Personalised Therapies for Metastatic Triple-Negative Breast Cancer: When Target Is Not Everything
Abstract
:Simple Summary
Abstract
1. Introduction and Background
2. Targeting Microenvironment (Angiogenesis and Immune System)
2.1. VEGFR
2.2. Targeting Immune System
2.2.1. PD-1/PD-L1 Immune Checkpoint
2.2.2. TMB and MSI-H/dMMR
3. Targeting Intracellular Pathways
3.1. PolyADP Ribose Polymerases (PARP) in BRCA1/2 Mutated Patients and TNBC
3.2. Androgen Receptor (AR)
3.3. PI3K/AKT/mTOR
3.4. NOTCH
3.5. NTRK
3.6. Glutaminase Inhibitors
Target | Relevance in TNBC | Drugs | Clinical Trials (Phase) | Outcomes | Indication Approved/Not Approved |
---|---|---|---|---|---|
PolyADP | 10–20% | olaparib | OlympiAD (phase III) (olaparib vs. chemotherapy) [39] | PFS: 7 vs. 4.2 months | Approved by FDA and EMA |
DORA trial (phase II) NCT03167619 (olaparib + durvalumab vs. olaparib alone) | Efficacy assessed by PFS | Ongoing | |||
Medi4736 NCT02484404 (durvalumab + olaparib and/or cediranib) | ORR in ovarian cancer subgroup, recommended second dose | Ongoing | |||
NCT02849496 (phase II) (olaparib + atezolizumab vs. olaparib alone) | PFS | Ongoing | |||
NCT04683679 (RT + pembrolizumab + olaparib vs. RT+ pembrolizumab alone) (phase II) | ORR | Ongoing | |||
talazoparib | EMBRACA (phase III) (talazoparib vs. chemotherapy) [40] | PFS: 8.6 vs. 5.6 months | Approved by FDA and EMA | ||
Javelin BRCA/ATM (phase II) (avelumab + talazoparib, single arm) | ORR | Ongoing | |||
NCT04690855 TARA (phase II) (talazoparib + atezolizumab + RT single arm) | ORR | Ongoing | |||
NCT03964532 TALAVE (phase I/II) (talazoparib + avelumab, single arm) | AEs | Ongoing | |||
niraparib | TOPACIO-Keynote 162 (phase I/II) (niraparib + pembrolizumab) [41] | ORR: 21% in full population | Not approved | ||
MEDIOLA (phase I/II) (niraparib + durvalumab) [42] | 12 weeks DCR: 80%, safety and tolerability: 11% grade 3 or more AEs | Not approved | |||
veliparib | BROCADE 3 (phase III) (veliparib + carboplatin+ paclitaxel vs. placebo+ carboplatin + paclitaxel) [43] | PFS: 16.6 vs. 14.1 months OS: 35 vs. 30 months | Not approved | ||
SWOG S1416 (phase II) (veliparib + cisplatin vs placebo + cisplatin) [44] | PFS BRCA+: not statistically significant; BRCA-like: 5.7 vs. 4.3 months; BRCA-: no benefit | Not approved | |||
AR | 30–35% | abiraterone | UCBG 12-1 (phase II) (abiraterone acetate + prednisone in single arm) [50] | 6 months CBR: 20% ORR: 6.7% PFS: 2.8 months | Not approved |
bicalutamide | TBCRC 011 (phase II) (bicalutamide in single arm) [51] | 6 months CBR: 19% | Not approved | ||
enzalutamide | NCT01889238 (phase II) (enzalutamide in single arm) [52] | 16 weeks CBR: 28% | Not approved | ||
TBCRC032 (phase IB/II) (enzalutamide + taselisib vs. enzalutamide) [53] | 16 weeks CBR: 35.7% vs. 0%, 75% in TNBC LAR subtype with the combination | Not approved | |||
NCT03090165 (phase I/II) (bicalutamide + ribociclib in single arm) | 16 weeks CBR | Ongoing | |||
PI3K/AKT/mTOR | 25% | capivasertib | PAKT (phase II) (paclitaxel + capivasertib vs. placebo) [58,59] | PFS: 5.9 vs. 4.2 months in the ITT populations; 9.3 vs. 3.7 months in PIK3CA/AKT/PTEN mutated population | Not approved |
CAPitello290 (phase III) (paclitaxel + capivasertib vs. paclitaxel + placebo) | OS | Ongoing | |||
NCT03742102 Begonia (phase Ib/II) (durvalumab, paclitaxel, capivasertib) | Safety | Ongoing | |||
ipatasertib | LOTUS (phase II) (paclitaxel + ipatasertib vs. paclitaxel + placebo) [60,61] | PFS: 6.2 vs. 4.9 months, PFS in PTEN-low: 6.2 vs. 3.7 months | Not approved | ||
Ipatunity130 (phase II) (paclitaxel + ipatasertib vs. pacltaxel + placebo) [62] | PFS: 9.3 months in both arms | Not approved | |||
NCT04464174 PathFinder (phase IIa) (ipatasertib + eribulin vs. ipatasertib + capecitabine vs. ipatasertib + carboplatin + gemcitabine) | safety and tolerability | Ongoing | |||
NCT04177108 IpaTunity170 (phase III) (paclitaxel ± atezolizumab ± ipatasertib) | PFS, OS | Ongoing | |||
alpelisib | NCT02051751 (phase I) (paclitaxel + alpelisib, dose finding study) [64] | Dose limiting toxicity, dose expansion: 41.7 % of populations experience dose limiting toxicities; dose expansion not initiated | Not approved | ||
NCT02379247 (phase I/II) (nab-paclitaxel + alpelisib) [65] | Recommended phase II dose of alpelisib, ORR of subject treated with phase II dose of alpelisib: 60% in ER+ population, 58% in TNBC population | Not approved | |||
EPIK-B3 NCT04251533 (phase III) (alpelisib + nab-paclitaxel) | PFS, ORR | Ongoing | |||
eganelisib | NCT03207529 (phase I) (alpelisib + enzalutamide, single arm) | MTD | Ongoing | ||
MARIO3 (phase II) NCT03961698 (eganelisib + nab-paclitaxel + atezolizumab) [69] | Complete response rate. Other anti-tumour activity data: ORR: 55.3%, DCR: 84.2% in ITT population, ORR: 66.7% in PD-L1-positive, 47.8% in PD-L1-negative patients. DCR: 91.7% in PD-L1-positive, 78.3% in PD-L1-negative patients | Not approved | |||
taselisib | ARC-2 (NCT03719326) (phase I/IB) (etrumadenant + pegylated liposomal doxorubicin (PLD) ± eganelisib) [70] | Safety and tolerability | Ongoing | ||
TBCRB (phase IB/II) (enzalutamide + taselisib vs. enzalutamide alone) [53] | 16 weeks CBR: 35.7% vs. 0% in patients receiving the combination; 42.9% vs. 28.6% in PIK3CA/AKT/mTOR mutated population; 75% vs. 12.5% in LAR subtype | Not approved | |||
PIPA trial (phase I) (taselisib + palbociclib) [68] | Recommended dose for phase II, safety and toxicity. Other findings in ER negative population CBR: 27%, median PFS: 4.3 months | Not approved (trial status unknown) | |||
NOTCH | 10% | PF-03084014 | NCT01876251 (phase IB) (PF-03084014 + docetaxel single arm) [73] | 6 months PFS: 17.1% ORR: 16% | Not approved |
AL101 | TENACITY NCT04461600 (phase II) (AL101 in single arm) | ORR | Ongoing | ||
NTRK | <15 | larotrectinib | NAVIGATE (phase I–II) (larotrectinib in single arm) [75] | 1 year ORR 71% | Approved by FDA and EMA |
entrectinib | ALKA-372–001, STARTRK-1, and STARTRK-2 (phase I–II) (entrectinib in single arm) [76] | ORR: 57%, DoR: 10 months | Approved by FDA and EMA | ||
Glutaminase | CB-839 | Abstract PD3–13 (phase I) (CB-839 + paclitaxel) [78] | ORR 22% DCR 47% | Not approved | |
NCT03057600 (phase II) (CB-839 + paclitaxel) [79] | ORR 41% (1L); 12% (3L) DCR 86% (1L); 36% (3L) | Not approved |
4. Targeting Cancer by Exploiting a Cellular Target to Convey Chemotherapy to the Tumour: Antibody–Drug Conjugates (ADCs)
4.1. HER2-Low
4.2. TROP-2
4.3. GPNMB
4.4. LIV-1
4.5. HER3
5. Targeting Protein Degradation Space (PROTAC): A New Protein Degradation Technology
6. Targeting Both Cancer Cells and Tumour Environment by Low Repeated Drug Doses: Metronomic Chemotherapy
7. Conclusions
- What is, or will be, the optimal sequence with these agents? Most of these targets are not mutually exclusive, but each targeted therapy has been developed and tested as if its target was present alone. We strongly believe that the scientific community should make further effort to design strategic and multi-level decision trials, in order to allow all of us in the near future to adopt the most appropriate sequence;
- How will access to these drugs be regulated? In some cases—for example, PARP inhibitors—they could be the turning point for certain patients. This is why we hope that access will be as broad and rapid as possible, guaranteeing fair access and approval times in the various countries.
Author Contributions
Funding
Conflicts of Interest
References
- Lei, S.; Zheng, R.; Zhang, S.; Wang, S.; Chen, R.; Sun, K.; Zeng, H.; Zhou, J.; Wei, W. Global Patterns of Breast Cancer Incidence and Mortality: A Population-Based Cancer Registry Data Analysis from 2000 to 2020. Cancer Commun. 2021, 41, 1183–1194. [Google Scholar] [CrossRef] [PubMed]
- Dent, R.; Trudeau, M.; Pritchard, K.I.; Hanna, W.M.; Kahn, H.K.; Sawka, C.A.; Lickley, L.A.; Rawlinson, E.; Sun, P.; Narod, S.A. Triple-Negative Breast Cancer: Clinical FeatuRes. and Patterns of Recurrence. Clin. Cancer Res. 2007, 13, 4429–4434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boyle, P. Triple-Negative Breast Cancer: Epidemiological Considerations and Recommendations. Ann. Oncol. 2012, 23 (Suppl. S6), vi7–vi12. [Google Scholar] [CrossRef]
- Lehmann, B.D.; Bauer, J.A.; Chen, X.; Sanders, M.E.; Chakravarthy, A.B.; Shyr, Y.; Pietenpol, J.A. Identification of Human Triple-Negative Breast Cancer Subtypes and Preclinical Models for Selection of Targeted Therapies. J. Clin. Investig. 2011, 121, 2750–2767. [Google Scholar] [CrossRef] [Green Version]
- da Silva, J.L.; Cardoso Nunes, N.C.; Izetti, P.; de Mesquita, G.G.; de Melo, A.C. Triple Negative Breast Cancer: A Thorough Review of Biomarkers. Crit. Rev. Oncol. Hematol. 2020, 145, 102855. [Google Scholar] [CrossRef] [PubMed]
- Miller, K.; Wang, M.; Gralow, J.; Dickler, M.; Cobleigh, M.; Perez, E.A.; Shenkier, T.; Cella, D.; Davidson, N.E. Paclitaxel plus Bevacizumab versus Paclitaxel Alone for Metastatic Breast Cancer. N. Engl. J. Med. 2007, 357, 2666–2676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miles, D.W.; Chan, A.; Dirix, L.Y.; Cortés, J.; Pivot, X.; Tomczak, P.; Delozier, T.; Sohn, J.H.; Provencher, L.; Puglisi, F.; et al. Phase III Study of Bevacizumab plus Docetaxel Compared with Placebo plus Docetaxel for the First-Line Treatment of Human Epidermal Growth Factor Receptor 2-Negative Metastatic Breast Cancer. J. Clin. Oncol. 2010, 28, 3239–3247. [Google Scholar] [CrossRef]
- Robert, N.J.; Diéras, V.; Glaspy, J.; Brufsky, A.M.; Bondarenko, I.; Lipatov, O.N.; Perez, E.A.; Yardley, D.A.; Chan, S.Y.T.; Zhou, X.; et al. RIBBON-1: Randomized, Double-Blind, Placebo-Controlled, Phase III Trial of Chemotherapy with or without Bevacizumab for First-Line Treatment of Human Epidermal Growth Factor Receptor 2-Negative, Locally Recurrent or Metastatic Breast Cancer. J. Clin. Oncol. 2011, 29, 1252–1260. [Google Scholar] [CrossRef]
- Brufsky, A.M.; Hurvitz, S.; Perez, E.; Swamy, R.; Valero, V.; O’Neill, V.; Rugo, H.S. RIBBON-2: A Randomized, Double-Blind, Placebo-Controlled, Phase III Trial Evaluating the Efficacy and Safety of Bevacizumab in Combination with Chemotherapy for Second-Line Treatment of Human Epidermal Growth Factor Receptor 2-Negative Metastatic Breast Cancer. J. Clin. Oncol. 2011, 29, 4286–4293. [Google Scholar] [CrossRef]
- Vrdoljak, E.; Marschner, N.; Zielinski, C.; Gligorov, J.; Cortes, J.; Puglisi, F.; Aapro, M.; Fallowfield, L.; Fontana, A.; Inbar, M.; et al. Final Results of the TANIA Randomised Phase III Trial of Bevacizumab after Progression on First-Line Bevacizumab Therapy for HER2-Negative Locally Recurrent/Metastatic Breast Cancer. Ann. Oncol. 2016, 27, 2046–2052. [Google Scholar] [CrossRef]
- Ferrero, J.-M.; Hardy-Bessard, A.-C.; Capitain, O.; Lortholary, A.; Salles, B.; Follana, P.; Herve, R.; Deblock, M.; Dauba, J.; Atlassi, M.; et al. Weekly Paclitaxel, Capecitabine, and Bevacizumab with Maintenance Capecitabine and Bevacizumab as First-Line Therapy for Triple-Negative, Metastatic, or Locally Advanced Breast Cancer: Results from the GINECO A-TaXel Phase 2 Study. Cancer 2016, 122, 3119–3126. [Google Scholar] [CrossRef] [Green Version]
- Zielinski, C.; Láng, I.; Inbar, M.; Kahán, Z.; Greil, R.; Beslija, S.; Stemmer, S.M.; Zvirbule, Z.; Steger, G.G.; Melichar, B.; et al. Bevacizumab plus Paclitaxel versus Bevacizumab plus Capecitabine as First-Line Treatment for HER2-Negative Metastatic Breast Cancer (TURANDOT): Primary Endpoint Results of a Randomised, Open-Label, Non-Inferiority, Phase 3 Trial. Lancet Oncol. 2016, 17, 1230–1239. [Google Scholar] [CrossRef]
- Sasich, L.D.; Sukkari, S.R. The US FDAs Withdrawal of the Breast Cancer Indication for Avastin (Bevacizumab). Saudi Pharm. J. 2012, 20, 381–385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Emens, L.A.; Adams, S.; Barrios, C.H.; Diéras, V.; Iwata, H.; Loi, S.; Rugo, H.S.; Schneeweiss, A.; Winer, E.P.; Patel, S.; et al. First-Line Atezolizumab plus Nab-Paclitaxel for Unresectable, Locally Advanced, or Metastatic Triple-Negative Breast Cancer: IMpassion130 Final Overall Survival Analysis. Ann. Oncol. 2021, 32, 983–993. [Google Scholar] [CrossRef] [PubMed]
- Miles, D.; Gligorov, J.; André, F.; Cameron, D.; Schneeweiss, A.; Barrios, C.; Xu, B.; Wardley, A.; Kaen, D.; Andrade, L.; et al. Primary Results from IMpassion131, a Double-Blind, Placebo-Controlled, Randomised Phase III Trial of First-Line Paclitaxel with or without Atezolizumab for Unresectable Locally Advanced/Metastatic Triple-Negative Breast Cancer. Ann. Oncol. 2021, 32, 994–1004. [Google Scholar] [CrossRef] [PubMed]
- Cortes, J.; Cescon, D.W.; Rugo, H.S.; Nowecki, Z.; Im, S.-A.; Yusof, M.M.; Gallardo, C.; Lipatov, O.; Barrios, C.H.; Holgado, E.; et al. Pembrolizumab plus Chemotherapy versus Placebo plus Chemotherapy for Previously Untreated Locally Recurrent Inoperable or Metastatic Triple-Negative Breast Cancer (KEYNOTE-355): A Randomised, Placebo-Controlled, Double-Blind, Phase 3 Clinical Trial. Lancet 2020, 396, 1817–1828. [Google Scholar] [CrossRef]
- Cortes, J.; Cescon, D.W.; Rugo, H.S.; Im, S.; Yusof, M.; Gallardo, C.; Lipatov, O.; Barrios, C.; Perez-Garcia, J.; Iwata, H.; et al. LBA16 KEYNOTE-355: Final Results from a Randomized, Double-Blind Phase III Study of First-Line Pembrolizumab + Chemotherapy vs Placebo + Chemotherapy for Metastatic TNBC. Ann. Oncol. 2021, 32, S1289–S1290. [Google Scholar] [CrossRef]
- Winer, E.P.; Lipatov, O.; Im, S.-A.; Goncalves, A.; Muñoz-Couselo, E.; Lee, K.S.; Schmid, P.; Tamura, K.; Testa, L.; Witzel, I.; et al. Pembrolizumab versus Investigator-Choice Chemotherapy for Metastatic Triple-Negative Breast Cancer (KEYNOTE-119): A Randomised, Open-Label, Phase 3 Trial. Lancet Oncol. 2021, 22, 499–511. [Google Scholar] [CrossRef]
- Adams, S.; Loi, S.; Toppmeyer, D.; Cescon, D.W.; De Laurentiis, M.; Nanda, R.; Winer, E.P.; Mukai, H.; Tamura, K.; Armstrong, A.; et al. Pembrolizumab Monotherapy for Previously Untreated, PD-L1-Positive, Metastatic Triple-Negative Breast Cancer: Cohort B of the Phase II KEYNOTE-086 Study. Ann. Oncol. 2019, 30, 405–411. [Google Scholar] [CrossRef] [Green Version]
- Santa-Maria, C.A.; Kato, T.; Park, J.-H.; Kiyotani, K.; Rademaker, A.; Shah, A.N.; Gross, L.; Blanco, L.Z.; Jain, S.; Flaum, L.; et al. A Pilot Study of Durvalumab and Tremelimumab and Immunogenomic Dynamics in Metastatic Breast Cancer. Oncotarget 2018, 9, 18985–18996. [Google Scholar] [CrossRef] [Green Version]
- Hong, D.S.; Schoffski, P.; Calvo, A.; Sarantopoulos, J.; Ochoa De Olza, M.; Carvajal, R.D.; Prawira, A.; Kyi, C.; Esaki, T.; Akerley, W.L.; et al. Phase I/II Study of LAG525 ± Spartalizumab (PDR001) in Patients (Pts) with Advanced Malignancies. JCO 2018, 36, 3012. [Google Scholar] [CrossRef]
- Marabelle, A.; Le, D.T.; Ascierto, P.A.; Di Giacomo, A.M.; De Jesus-Acosta, A.; Delord, J.-P.; Geva, R.; Gottfried, M.; Penel, N.; Hansen, A.R.; et al. Efficacy of Pembrolizumab in Patients With Noncolorectal High Microsatellite Instability/Mismatch Repair-Deficient Cancer: Results From the Phase II KEYNOTE-158 Study. J. Clin. Oncol. 2020, 38, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; He, S. The Characteristics of Tumor Microenvironment in Triple Negative Breast Cancer. Cancer Manag. Res. 2022, 14, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Gao, G.; Wang, Z.; Qu, X.; Zhang, Z. Prognostic Value of Tumor-Infiltrating Lymphocytes in Patients with Triple-Negative Breast Cancer: A Systematic Review and Meta-Analysis. BMC Cancer 2020, 20, 179. [Google Scholar] [CrossRef] [Green Version]
- Mittendorf, E.A.; Philips, A.V.; Meric-Bernstam, F.; Qiao, N.; Wu, Y.; Harrington, S.; Su, X.; Wang, Y.; Gonzalez-Angulo, A.M.; Akcakanat, A.; et al. PD-L1 Expression in Triple-Negative Breast Cancer. Cancer Immunol. Res. 2014, 2, 361–370. [Google Scholar] [CrossRef] [Green Version]
- Lotfinejad, P.; Asghari Jafarabadi, M.; Abdoli Shadbad, M.; Kazemi, T.; Pashazadeh, F.; Sandoghchian Shotorbani, S.; Jadidi Niaragh, F.; Baghbanzadeh, A.; Vahed, N.; Silvestris, N.; et al. Prognostic Role and Clinical Significance of Tumor-Infiltrating Lymphocyte (TIL) and ProgramMed. Death Ligand 1 (PD-L1) Expression in Triple-Negative Breast Cancer (TNBC): A Systematic Review and Meta-Analysis Study. Diagnostics 2020, 10, 704. [Google Scholar] [CrossRef]
- Rugo, H.S.; Loi, S.; Adams, S.; Schmid, P.; Schneeweiss, A.; Barrios, C.H.; Iwata, H.; Diéras, V.; Winer, E.P.; Kockx, M.M.; et al. PD-L1 Immunohistochemistry Assay Comparison in Atezolizumab plus Nab-Paclitaxel-Treated Advanced Triple-Negative Breast Cancer. J. Natl. Cancer Inst. 2021, 113, 1733–1743. [Google Scholar] [CrossRef]
- Giugliano, F.; Antonarelli, G.; Tarantino, P.; Cortes, J.; Rugo, H.S.; Curigliano, G. Harmonizing PD-L1 Testing in Metastatic Triple Negative Breast Cancer. Expert Opin. Biol. Ther. 2022, 22, 345–348. [Google Scholar] [CrossRef]
- Untch, M.; Jackisch, C.; Schneeweiss, A.; Conrad, B.; Aktas, B.; Denkert, C.; Eidtmann, H.; Wiebringhaus, H.; Kümmel, S.; Hilfrich, J.; et al. Nab-Paclitaxel versus Solvent-Based Paclitaxel in Neoadjuvant Chemotherapy for Early Breast Cancer (GeparSepto-GBG 69): A Randomised, Phase 3 Trial. Lancet Oncol. 2016, 17, 345–356. [Google Scholar] [CrossRef]
- Franzoi, M.A.; de Azambuja, E. Atezolizumab in Metastatic Triple-Negative Breast Cancer: IMpassion130 and 131 Trials—How to Explain Different Results? ESMO Open 2020, 5, e001112. [Google Scholar] [CrossRef]
- Fusco, M.J.; West, H.J.; Walko, C.M. Tumor Mutation Burden and Cancer Treatment. JAMA Oncol. 2021, 7, 316. [Google Scholar] [CrossRef] [PubMed]
- Barroso-Sousa, R.; Jain, E.; Cohen, O.; Kim, D.; Buendia-Buendia, J.; Winer, E.; Lin, N.; Tolaney, S.M.; Wagle, N. Prevalence and Mutational Determinants of High Tumor Mutation Burden in Breast Cancer. Ann. Oncol. 2020, 31, 387–394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bertucci, F.; Ng, C.K.Y.; Patsouris, A.; Droin, N.; Piscuoglio, S.; Carbuccia, N.; Soria, J.C.; Dien, A.T.; Adnani, Y.; Kamal, M.; et al. Genomic Characterization of Metastatic Breast Cancers. Nature 2019, 569, 560–564. [Google Scholar] [CrossRef] [PubMed]
- Samstein, R.M.; Lee, C.-H.; Shoushtari, A.N.; Hellmann, M.D.; Shen, R.; Janjigian, Y.Y.; Barron, D.A.; Zehir, A.; Jordan, E.J.; Omuro, A.; et al. Tumor Mutational Load Predicts Survival after Immunotherapy across Multiple Cancer Types. Nat. Genet. 2019, 51, 202–206. [Google Scholar] [CrossRef] [PubMed]
- Bonneville, R.; Krook, M.A.; Kautto, E.A.; Miya, J.; Wing, M.R.; Chen, H.-Z.; Reeser, J.W.; Yu, L.; Roychowdhury, S. Landscape of Microsatellite Instability Across 39 Cancer Types. JCO Precis. Oncol. 2017, 2017. [Google Scholar] [CrossRef] [PubMed]
- Cheng, A.S.; Leung, S.C.Y.; Gao, D.; Burugu, S.; Anurag, M.; Ellis, M.J.; Nielsen, T.O. Mismatch Repair Protein Loss in Breast Cancer: Clinicopathological Associations in a Large British Columbia Cohort. Breast Cancer Res. Treat. 2020, 179, 3–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, F.; Zhang, Y.; Chen, S.; Weng, X.; Rao, Y.; Fang, H. Mechanism and Current Progress of Poly ADP-Ribose Polymerase (PARP) Inhibitors in the Treatment of Ovarian Cancer. BioMed. Pharmacother. 2020, 123, 109661. [Google Scholar] [CrossRef] [PubMed]
- Prakash, R.; Zhang, Y.; Feng, W.; Jasin, M. Homologous Recombination and Human Health: The Roles of BRCA1, BRCA2, and Associated Proteins. Cold Spring Harb. Perspect. Biol. 2015, 7, a016600. [Google Scholar] [CrossRef] [Green Version]
- Robson, M.E.; Tung, N.; Conte, P.; Im, S.-A.; Senkus, E.; Xu, B.; Masuda, N.; Delaloge, S.; Li, W.; Armstrong, A.; et al. OlympiAD Final Overall Survival and Tolerability Results: Olaparib versus Chemotherapy Treatment of Physician’s Choice in Patients with a Germline BRCA Mutation and HER2-Negative Metastatic Breast Cancer. Ann. Oncol. 2019, 30, 558–566. [Google Scholar] [CrossRef]
- Litton, J.K.; Rugo, H.S.; Ettl, J.; Hurvitz, S.A.; Gonçalves, A.; Lee, K.-H.; Fehrenbacher, L.; Yerushalmi, R.; Mina, L.A.; Martin, M.; et al. Talazoparib in Patients with Advanced Breast Cancer and a Germline BRCA Mutation. N. Engl. J. Med. 2018, 379, 753–763. [Google Scholar] [CrossRef]
- Vinayak, S.; Tolaney, S.M.; Schwartzberg, L.; Mita, M.; McCann, G.; Tan, A.R.; Wahner-Hendrickson, A.E.; Forero, A.; Anders, C.; Wulf, G.M.; et al. Open-Label Clinical Trial of Niraparib Combined With Pembrolizumab for Treatment of Advanced or Metastatic Triple-Negative Breast Cancer. JAMA Oncol. 2019, 5, 1132–1140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Domchek, S.M.; Postel-Vinay, S.; Im, S.-A.; Park, Y.H.; Delord, J.-P.; Italiano, A.; Alexandre, J.; You, B.; Bastian, S.; Krebs, M.G.; et al. Olaparib and Durvalumab in Patients with Germline BRCA-Mutated Metastatic Breast Cancer (MEDIOLA): An Open-Label, Multicentre, Phase 1/2, Basket Study. Lancet Oncol. 2020, 21, 1155–1164. [Google Scholar] [CrossRef]
- Ayoub, J.-P.; Friedlander, M.L.; Dieras, V.C.; Wildiers, H.; Arun, B.; Han, H.S.; Puhalla, S.; Shparyk, Y.; Jakobsen, E.H.; Kundu, M.G.; et al. 140O Veliparib plus Carboplatin-Paclitaxel in Patients with HER2-Negative Advanced/Metastatic GBRCA-Associated Breast Cancer: Results in Hormone Receptor-Positive and Triple-Negative Breast Cancer Subgroups from the Phase III BROCADE3 Trial. Ann. Oncol. 2020, 31, S65. [Google Scholar] [CrossRef]
- Sharma, P.; Rodler, E.; Barlow, W.E.; Gralow, J.; Huggins-Puhalla, S.L.; Anders, C.K.; Goldstein, L.J.; Brown-Glaberman, U.A.; Huynh, T.-T.; Szyarto, C.S.; et al. Results of a Phase II Randomized Trial of Cisplatin +/- Veliparib in Metastatic Triple-Negative Breast Cancer (TNBC) and/or Germline BRCA-Associated Breast Cancer (SWOG S1416). JCO 2020, 38, 1001. [Google Scholar] [CrossRef]
- Barchiesi, G.; Roberto, M.; Verrico, M.; Vici, P.; Tomao, S.; Tomao, F. Emerging Role of PARP Inhibitors in Metastatic Triple Negative Breast Cancer. Current Scenario and Future Perspectives. Front. Oncol. 2021, 11, 769280. [Google Scholar] [CrossRef] [PubMed]
- Kono, M.; Fujii, T.; Lim, B.; Karuturi, M.S.; Tripathy, D.; Ueno, N.T. Androgen Receptor Function and Androgen Receptor-Targeted Therapies in Breast Cancer: A Review. JAMA Oncol. 2017, 3, 1266–1273. [Google Scholar] [CrossRef] [PubMed]
- Collins, L.C.; Cole, K.S.; Marotti, J.D.; Hu, R.; Schnitt, S.J.; Tamimi, R.M. Androgen Receptor Expression in Breast Cancer in Relation to Molecular Phenotype: Results from the Nurses’ Health Study. Mod. Pathol. 2011, 24, 924–931. [Google Scholar] [CrossRef] [Green Version]
- Shen, T.; Wei, L.; Li, X.; Parwani, A.V.; Li, Z. Prognostic Value of Androgen Receptor Expression and Molecular Alterations in Metastatic Triple-Negative or Low Hormone Receptor Breast Carcinomas. Hum. Pathol. 2021, 116, 73–81. [Google Scholar] [CrossRef]
- McGhan, L.J.; McCullough, A.E.; Protheroe, C.A.; Dueck, A.C.; Lee, J.J.; Nunez-Nateras, R.; Castle, E.P.; Gray, R.J.; Wasif, N.; Goetz, M.P.; et al. Androgen Receptor-Positive Triple Negative Breast Cancer: A Unique Breast Cancer Subtype. Ann. Surg. Oncol. 2014, 21, 361–367. [Google Scholar] [CrossRef]
- Bonnefoi, H.; Grellety, T.; Tredan, O.; Saghatchian, M.; Dalenc, F.; Mailliez, A.; L’Haridon, T.; Cottu, P.; Abadie-Lacourtoisie, S.; You, B.; et al. A Phase II Trial of Abiraterone Acetate plus Prednisone in Patients with Triple-Negative Androgen Receptor Positive Locally Advanced or Metastatic Breast Cancer (UCBG 12-1). Ann. Oncol. 2016, 27, 812–818. [Google Scholar] [CrossRef] [PubMed]
- Gucalp, A.; Tolaney, S.; Isakoff, S.J.; Ingle, J.N.; Liu, M.C.; Carey, L.A.; Blackwell, K.; Rugo, H.; Nabell, L.; Forero, A.; et al. Phase II Trial of Bicalutamide in Patients with Androgen Receptor-Positive, Estrogen Receptor-Negative Metastatic Breast Cancer. Clin. Cancer Res. 2013, 19, 5505–5512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Traina, T.A.; Miller, K.; Yardley, D.A.; Eakle, J.; Schwartzberg, L.S.; O’Shaughnessy, J.; Gradishar, W.; Schmid, P.; Winer, E.; Kelly, C.; et al. Enzalutamide for the Treatment of Androgen Receptor-Expressing Triple-Negative Breast Cancer. J. Clin. Oncol. 2018, 36, 884–890. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, B.D.; Abramson, V.G.; Sanders, M.E.; Mayer, E.L.; Haddad, T.C.; Nanda, R.; Van Poznak, C.; Storniolo, A.M.; Nangia, J.R.; Gonzalez-Ericsson, P.I.; et al. TBCRC 032 IB/II Multicenter Study: Molecular Insights to AR Antagonist and PI3K Inhibitor Efficacy in Patients with AR+ Metastatic Triple-Negative Breast Cancer. Clin. Cancer Res. 2020, 26, 2111–2123. [Google Scholar] [CrossRef]
- Georgescu, M.-M. PTEN Tumor Suppressor Network in PI3K-Akt Pathway Control. Genes Cancer 2010, 1, 1170–1177. [Google Scholar] [CrossRef] [PubMed]
- Martorana, F.; Motta, G.; Pavone, G.; Motta, L.; Stella, S.; Vitale, S.R.; Manzella, L.; Vigneri, P. AKT Inhibitors: New Weapons in the Fight AgaInst Breast Cancer? Front. Pharmacol. 2021, 12, 662232. [Google Scholar] [CrossRef]
- Pascual, J.; Turner, N.C. Targeting the PI3-Kinase Pathway in Triple-Negative Breast Cancer. Ann. Oncol. 2019, 30, 1051–1060. [Google Scholar] [CrossRef] [Green Version]
- Hu, H.; Zhu, J.; Zhong, Y.; Geng, R.; Ji, Y.; Guan, Q.; Hong, C.; Wei, Y.; Min, N.; Qi, A.; et al. PIK3CA Mutation Confers Resistance to Chemotherapy in Triple-Negative Breast Cancer by Inhibiting Apoptosis and Activating the PI3K/AKT/MTOR Signaling Pathway. Ann. Transl. Med. 2021, 9, 410. [Google Scholar] [CrossRef] [PubMed]
- Schmid, P.; Abraham, J.; Chan, S.; Wheatley, D.; Brunt, A.M.; Nemsadze, G.; Baird, R.D.; Park, Y.H.; Hall, P.S.; Perren, T.; et al. Capivasertib Plus Paclitaxel Versus Placebo Plus Paclitaxel As First-Line Therapy for Metastatic Triple-Negative Breast Cancer: The PAKT Trial. J. Clin. Oncol. 2020, 38, 423–433. [Google Scholar] [CrossRef]
- Schmid, P.; Abraham, J.; Chan, S.; Brunt, A.M.; Nemsadze, G.; Baird, R.D.; Park, Y.H.; Hall, P.; Perren, T.; Stein, R.C.; et al. Abstract PD1-11: Mature Survival Update of the Double-Blind Placebo-Controlled Randomised Phase II PAKT Trial of First-Line Capivasertib plus Paclitaxel for Metastatic Triple-Negative Breast Cancer. Cancer Res. 2021, 81, PD1–PD11. [Google Scholar] [CrossRef]
- Kim, S.-B.; Dent, R.; Im, S.-A.; Espié, M.; Blau, S.; Tan, A.R.; Isakoff, S.J.; Oliveira, M.; Saura, C.; Wongchenko, M.J.; et al. Ipatasertib plus Paclitaxel versus Placebo plus Paclitaxel as First-Line Therapy for Metastatic Triple-Negative Breast Cancer (LOTUS): A Multicentre, Randomised, Double-Blind, Placebo-Controlled, Phase 2 Trial. Lancet Oncol. 2017, 18, 1360–1372. [Google Scholar] [CrossRef]
- Dent, R.; Oliveira, M.; Isakoff, S.J.; Im, S.-A.; Espié, M.; Blau, S.; Tan, A.R.; Saura, C.; Wongchenko, M.J.; Xu, N.; et al. Final Results of the Double-Blind Placebo-Controlled Randomized Phase 2 LOTUS Trial of First-Line Ipatasertib plus Paclitaxel for Inoperable Locally Advanced/Metastatic Triple-Negative Breast Cancer. Breast Cancer Res. Treat. 2021, 189, 377–386. [Google Scholar] [CrossRef] [PubMed]
- Dent, R.; Kim, S.-B.; Oliveira, M.; Barrios, C.; O’Shaughnessy, J.; Isakoff, S.J.; Saji, S.; Freitas-Junior, R.; Philco, M.; Bondarenko, I.; et al. Abstract GS3-04: Double-Blind Placebo (PBO)-Controlled Randomized Phase III Trial Evaluating First-Line Ipatasertib (IPAT) Combined with Paclitaxel (PAC) for PIK3CA/AKT1/PTEN-Altered Locally Advanced Unresectable or Metastatic Triple-Negative Breast Cancer (ATNBC): Primary Results from IPATunity130 Cohort A. Cancer Res. 2021, 81, GS3–GS04. [Google Scholar] [CrossRef]
- Liu, Z.; Zhu, G.; Getzenberg, R.H.; Veltri, R.W. The Upregulation of PI3K/Akt and MAP Kinase Pathways Is Associated with Resistance of Microtubule-Targeting Drugs in Prostate Cancer. J. Cell. Biochem. 2015, 116, 1341–1349. [Google Scholar] [CrossRef] [PubMed]
- Rodon, J.; Curigliano, G.; Delord, J.-P.; Harb, W.; Azaro, A.; Han, Y.; Wilke, C.; Donnet, V.; Sellami, D.; Beck, T. A Phase Ib, Open-Label, Dose-Finding Study of Alpelisib in Combination with Paclitaxel in Patients with Advanced Solid Tumors. Oncotarget 2018, 9, 31709–31718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, P.; Abramson, V.G.; O’Dea, A.; Nye, L.; Mayer, I.; Pathak, H.B.; Hoffmann, M.; Stecklein, S.R.; Elia, M.; Lewis, S.; et al. Clinical and Biomarker Results from Phase I/II Study of PI3K Inhibitor Alpelisib plus Nab-Paclitaxel in HER2-Negative Metastatic Breast Cancer. Clin. Cancer Res. 2021, 27, 3896–3904. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, B.D.; Bauer, J.A.; Schafer, J.M.; Pendleton, C.S.; Tang, L.; Johnson, K.C.; Chen, X.; Balko, J.M.; Gómez, H.; Arteaga, C.L.; et al. PIK3CA Mutations in Androgen Receptor-Positive Triple Negative Breast Cancer Confer Sensitivity to the Combination of PI3K and Androgen Receptor Inhibitors. Breast Cancer Res. 2014, 16, 406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asghar, U.S.; Barr, A.R.; Cutts, R.; Beaney, M.; Babina, I.; Sampath, D.; Giltnane, J.; Lacap, J.A.; Crocker, L.; Young, A.; et al. Single-Cell Dynamics Determines Response to CDK4/6 Inhibition in Triple-Negative Breast Cancer. Clin. Cancer Res. 2017, 23, 5561–5572. [Google Scholar] [CrossRef] [Green Version]
- Pascual, J.; MacPherson, I.R.; Armstrong, A.C.; Ward, S.E.; Parmar, M.; Turner, A.J.; Bye, H.; Proszek, P.; Dodson, A.; Garcia-Murillas, I.; et al. PIPA: A Phase Ib Study of β-Isoform Sparing Phosphatidylinositol 3-Kinase (PI3K) Inhibitor Taselisib (T) plus Palbociclib (P) and Fulvestrant (FUL) in PIK3CA-Mutant (Mt) ER-Positive and Taselisib (T) plus Palbociclib (P) in PIK3CA-Mutant (Mt) ER-Negative Advanced Breast Cancer. JCO 2019, 37, 1051. [Google Scholar] [CrossRef]
- Hatem, S.; Hargis, J.; Elias, A.; Lee, A.; Swart, R.; Dahkil, S.; Drakaki, A.; Phan, V.; Kass, F.; Cobleigh, M.; et al. Abstract P5-16-02: Updated Efficacy, Safety and Translational Data from MARIO-3, a Phase II Open-Label Study Evaluating a Novel Triplet Combination of Eganelisib (IPI-549), Atezolizumab (Atezo), and Nab-Paclitaxel (Nab-Pac) as First-Line (1L) Therapy for Locally Advanced or Metastatic Triple-Negative Breast Cancer (TNBC). Cancer Res. 2022, 82, P5-16-02. [Google Scholar] [CrossRef]
- Sachdev, J.C.; Prawira, A.; Chaudhry, A.; Ganju, V.; Trudeau, C.; Scott, J.; Woloski, R.; Paoloni, M.; Zhang, H.; Gardner, O. Abstract PS12-12: Efficacy and Safety of AB928 plus Pegylated Liposomal Doxorubicin (PLD) with or without IPI-549 in Participants with Metastatic Ovarian and Triple Negative Breast Cancer. Cancer Res. 2021, 81, PS12. [Google Scholar] [CrossRef]
- Speiser, J.J.; Erşahin, C.; Osipo, C. The Functional Role of Notch Signaling in Triple-Negative Breast Cancer. Vitam. Horm 2013, 93, 277–306. [Google Scholar] [CrossRef] [PubMed]
- Broner, E.C.; Alpert, G.; Gluschnaider, U.; Mondshine, A.; Solomon, O.; Sloma, I.; Rauch, R.; Izumchenko, E.; Aster, J.C.; Davis, M. AL101 Mediated Tumor Inhibition in Notch-Altered TNBC PDX Models. JCO 2019, 37, 1064. [Google Scholar] [CrossRef]
- Locatelli, M.A.; Aftimos, P.; Dees, E.C.; LoRusso, P.M.; Pegram, M.D.; Awada, A.; Huang, B.; Cesari, R.; Jiang, Y.; Shaik, M.N.; et al. Phase I Study of the Gamma Secretase Inhibitor PF-03084014 in Combination with Docetaxel in Patients with Advanced Triple-Negative Breast Cancer. Oncotarget 2017, 8, 2320–2328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ross, J.; Chung, J.H.; Elvin, J.; Vergilio, J.; Ramkissoon, S.; Suh, J.; Severson, E.; Daniel, S.; Frampton, G.; Fabrizio, D.; et al. Abstract P2-09-15: NTRK Fusions in Breast Cancer: Clinical, Pathologic and Genomic Findings. Cancer Res. 2018, 78, P2-09-15. [Google Scholar] [CrossRef]
- Drilon, A.; Laetsch, T.W.; Kummar, S.; DuBois, S.G.; Lassen, U.N.; Demetri, G.D.; Nathenson, M.; Doebele, R.C.; Farago, A.F.; Pappo, A.S.; et al. Efficacy of Larotrectinib in TRK Fusion-Positive Cancers in Adults and Children. N. Engl. J. Med. 2018, 378, 731–739. [Google Scholar] [CrossRef]
- Doebele, R.C.; Drilon, A.; Paz-Ares, L.; Siena, S.; Shaw, A.T.; Farago, A.F.; Blakely, C.M.; Seto, T.; Cho, B.C.; Tosi, D.; et al. Entrectinib in Patients with Advanced or Metastatic NTRK Fusion-Positive Solid Tumours: Integrated Analysis of Three Phase 1-2 Trials. Lancet Oncol. 2020, 21, 271–282. [Google Scholar] [CrossRef]
- Lampa, M.; Arlt, H.; He, T.; Ospina, B.; Reeves, J.; Zhang, B.; Murtie, J.; Deng, G.; Barberis, C.; Hoffmann, D.; et al. Glutaminase Is Essential for the Growth of Triple-Negative Breast Cancer Cells with a Deregulated Glutamine Metabolism Pathway and Its Suppression Synergizes with MTOR Inhibition. PLoS ONE 2017, 12, e0185092. [Google Scholar] [CrossRef]
- Kalinsky, K.; Harding, J.; DeMichele, A.; Infante, J.; Gogineni, K.; Owonikoko, T.; Isakoff, S.; Iliopoulos, O.; Patel, M.; Munster, P.; et al. Abstract PD3-13: Phase 1 Study of CB-839, a First-in-Class Oral Inhibitor of Glutaminase, in Combination with Paclitaxel in Patients with Advanced Triple Negative Breast Cancer. Cancer Res. 2018, 78, PD3-13. [Google Scholar] [CrossRef]
- Vidal, G.; Kalinsky, K.; Stringer-Reasor, E.; Lynce, F.; Cole, J.; Valdes-Albini, F.; Soliman, H.; Nikolinakos, P.; Silber, A.; DeMichele, A.; et al. Efficacy and Safety of CB-839, a Small Molecule Inhibitor of Glutaminase, in Combination with Paclitaxel in Patients with Advanced Triple Negative Breast Cancer (TNBC): Initial Findings from a Multicenter, Open-Label Phase 2 Study. Amer. Assoc. Cancer. Res. 2019, 79, P6-20-07. [Google Scholar] [CrossRef]
- Modi, S.; Park, H.; Murthy, R.K.; Iwata, H.; Tamura, K.; Tsurutani, J.; Moreno-Aspitia, A.; Doi, T.; Sagara, Y.; Redfern, C.; et al. Antitumor Activity and Safety of Trastuzumab Deruxtecan in Patients With HER2-Low-Expressing Advanced Breast Cancer: Results From a Phase Ib Study. J. Clin. Oncol. 2020, 38, 1887–1896. [Google Scholar] [CrossRef]
- Modi, S.; Jacot, W.; Yamashita, T.; Sohn, J.; Vidal, M.; Tokunaga, E.; Tsurutani, J.; Ueno, N.T.; Prat, A.; Chae, Y.S.; et al. Trastuzumab Deruxtecan in Previously Treated HER2-Low Advanced Breast Cancer. N. Engl. J. Med. 2022, 387, 9–20. [Google Scholar] [CrossRef]
- Bardia, A.; Mayer, I.A.; Vahdat, L.T.; Tolaney, S.M.; Isakoff, S.J.; Diamond, J.R.; O’Shaughnessy, J.; Moroose, R.L.; Santin, A.D.; Abramson, V.G.; et al. Sacituzumab Govitecan-Hziy in Refractory Metastatic Triple-Negative Breast Cancer. N. Engl. J. Med. 2019, 380, 741–751. [Google Scholar] [CrossRef] [PubMed]
- Bardia, A.; Hurvitz, S.A.; Tolaney, S.M.; Loirat, D.; Punie, K.; Oliveira, M.; Brufsky, A.; Sardesai, S.D.; Kalinsky, K.; Zelnak, A.B.; et al. Sacituzumab Govitecan in Metastatic Triple-Negative Breast Cancer. N. Engl. J. Med. 2021, 384, 1529–1541. [Google Scholar] [CrossRef] [PubMed]
- “Very Compelling” Results for ADC in TNBC Trial. Cancer Discov. 2022, 12, 280–281. [CrossRef] [PubMed]
- Yardley, D.A.; Weaver, R.; Melisko, M.E.; Saleh, M.N.; Arena, F.P.; Forero, A.; Cigler, T.; Stopeck, A.; Citrin, D.; Oliff, I.; et al. EMERGE: A Randomized Phase II Study of the Antibody-Drug Conjugate Glembatumumab Vedotin in Advanced Glycoprotein NMB-Expressing Breast Cancer. J. Clin. Oncol. 2015, 33, 1609–1619. [Google Scholar] [CrossRef]
- Vahdat, L.T.; Schmid, P.; Forero-Torres, A.; Blackwell, K.; Telli, M.L.; Melisko, M.; Möbus, V.; Cortes, J.; Montero, A.J.; Ma, C.; et al. Glembatumumab Vedotin for Patients with Metastatic, GpNMB Overexpressing, Triple-Negative Breast Cancer (“METRIC”): A Randomized Multicenter Study. NPJ Breast Cancer 2021, 7, 57. [Google Scholar] [CrossRef]
- Krop, I.E.; Masuda, N.; Mukohara, T.; Takahashi, S.; Nakayama, T.; Inoue, K.; Iwata, H.; Toyama, T.; Yamamoto, Y.; Hansra, D.M.; et al. Results from the Phase 1/2 Study of Patritumab Deruxtecan, a HER3-Directed Antibody-Drug Conjugate (ADC), in Patients with HER3-Expressing Metastatic Breast Cancer (MBC). JCO 2022, 40, 1002. [Google Scholar] [CrossRef]
- Schalper, K.A.; Kumar, S.; Hui, P.; Rimm, D.L.; Gershkovich, P. A Retrospective Population-Based Comparison of HER2 Immunohistochemistry and Fluorescence in Situ Hybridization in Breast Carcinomas: Impact of 2007 American Society of Clinical Oncology/College of American Pathologists Criteria. Arch. Pathol. Lab. Med. 2014, 138, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Tarantino, P.; Hamilton, E.; Tolaney, S.M.; Cortes, J.; Morganti, S.; Ferraro, E.; Marra, A.; Viale, G.; Trapani, D.; Cardoso, F.; et al. HER2-Low Breast Cancer: Pathological and Clinical Landscape. J. Clin. Oncol. 2020, 38, 1951–1962. [Google Scholar] [CrossRef]
- Eiger, D.; Agostinetto, E.; Saúde-Conde, R.; de Azambuja, E. The Exciting New Field of HER2-Low Breast Cancer Treatment. Cancers (Basel) 2021, 13, 1015. [Google Scholar] [CrossRef]
- Ogitani, Y.; Hagihara, K.; Oitate, M.; Naito, H.; Agatsuma, T. Bystander Killing Effect of DS-8201a, a Novel Anti-Human Epidermal Growth Factor Receptor 2 Antibody-Drug Conjugate, in Tumors with Human Epidermal Growth Factor Receptor 2 Heterogeneity. Cancer Sci. 2016, 107, 1039–1046. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Kuai, X.; Zhou, X.; Jia, L.; Wang, J.; Yang, X.; Tian, Z.; Wang, X.; Lv, Q.; Wang, B.; et al. Trop2 Is a Potential Biomarker for the Promotion of EMT in Human Breast Cancer. Oncol. Rep. 2018, 40, 759–766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gennari, A.; André, F.; Barrios, C.H.; Cortés, J.; de Azambuja, E.; DeMichele, A.; Dent, R.; Fenlon, D.; Gligorov, J.; Hurvitz, S.A.; et al. ESMO Clinical Practice Guideline for the Diagnosis, Staging and Treatment of Patients with Metastatic Breast Cancer. Ann. Oncol. 2021, 32, 1475–1495. [Google Scholar] [CrossRef] [PubMed]
- Bardia, A.; Tolaney, S.M.; Punie, K.; Loirat, D.; Oliveira, M.; Kalinsky, K.; Zelnak, A.; Aftimos, P.; Dalenc, F.; Sardesai, S.; et al. Biomarker Analyses in the Phase III ASCENT Study of Sacituzumab Govitecan versus Chemotherapy in Patients with Metastatic Triple-Negative Breast Cancer. Ann. Oncol. 2021, 32, 1148–1156. [Google Scholar] [CrossRef] [PubMed]
- Rose, A.A.N.; Grosset, A.-A.; Dong, Z.; Russo, C.; Macdonald, P.A.; Bertos, N.R.; St-Pierre, Y.; Simantov, R.; Hallett, M.; Park, M.; et al. Glycoprotein Nonmetastatic B Is an Independent Prognostic Indicator of Recurrence and a Novel Therapeutic Target in Breast Cancer. Clin. Cancer Res. 2010, 16, 2147–2156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sussman, D.; Smith, L.M.; Anderson, M.E.; Duniho, S.; Hunter, J.H.; Kostner, H.; Miyamoto, J.B.; Nesterova, A.; Westendorf, L.; Van Epps, H.A.; et al. SGN-LIV1A: A Novel Antibody-Drug Conjugate Targeting LIV-1 for the Treatment of Metastatic Breast Cancer. Mol. Cancer Ther. 2014, 13, 2991–3000. [Google Scholar] [CrossRef] [Green Version]
- Modi, S.; Pusztai, L.; Forero, A.; Mita, M.; Miller, K.; Weise, A.; Krop, I.; Burris, H.; Kalinsky, K.; Tsai, M.; et al. Abstract PD3-14: Phase 1 Study of the Antibody-Drug Conjugate SGN-LIV1A in Patients with Heavily Pretreated Triple-Negative Metastatic Breast Cancer. Cancer Res. 2018, 78, PD3-14. [Google Scholar] [CrossRef]
- Lyu, H.; Han, A.; Polsdofer, E.; Liu, S.; Liu, B. Understanding the Biology of HER3 Receptor as a Therapeutic Target in Human Cancer. Acta Pharm. Sin. B 2018, 8, 503–510. [Google Scholar] [CrossRef]
- Ocana, A.; Vera-Badillo, F.; Seruga, B.; Templeton, A.; Pandiella, A.; Amir, E. HER3 Overexpression and Survival in Solid Tumors: A Meta-Analysis. J. Natl. Cancer Inst. 2013, 105, 266–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qi, S.-M.; Dong, J.; Xu, Z.-Y.; Cheng, X.-D.; Zhang, W.-D.; Qin, J.-J. PROTAC: An Effective Targeted Protein Degradation Strategy for Cancer Therapy. Front. Pharmacol. 2021, 12, 692574. [Google Scholar] [CrossRef]
- Pu, C.; Tong, Y.; Liu, Y.; Lan, S.; Wang, S.; Yan, G.; Zhang, H.; Luo, D.; Ma, X.; Yu, S.; et al. Selective Degradation of PARP2 by PROTACs via Recruiting DCAF16 for Triple-Negative Breast Cancer. Eur. J. Med. Chem. 2022, 236, 114321. [Google Scholar] [CrossRef] [PubMed]
- Cazzaniga, M.E.; Cordani, N.; Capici, S.; Cogliati, V.; Riva, F.; Cerrito, M.G. Metronomic Chemotherapy. Cancers (Basel) 2021, 13, 2236. [Google Scholar] [CrossRef] [PubMed]
- Cazzaniga, M.E.; Cortesi, L.; Ferzi, A.; Scaltriti, L.; Cicchiello, F.; Ciccarese, M.; Della Torre, S.; Villa, F.; Giordano, M.; Verusio, C.; et al. Metronomic Chemotherapy with Oral Vinorelbine (MVNR) and Capecitabine (MCAPE) in Advanced HER2-Negative Breast Cancer Patients: Is It a Way to Optimize Disease Control? Final Results of the VICTOR-2 Study. Breast Cancer Res. Treat. 2016, 160, 501–509. [Google Scholar] [CrossRef] [Green Version]
- Montagna, E.; Bagnardi, V.; Cancello, G.; Sangalli, C.; Pagan, E.; Iorfida, M.; Mazza, M.; Mazzarol, G.; Dellapasqua, S.; Munzone, E.; et al. Metronomic Chemotherapy for First-Line Treatment of Metastatic Triple-Negative Breast Cancer: A Phase II Trial. Breast Care (Basel) 2018, 13, 177–181. [Google Scholar] [CrossRef]
- Cazzaniga, M.E.; Vallini, I.; Montagna, E.; Amoroso, D.; Berardi, R.; Butera, A.; Cagossi, K.; Cavanna, L.; Ciccarese, M.; Cinieri, S.; et al. Metronomic Chemotherapy (MCHT) in Metastatic Triple-Negative Breast Cancer (TNBC) Patients: Results of the VICTOR-6 Study. Breast Cancer Res. Treat. 2021, 190, 415–424. [Google Scholar] [CrossRef] [PubMed]
Target | Relevance in TNBC | Drugs | Clinical Trials (Phase) | Outcomes | Indication Approved/Not Approved |
---|---|---|---|---|---|
VEGFR | 30–60% | bevacizumab | E2100 (phase III) (bevacizumab + paclitaxel vs. paclitaxel alone) [6] | PFS: 11.8 vs. 5.9 months in ITT population and 8.8 vs. 4.6 months in TNBC patients | Approved by EMA |
AVADO (phase III) (bevacizumab 7.5 mg/kg or 15 mg/kg + docetaxel vs. docetaxel alone) [7] | PFS: 9 vs. 10.1 vs. 8.2 months in ITT population | Not approved | |||
RIBBON-1 (phase III) (bevacizumab + CT vs. CT alone) [8] | PFS: 8.6 vs. 5.7 months for cape-based CT and 9.2 vs. 8 months for taxane-anthra-based CT | Not approved | |||
RIBBON-2 (phase III) (bevacizumab + CT vs. CT alone in II line) [9] | PFS: 7.2 vs. 5.1 months in ITT population, 6 vs. 2.7 months in TNBC patients | Not approved | |||
TANIA (phase III) (bevacizumab + CT vs. CT alone in II line) [10] | PFS2: 6.3 vs. 4.2 months | Not approved | |||
GINECO A-TaXel (phase II) (bevacizumab + paclitaxel + capecitabine single arm) [11] | ORR: 77% | Not approved | |||
Turandot (phase III) (bevacizumab + capecitabine vs. bevacizumab + paclitaxel) [12] | OS: 26.1 vs. 30.2 months in ITT population and 17.7 vs. 24.4 months in TNBC patients | Approved by EMA | |||
ATRACTIB (phase II) (bevacizumab + paclitaxel + atezolizumab single arm) | PFS | Ongoing | |||
NCT05192798 (phase II) (bevacizumab + nab-paclitaxel vs. nab-paclitaxel alone) | PFS | Ongoing | |||
PD1/PDL-1 | 20% | atezolizumab | Impassion130 (phase III) (atezolizumab + nab-paclitaxel vs. nab-paclitaxel + placebo) [14] | PFS: 7.2 vs. 5.5 months in ITT population, 7.5 vs. 5.5 months in PD-L1 positive population OS: 25.4 vs. 17.9 months in PD-L1-positive population, not statistically significant in ITT population | Approved by EMA |
IMpassion131 (phase III) (atezolizumab + paclitaxel vs. paclitaxel + placebo) [15] | PFS: 6 vs. 5.7 months in PD-L1-positive population | Not approved | |||
pembrolizumab | Keynote-355 (phase III) (pembrolizumab + chemotherapy vs. placebo + chemotherapy) [16,17] | PFS: 9.7 vs. 5.6 months in CPS ≥ 1 population) OS: 23 vs. 16.1 months in CPS ≥ 1 population | Approved by FDA and EMA | ||
Keynote-119 (phase III) (pembrolizumab monotherapy vs. chemotherapy) [18] | OS: 12.7 vs. 11.6 in CPS ≥ 10 population, 10.7 vs. 10.2 in CPS ≥ 1 population, 9.9 vs. 10.8 in ITT population | Not approved | |||
Keynote086 (phase II) (pembrolizumab monotherapy in previously treated (cohort A) and untreated (cohort B) patients) [19] | Cohort A: ORR: 5.3% in ITT population, 5.7% in PD-L1-positive population OS: 9 months, PFS: 2 months, Cohort B: Safety: 63.1% AEs, no grade 4 events, ORR: 21.4%, PFS: 2.1 months; OS: 18 months | Not approved | |||
durvalumab + tremelimumab | NCT02536794 (phase II) (durvalumab + tremelimumab, single arm) [20] | ORR: 43% in TNBC | Not approved | ||
durvalumab + oleclumab | SYNERGY (NCT03616886) (phase Ib/II) (paclitaxel + carboplatin + durvalumab ± oleclumab) | AEs, CB | Ongoing | ||
leramilimab + spartalizumab | NCT02460224 (phase I/II) (leramilimab + spartalizumab, single arm) [21] | Dose limiting toxicity; durable responses in 2/5 TNBC patients | Not approved | ||
TMB | <2% | pembrolizumab | keynote-158 (phase II) (pembrolizumab single arm) [22] | ORR: 34.3% | Approved by FDA |
MSI-H/dMMR | <2% | pembrolizumab | keynote-158 (phase II) (pembrolizumab single arm) [22] | ORR: 34.3% | Approved by FDA |
Target | Relevance in TNBC | Drugs | Clinical Trials (Phase) | Outcomes | Indication Approved/Not Approved |
---|---|---|---|---|---|
HER2-LOW | trastuzumab deruxtecan | NCT02564900 (phase IB) (TDX-d in single arm) [80] | ORR: 44%, DoR: 10.4 months PFS: 11.1 months OS: 29.4 months | Not approved for TNBC | |
Destiny-Breast04 (phase III) (TDX-d vs. CT) [81] | PFS: 9.9 vs. 5.1 months in ITT population and 8.5 vs. 2.9 months in TNBC patients | Not approved | |||
BEGONIA (phase IB-II) (TDX-d + durvalumab) | OS: 23.4 vs. 16.8 months in ITT population and 18.2 vs. 8.3 months in TNBC patients safety | Ongoing | |||
TROP-2 | 78% | sacituzumab govitecan | IMMU-132-01 (phase I–II) (sacituzumab govitecan in single arm) [82] | ORR: 33.3%, DoR: 7.7 months | Approved by FDA and EMA |
ASCENT (phase III) (sacituzumab govitecan vs. CT) [83] | PFS: 5.6 vs. 1.7 months OS: 12.1 vs. 6.7 months | Approved by FDA and EMA | |||
SEASTAR (phase IB-II) (sacituzumab govitecan + rucaparib single arm) | Safety, ORR | Ongoing | |||
MORPHEUS-TNBC NCT03424005 (phase Ib/II) (sacituzumab govitecan + atezolizumab in single arm) | ORR, safety | Ongoing | |||
NCT04468061 (phase II) (sacituzumab govitecan + pembrolizumab vs. sacituzumab govitecan alone) | PFS | Ongoing | |||
datopotamab deruxtecan | NCT03401385 (phase I) (datopotamab deruxtecan in single arm) [84] | ORR: 34% | Not approved | ||
TROPION-Breast02 (phase III) (datopotamab deruxtecan vs. CT) | PFS, OS | Ongoing | |||
BEGONIA (datopotamab deruxtecan + durvalumab) (phase IB-II) | Safety | Ongoing | |||
GPNMB | 40% | glembatumumab vedotin | EMERGE (phase II) (glembatumumab vedotin vs. CT) [85] | ORR: 18% vs. 0% in ITT population and 40% vs. 0% in GPNMB over-expressing patients | Not approved |
METRIC (phase II) (glembatumumab vedotin vs. capecitabine) [86] | PFS: 2.9 vs. 2.8 months | Not approved | |||
LIV-1 | 65% | ladiratuzumab vedotin | NCT01969643 (phase I) (ladiratuzumab vedotin in single arm) | ORR: 32% DCR: 64% CBR: 36% | Not approved |
NCT03310957 (phase IB-II) (ladiratuzumab vedotin + pembrolizumab) | ORR | Ongoing | |||
HER3 | 17–43% | patritumab deruxtecan | NCT02980341 (phase I–II) (patritumab deruxtecan in single arm) [87] | ORR: 22.6%, DCR: 56.6%, DoR: 5.9 months | Not approved |
NCT04699630 (patritumab deruxtecan) (phase II) | ORR, 6 months PFS | Ongoing |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Capici, S.; Ammoni, L.C.; Meli, N.; Cogliati, V.; Pepe, F.F.; Piazza, F.; Cazzaniga, M.E. Personalised Therapies for Metastatic Triple-Negative Breast Cancer: When Target Is Not Everything. Cancers 2022, 14, 3729. https://doi.org/10.3390/cancers14153729
Capici S, Ammoni LC, Meli N, Cogliati V, Pepe FF, Piazza F, Cazzaniga ME. Personalised Therapies for Metastatic Triple-Negative Breast Cancer: When Target Is Not Everything. Cancers. 2022; 14(15):3729. https://doi.org/10.3390/cancers14153729
Chicago/Turabian StyleCapici, Serena, Luca Carlofrancesco Ammoni, Nicole Meli, Viola Cogliati, Francesca Fulvia Pepe, Francesca Piazza, and Marina Elena Cazzaniga. 2022. "Personalised Therapies for Metastatic Triple-Negative Breast Cancer: When Target Is Not Everything" Cancers 14, no. 15: 3729. https://doi.org/10.3390/cancers14153729
APA StyleCapici, S., Ammoni, L. C., Meli, N., Cogliati, V., Pepe, F. F., Piazza, F., & Cazzaniga, M. E. (2022). Personalised Therapies for Metastatic Triple-Negative Breast Cancer: When Target Is Not Everything. Cancers, 14(15), 3729. https://doi.org/10.3390/cancers14153729