Poly(ADP-Ribose) Polymerase Inhibition as a Promising Approach for Hepatocellular Carcinoma Therapy
Abstract
:Simple Summary
Abstract
1. Introduction
2. PARP1 as a Key Protein in DNA Damaged Repair
3. PARP in HCC
4. PARP Inhibitors or PARP Baits for HCC Therapy
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Kew, M.C. Synergistic Interaction between Aflatoxin B1 and Hepatitis B Virus in Hepatocarcinogenesis. Liver Int. Off. J. Int. Assoc. Study Liver 2003, 23, 405–409. [Google Scholar] [CrossRef] [PubMed]
- EASL Clinical Practice Guidelines: Management of Hepatocellular Carcinoma. J. Hepatol. 2018, 69, 182–236. [CrossRef] [PubMed] [Green Version]
- Raffetti, E.; Portolani, N.; Molfino, S.; Mentasti, S.; Baiocchi, G.L.; Magoni, M.; Donato, F. Is Survival for Hepatocellular Carcinoma Increasing? A Population-Based Study on Survival of Hepatocellular Carcinoma Patients in the 1990s and 2000s. Clin. Res. Hepatol. Gastroenterol. 2021, 45, 101433. [Google Scholar] [CrossRef]
- Ohri, N.; Dawson, L.A.; Krishnan, S.; Seong, J.; Cheng, J.C.; Sarin, S.K.; Kinkhabwala, M.; Ahmed, M.M.; Vikram, B.; Coleman, C.N.; et al. Radiotherapy for Hepatocellular Carcinoma: New Indications and Directions for Future Study. J. Natl. Cancer Inst. 2016, 108, djw133. [Google Scholar] [CrossRef]
- Choi, C.; Yoo, G.S.; Cho, W.K.; Park, H.C. Optimizing Radiotherapy with Immune Checkpoint Blockade in Hepatocellular Carcinoma. World J. Gastroenterol. 2019, 25, 2416–2429. [Google Scholar] [CrossRef]
- Shieh, W.M.; Amé, J.-C.; Wilson, M.V.; Wang, Z.-Q.; Koh, D.W.; Jacobson, M.K.; Jacobson, E.L. Poly(ADP-Ribose) Polymerase Null Mouse Cells Synthesize ADP-Ribose Polymers*. J. Biol. Chem. 1998, 273, 30069–30072. [Google Scholar] [CrossRef] [Green Version]
- De Vos, M.; Schreiber, V.; Dantzer, F. The Diverse Roles and Clinical Relevance of PARPs in DNA Damage Repair: Current State of the Art. Biochem. Pharmacol. 2012, 84, 137–146. [Google Scholar] [CrossRef]
- Slade, D. PARP and PARG Inhibitors in Cancer Treatment. Genes Dev. 2020, 34, 360–394. [Google Scholar] [CrossRef] [Green Version]
- Gabrielson, A.; Tesfaye, A.A.; Marshall, J.L.; Pishvaian, M.J.; Smaglo, B.; Jha, R.; Dorsch-Vogel, K.; Wang, H.; He, A.R. Phase II Study of Temozolomide and Veliparib Combination Therapy for Sorafenib-Refractory Advanced Hepatocellular Carcinoma. Cancer Chemother. Pharmacol. 2015, 76, 1073–1079. [Google Scholar] [CrossRef] [Green Version]
- Ward, J.F. Complexity of Damage Produced by Ionizing Radiation. Cold Spring Harb. Symp. Quant. Biol. 2000, 65, 377–382. [Google Scholar] [CrossRef]
- Dahm-Daphi, C.S.; Alberti, W.J. Comparison of Biological Effects of DNA Damage Induced by Ionizing Radiation and Hydrogen Peroxide in CHO Cells. Int. J. Radiat. Biol. 2000, 76, 67–75. [Google Scholar] [CrossRef]
- Khanna, K.K.; Jackson, S.P. DNA Double-Strand Breaks: Signaling, Repair and the Cancer Connection. Nat. Genet. 2001, 27, 247–254. [Google Scholar] [CrossRef]
- Ray Chaudhuri, A.; Nussenzweig, A. The Multifaceted Roles of PARP1 in DNA Repair and Chromatin Remodelling. Nat. Rev. Mol. Cell Biol. 2017, 18, 610–621. [Google Scholar] [CrossRef]
- Murai, J.; Huang, S.N.; Das, B.B.; Renaud, A.; Zhang, Y.; Doroshow, J.H.; Ji, J.; Takeda, S.; Pommier, Y. Differential Trapping of PARP1 and PARP2 by Clinical PARP Inhibitors. Cancer Res. 2012, 72, 5588–5599. [Google Scholar] [CrossRef] [Green Version]
- Ossovskaya, V.; Koo, I.C.; Kaldjian, E.P.; Alvares, C.; Sherman, B.M. Upregulation of Poly (ADP-Ribose) Polymerase-1 (PARP1) in Triple-Negative Breast Cancer and Other Primary Human Tumor Types. Genes Cancer 2010, 1, 812–821. [Google Scholar] [CrossRef]
- Gerossier, L.; Dubois, A.; Paturel, A.; Fares, N.; Cohen, D.; Merle, P.; Lachuer, J.; Wierinckx, A.; Saintigny, P.; Bancel, B.; et al. PARP Inhibitors and Radiation Potentiate Liver Cell Death In Vitro. Do Hepatocellular Carcinomas Have an Achilles’ Heel? Clin. Res. Hepatol. Gastroenterol. 2021, 45, 101553. [Google Scholar] [CrossRef]
- Nomura, F.; Yaguchi, M.; Togawa, A.; Miyazaki, M.; Isobe, K.; Miyake, M.; Noda, M.; Nakai, T. Enhancement of Poly-Adenosine Diphosphate-Ribosylation in Human Hepatocellular Carcinoma. J. Gastroenterol. Hepatol. 2000, 15, 529–535. [Google Scholar] [CrossRef]
- Shiobara, M.; Miyazaki, M.; Ito, H.; Togawa, A.; Nakajima, N.; Nomura, F.; Morinaga, N.; Noda, M. Enhanced Polyadenosine Diphosphate-Ribosylation in Cirrhotic Liver and Carcinoma Tissues in Patients with Hepatocellular Carcinoma. J. Gastroenterol. Hepatol. 2001, 16, 338–344. [Google Scholar] [CrossRef]
- Shimizu, S.; Nomura, F.; Tomonaga, T.; Sunaga, M.; Noda, M.; Ebara, M.; Saisho, H. Expression of Poly(ADP-Ribose) Polymerase in Human Hepatocellular Carcinoma and Analysis of Biopsy Specimens Obtained under Sonographic Guidance. Oncol. Rep. 2004, 12, 821–825. [Google Scholar] [CrossRef]
- Guillot, C.; Favaudon, V.; Herceg, Z.; Sagne, C.; Sauvaigo, S.; Merle, P.; Hall, J.; Chemin, I. PARP Inhibition and the Radiosensitizing Effects of the PARP Inhibitor ABT-888 in in Vitro Hepatocellular Carcinoma Models. BMC Cancer 2014, 14, 603. [Google Scholar] [CrossRef] [Green Version]
- Ju, C.; Liu, C.; Yan, S.; Wang, Y.; Mao, X.; Liang, M.; Huang, K. Poly(ADP-Ribose) Polymerase-1 Is Required for Hepatocyte Proliferation and Liver Regeneration in Mice. Biochem. Biophys. Res. Commun. 2019, 511, 531–535. [Google Scholar] [CrossRef]
- Pleschke, J.M.; Kleczkowska, H.E.; Strohm, M.; Althaus, F.R. Poly(ADP-Ribose) Binds to Specific Domains in DNA Damage Checkpoint Proteins. J. Biol. Chem. 2000, 275, 40974–40980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castri, P.; Lee, Y.-J.; Ponzio, T.; Maric, D.; Spatz, M.; Bembry, J.; Hallenbeck, J. Poly(ADP-Ribose) Polymerase-1 and Its Cleavage Products Differentially Modulate Cellular Protection through NF-KappaB-Dependent Signaling. Biochim. Biophys. Acta 2014, 1843, 640–651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, Q.; Li, Y.; Lai, Y.; Zhang, Z. The Role of NF-ΚB in PARP-Inhibitor-Mediated Sensitization and Detoxification of Arsenic Trioxide in Hepatocellular Carcinoma Cells. J. Toxicol. Sci. 2015, 40, 349–363. [Google Scholar] [CrossRef] [Green Version]
- Hassa, P.O.; Buerki, C.; Lombardi, C.; Imhof, R.; Hottiger, M.O. Transcriptional Coactivation of Nuclear Factor-ΚB-Dependent Gene Expression by P300 Is Regulated by Poly(ADP)-Ribose Polymerase-1 *. J. Biol. Chem. 2003, 278, 45145–45153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin-Oliva, D.; Aguilar-Quesada, R.; O’valle, F.; Muñoz-Gámez, J.A.; Martínez-Romero, R.; García Del Moral, R.; Ruiz de Almodóvar, J.M.; Villuendas, R.; Piris, M.A.; Oliver, F.J. Inhibition of Poly(ADP-Ribose) Polymerase Modulates Tumor-Related Gene Expression, Including Hypoxia-Inducible Factor-1 Activation, during Skin Carcinogenesis. Cancer Res. 2006, 66, 5744–5756. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Romero, R.; Martínez-Lara, E.; Aguilar-Quesada, R.; Peralta, A.; Oliver, F.J.; Siles, E. PARP-1 Modulates Deferoxamine-Induced HIF-1α Accumulation through the Regulation of Nitric Oxide and Oxidative Stress. J. Cell. Biochem. 2008, 104, 2248–2260. [Google Scholar] [CrossRef]
- Idogawa, M.; Yamada, T.; Honda, K.; Sato, S.; Imai, K.; Hirohashi, S. Poly(ADP-Ribose) Polymerase-1 Is a Component of the Oncogenic T-Cell Factor-4/β-Catenin Complex. Gastroenterology 2005, 128, 1919–1936. [Google Scholar] [CrossRef]
- Mann, M.; Kumar, S.; Sharma, A.; Chauhan, S.S.; Bhatla, N.; Kumar, S.; Bakhshi, S.; Gupta, R.; Kumar, L. PARP-1 Inhibitor Modulate β-Catenin Signaling to Enhance Cisplatin Sensitivity in Cancer Cervix. Oncotarget 2019, 10, 4262–4275. [Google Scholar] [CrossRef] [Green Version]
- Evert, M.; Frau, M.; Tomasi, M.L.; Latte, G.; Simile, M.M.; Seddaiu, M.A.; Zimmermann, A.; Ladu, S.; Staniscia, T.; Brozzetti, S.; et al. Deregulation of DNA-Dependent Protein Kinase Catalytic Subunit Contributes to Human Hepatocarcinogenesis Development and Has a Putative Prognostic Value. Br. J. Cancer 2013, 109, 2654–2664. [Google Scholar] [CrossRef]
- Murai, J.; Huang, S.-Y.N.; Renaud, A.; Zhang, Y.; Ji, J.; Takeda, S.; Morris, J.; Teicher, B.; Doroshow, J.H.; Pommier, Y. Stereospecific PARP Trapping by BMN 673 and Comparison with Olaparib and Rucaparib. Mol. Cancer Ther. 2014, 13, 433–443. [Google Scholar] [CrossRef] [Green Version]
- Laird, J.H.; Lok, B.H.; Ma, J.; Bell, A.; de Stanchina, E.; Poirier, J.T.; Rudin, C.M. Talazoparib Is a Potent Radiosensitizer in Small Cell Lung Cancer Cell Lines and Xenografts. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2018, 24, 5143–5152. [Google Scholar] [CrossRef] [Green Version]
- Mao, X.; Du, S.; Yang, Z.; Zhang, L.; Peng, X.; Jiang, N.; Zhou, H. Inhibitors of PARP-1 Exert Inhibitory Effects on the Biological Characteristics of Hepatocellular Carcinoma Cells In Vitro. Mol. Med. Rep. 2017, 16, 208–214. [Google Scholar] [CrossRef] [Green Version]
- Mateo, J.; Lord, C.J.; Serra, V.; Tutt, A.; Balmaña, J.; Castroviejo-Bermejo, M.; Cruz, C.; Oaknin, A.; Kaye, S.B.; de Bono, J.S. A Decade of Clinical Development of PARP Inhibitors in Perspective. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2019, 30, 1437–1447. [Google Scholar] [CrossRef] [Green Version]
- Zai, W.; Chen, W.; Han, Y.; Wu, Z.; Fan, J.; Zhang, X.; Luan, J.; Tang, S.; Jin, X.; Fu, X.; et al. Targeting PARP and Autophagy Evoked Synergistic Lethality in Hepatocellular Carcinoma. Carcinogenesis 2020, 41, 345–357. [Google Scholar] [CrossRef]
- Yang, X.-D.; Kong, F.-E.; Qi, L.; Lin, J.-X.; Yan, Q.; Loong, J.H.C.; Xi, S.-Y.; Zhao, Y.; Zhang, Y.; Yuan, Y.-F.; et al. PARP Inhibitor Olaparib Overcomes Sorafenib Resistance through Reshaping the Pluripotent Transcriptome in Hepatocellular Carcinoma. Mol. Cancer 2021, 20, 20. [Google Scholar] [CrossRef]
- Rizzo, A.; Ricci, A.D.; Gadaleta-Caldarola, G.; Brandi, G. First-line immune checkpoint inhibitor-based combinations in unresectable hepatocellular carcinoma: Current management and future challenges. Expert Rev. Gastroenterol. Hepatol. 2021, 15, 1245–1251. [Google Scholar] [CrossRef]
- Decorsière, A.; Mueller, H.; van Breugel, P.C.; Abdul, F.; Gerossier, L.; Beran, R.K.; Livingston, C.M.; Niu, C.; Fletcher, S.P.; Hantz, O.; et al. Hepatitis B Virus X Protein Identifies the Smc5/6 Complex as a Host Restriction Factor. Nature 2016, 531, 386–389. [Google Scholar] [CrossRef]
- Funato, K.; Otsuka, M.; Sekiba, K.; Miyakawa, Y.; Seimiya, T.; Shibata, C.; Kishikawa, T.; Fujishiro, M. Hepatitis B Virus-Associated Hepatocellular Carcinoma with Smc5/6 Complex Deficiency Is Susceptible to PARP Inhibitors. Biochem. Biophys. Res. Commun. 2022, 607, 89–95. [Google Scholar] [CrossRef]
- Devun, F.; Herath, N.; Denys, A.; Sun, J.; Dutreix, M. DNA Repair Inhibition by DT01 as an Adjuvant Therapy at Each Stage of Hepatocellular Cancer (HCC) Treatment. J. Clin. Oncol. 2015, 33 (Suppl. S3), 303. [Google Scholar] [CrossRef]
- Quanz, M.; Berthault, N.; Roulin, C.; Roy, M.; Herbette, A.; Agrario, C.; Alberti, C.; Josserand, V.; Coll, J.-L.; Sastre-Garau, X.; et al. Small-Molecule Drugs Mimicking DNA Damage: A New Strategy for Sensitizing Tumors to Radiotherapy. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2009, 15, 1308–1316. [Google Scholar] [CrossRef] [Green Version]
- Croset, A.; Cordelières, F.P.; Berthault, N.; Buhler, C.; Sun, J.-S.; Quanz, M.; Dutreix, M. Inhibition of DNA Damage Repair by Artificial Activation of PARP with SiDNA. Nucleic Acids Res. 2013, 41, 7344–7355. [Google Scholar] [CrossRef] [Green Version]
- Devun, F.; Bousquet, G.; Biau, J.; Herbette, A.; Roulin, C.; Berger, F.; Sun, J.-S.; Robine, S.; Dutreix, M. Preclinical Study of the DNA Repair Inhibitor Dbait in Combination with Chemotherapy in Colorectal Cancer. J. Gastroenterol. 2012, 47, 266–275. [Google Scholar] [CrossRef]
- Solass, W.; Herbette, A.; Schwarz, T.; Hetzel, A.; Sun, J.-S.; Dutreix, M.; Reymond, M.A. Therapeutic Approach of Human Peritoneal Carcinomatosis with Dbait in Combination with Capnoperitoneum: Proof of Concept. Surg. Endosc. 2012, 26, 847–852. [Google Scholar] [CrossRef] [Green Version]
- Biau, J.; Chautard, E.; Berthault, N.; de Koning, L.; Court, F.; Pereira, B.; Verrelle, P.; Dutreix, M. Combining the DNA Repair Inhibitor Dbait with Radiotherapy for the Treatment of High Grade Glioma: Efficacy and Protein Biomarkers of Resistance in Preclinical Models. Front. Oncol. 2019, 9, 549. [Google Scholar] [CrossRef]
- Deng, Z.-L.; Ma, Y. Aflatoxin Sufferer and P53 Gene Mutation in Hepatocellular Carcinoma. World J. Gastroenterol. 1998, 4, 28–29. [Google Scholar] [CrossRef]
PARP Inhibitor | Combination Therapy | Condition | Phase | Status | Trial Number |
---|---|---|---|---|---|
Veliparib | Temozolomide | HCC | II | terminated | NCT01205828 |
Veliparib | Temozolomide | HCC | I | completed | NCT00526617 |
Olaparib | Temozolomide, Radiation | Malignant Gliomas | I/II | recruiting | NCT03212742 |
Niraparib | Dostarlimab, Radiation | Breast Cancer | II | recruiting | NCT04837209 |
Olaparib | Radiation | Breast Carcinoma | II | recruiting | NCT03598257 |
Olaparib | Durvalumab, radiation | Pancreatic Cancer | I | Not yet recruiting | NCT05411094 |
Olaparib | Radiation | Breast Carcinoma | I | completed | NCT02227082 |
Veliparib | Capecitabine, radiation | Rectal Cancer | I | completed | NCT01589419 |
Iniparib | Radiation | Brain Metastases | I | terminated | NCT01551680 |
Niraparib | Radiation | Metastatic Carcinoma of the Cervix | I/II | recruiting | NCT03644342 |
Olaparib | Radiation | Laryngeal and oropharyngeal carcinoma | I | active, not recruiting | NCT02229656 |
Veliparib | Radiation | Breast Cancer | I | completed | NCT01477489 |
Veliparib | Temozolomide, Radiation | Malignant Glioma | II | active, not recruiting | NCT03581292 |
Olaparib | Radiation, and Immunotherapy | Lung Cancer | I/II | recruiting | NCT04728230 |
Niraparib | Radiation | Breast Cancer | I | recruiting | NCT03945721 |
Olaparib | Radiation | Prostate Cancer | I/II | recruiting | NCT03317392 |
Olaparib | Radiation | Somatostatin receptor positive tumours | I | recruiting | NCT04375267 |
Olaparib | Pembrolizumab, cisplatin, and radiation | Carcinoma of Head and Neck | II | Not yet recruiting | NCT05366166 |
Olaparib | Radiation | Breast Cancer | I | Active, not recruiting | NCT03109080 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paturel, A.; Hall, J.; Chemin, I. Poly(ADP-Ribose) Polymerase Inhibition as a Promising Approach for Hepatocellular Carcinoma Therapy. Cancers 2022, 14, 3806. https://doi.org/10.3390/cancers14153806
Paturel A, Hall J, Chemin I. Poly(ADP-Ribose) Polymerase Inhibition as a Promising Approach for Hepatocellular Carcinoma Therapy. Cancers. 2022; 14(15):3806. https://doi.org/10.3390/cancers14153806
Chicago/Turabian StylePaturel, Alexia, Janet Hall, and Isabelle Chemin. 2022. "Poly(ADP-Ribose) Polymerase Inhibition as a Promising Approach for Hepatocellular Carcinoma Therapy" Cancers 14, no. 15: 3806. https://doi.org/10.3390/cancers14153806
APA StylePaturel, A., Hall, J., & Chemin, I. (2022). Poly(ADP-Ribose) Polymerase Inhibition as a Promising Approach for Hepatocellular Carcinoma Therapy. Cancers, 14(15), 3806. https://doi.org/10.3390/cancers14153806