic Significance. Cancers, 14(17), 4065. https://doi.org/10.3390/cancers14174065