Extracellular Nucleic Acids in the Diagnosis and Progression of Colorectal Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Genetics of CRC
2.1. Hereditary CRC
2.2. Sporadic CRC
3. Cell-Free Nucleic Acids as CRC Biomarkers
3.1. cfDNA Biomarkers
3.2. Methylation Status
DNA | Source | Function | Technique | Ref. |
---|---|---|---|---|
Methylated SEPT9 | Plasma | specific non-invasive CRC biomarker for postsurgical follow-up | qPCR | [78,82,83] |
CpG island methylation in the INHBB promoter | Serum/stool | biomarker of poor prognosis in CRC | Bisulfite sequencing, qPCR | [90] |
Methylation of APC/MGMT/RASSF2A/Wif-1 | Plasma | biomarker | qPCR | [91] |
Methylation of BMP3/NDRG4/VIM/TFPI2/mutant KRAS/ACTB | Stool | biomarker | QuARTS | [92] |
3.3. Genometastasis
3.4. mtDNA
3.5. cfRNA Biomarkers
3.5.1. mRNA
3.5.2. miRNA
3.5.3. lncRNA
3.5.4. circRNA
3.6. Nucleic Acids Released by Gut Microbiota
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Currais, P.; Rosa, I.; Claro, I. Colorectal Cancer Carcinogenesis: From Bench to Bedside. World J. Gastrointest. Oncol. 2022, 14, 654–663. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Wong, H.H.; Chu, P. Immunohistochemical Features of the Gastrointestinal Tract Tumors. J. Gastrointest. Oncol. 2012, 3, 262–284. [Google Scholar] [PubMed]
- Reddy, R.M.; Fleshman, J.W. Colorectal Gastrointestinal Stromal Tumors: A Brief Review. Clin. Colon Rectal Surg. 2006, 19, 69–77. [Google Scholar] [CrossRef] [Green Version]
- Alyabsi, M.; Sabatin, F.; Ramadan, M.; Jazieh, A.R. Colorectal Cancer Survival among Ministry of National Guard-Health Affairs (MNG-HA) Population 2009-2017: Retrospective Study. BMC Cancer 2021, 21, 954. [Google Scholar] [CrossRef]
- Lansdorp-Vogelaar, I.; van Ballegooijen, M.; Zauber, A.G.; Habbema, J.D.F.; Kuipers, E.J. Effect of Rising Chemotherapy Costs on the Cost Savings of Colorectal Cancer Screening. J. Natl. Cancer Inst. 2009, 101, 1412–1422. [Google Scholar] [CrossRef] [Green Version]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer Statistics, 2018. CA Cancer J. Clin. 2018, 68, 7–30. [Google Scholar] [CrossRef]
- Latchford, A. How Should Colonoscopy Surveillance in Lynch Syndrome Be Performed? Gastroenterology 2020, 158, 818–819. [Google Scholar] [CrossRef]
- Delcò, F.; Sonnenberg, A. Limitations of the Faecal Occult Blood Test in Screening for Colorectal Cancer. Ital. J. Gastroenterol. Hepatol. 1999, 31, 119–126. [Google Scholar]
- Lee, J.K.; Reis, V.; Liu, S.; Conn, L.; Groessl, E.J.; Ganiats, T.G.; Ho, S.B. Improving Fecal Occult Blood Testing Compliance Using a Mailed Educational Reminder. J. Gen. Intern. Med. 2009, 24, 1192–1197. [Google Scholar] [CrossRef] [Green Version]
- Bretthauer, M.; Kaminski, M.F.; Løberg, M.; Zauber, A.G.; Regula, J.; Kuipers, E.J.; Hernán, M.A.; McFadden, E.; Sunde, A.; Kalager, M.; et al. Population-Based Colonoscopy Screening for Colorectal Cancer: A Randomized Clinical Trial. JAMA Intern. Med. 2016, 176, 894–902. [Google Scholar] [CrossRef]
- Dhaliwal, A.; Vlachostergios, P.J.; Oikonomou, K.G.; Moshenyat, Y. Fecal DNA Testing for Colorectal Cancer Screening: Molecular Targets and Perspectives. World J. Gastrointest. Oncol. 2015, 7, 178–183. [Google Scholar] [CrossRef]
- Fan, C.-W.; Kuo, Y.-B.; Lin, G.-P.; Chen, S.-M.; Chang, S.-H.; Li, B.-A.; Chan, E.-C. Development of a Multiplexed Tumor-Associated Autoantibody-Based Blood Test for the Detection of Colorectal Cancer. Clin. Chim. Acta 2017, 475, 157–163. [Google Scholar] [CrossRef]
- Ladabaum, U.; Allen, J.; Wandell, M.; Ramsey, S. Colorectal Cancer Screening with Blood-Based Biomarkers: Cost-Effectiveness of Methylated Septin 9 DNA versus Current Strategies. Cancer Epidemiol. Biomarkers Prev. 2013, 22, 1567–1576. [Google Scholar] [CrossRef] [Green Version]
- Ross, J.S.; Fakih, M.; Ali, S.M.; Elvin, J.A.; Schrock, A.B.; Suh, J.; Vergilio, J.-A.; Ramkissoon, S.; Severson, E.; Daniel, S.; et al. Targeting HER2 in Colorectal Cancer: The Landscape of Amplification and Short Variant Mutations in ERBB2 and ERBB3. Cancer 2018, 124, 1358–1373. [Google Scholar] [CrossRef] [Green Version]
- Sameer, A.S. Colorectal Cancer: Molecular Mutations and Polymorphisms. Front. Oncol. 2013, 3, 114. [Google Scholar] [CrossRef] [Green Version]
- Nojadeh, J.N.; Behrouz Sharif, S.; Sakhinia, E. Microsatellite Instability in Colorectal Cancer. EXCLI J. 2018, 17, 159–168. [Google Scholar]
- Arvelo, F.; Sojo, F.; Cotte, C. Biology of Colorectal Cancer. Ecancermedicalscience 2015, 9, 520. [Google Scholar] [CrossRef] [Green Version]
- Lin, O.S. Colorectal Cancer Screening in Patients at Moderately Increased Risk due to Family History. World J. Gastrointest. Oncol. 2012, 4, 125–130. [Google Scholar] [CrossRef]
- Daca Alvarez, M.; Quintana, I.; Terradas, M.; Mur, P.; Balaguer, F.; Valle, L. The Inherited and Familial Component of Early-Onset Colorectal Cancer. Cells 2021, 10, 710. [Google Scholar] [CrossRef]
- Buglyó, G.; Styk, J.; Pös, O.; Csók, Á.; Repiska, V.; Soltész, B.; Szemes, T.; Nagy, B. Liquid Biopsy as a Source of Nucleic Acid Biomarkers in the Diagnosis and Management of Lynch Syndrome. Int. J. Mol. Sci. 2022, 23, 4284. [Google Scholar] [CrossRef] [PubMed]
- Nejadtaghi, M.; Jafari, H.; Farrokhi, E.; Samani, K.G. Familial Colorectal Cancer Type X (FCCTX) and the Correlation with Various Genes-A Systematic Review. Curr. Probl. Cancer 2017, 41, 388–397. [Google Scholar] [CrossRef] [PubMed]
- Nieminen, T.T.; O’Donohue, M.-F.; Wu, Y.; Lohi, H.; Scherer, S.W.; Paterson, A.D.; Ellonen, P.; Abdel-Rahman, W.M.; Valo, S.; Mecklin, J.-P.; et al. Germline Mutation of RPS20, Encoding a Ribosomal Protein, Causes Predisposition to Hereditary Nonpolyposis Colorectal Carcinoma without DNA Mismatch Repair Deficiency. Gastroenterology 2014, 147, 595–598.e5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khattab, A.; Monga, D.K. Turcot Syndrome. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Nielsen, M.; Aretz, S. Familial Adenomatous Polyposis or APC-Associated Polyposis. Hered. Colorectal Cancer 2018, 99–111. [Google Scholar] [CrossRef]
- Magrin, L.; Fanale, D.; Brando, C.; Corsini, L.R.; Randazzo, U.; Di Piazza, M.; Gurrera, V.; Pedone, E.; Bazan Russo, T.D.; Vieni, S.; et al. MUTYH-Associated Tumor Syndrome: The Other Face of MAP. Oncogene 2022, 41, 2531–2539. [Google Scholar] [CrossRef]
- Palles, C.; Latchford, A.; Valle, L. Adenomatous Polyposis Syndromes: Polymerase Proofreading-Associated Polyposis. Hered. Colorectal Cancer 2018, 113–134. [Google Scholar] [CrossRef]
- Weren, R.D.A.; Ligtenberg, M.J.L.; Kets, C.M.; de Voer, R.M.; Verwiel, E.T.P.; Spruijt, L.; van Zelst-Stams, W.A.G.; Jongmans, M.C.; Gilissen, C.; Hehir-Kwa, J.Y.; et al. A Germline Homozygous Mutation in the Base-Excision Repair Gene NTHL1 Causes Adenomatous Polyposis and Colorectal Cancer. Nat. Genet. 2015, 47, 668–671. [Google Scholar] [CrossRef]
- Wimmer, K.; Kratz, C.P.; Vasen, H.F.A.; Caron, O.; Colas, C.; Entz-Werle, N.; Gerdes, A.-M.; Goldberg, Y.; Ilencikova, D.; Muleris, M.; et al. Diagnostic Criteria for Constitutional Mismatch Repair Deficiency Syndrome: Suggestions of the European Consortium “Care for CMMRD” (C4CMMRD). J. Med. Genet. 2014, 51, 355–365. [Google Scholar] [CrossRef] [Green Version]
- Wagner, A.; Aretz, S.; Auranen, A.; Bruno, M.J.; Cavestro, G.M.; Crosbie, E.J.; Goverde, A.; Jelsig, A.M.; Latchford, A.; van Leerdam, M.E.; et al. The Management of Peutz-Jeghers Syndrome: European Hereditary Tumour Group (EHTG) Guideline. J. Clin. Med. Res. 2021, 10, 473. [Google Scholar] [CrossRef]
- Pilarski, R. Hamartoma Tumor Syndrome: A Clinical Overview. Cancers 2019, 11, 844. [Google Scholar] [CrossRef] [Green Version]
- Dal Buono, A.; Gaiani, F.; Poliani, L.; Laghi, L. Juvenile Polyposis Syndrome: An Overview. Best Pract. Res. Clin. Gastroenterol. 2022, 101799. [Google Scholar] [CrossRef]
- Lieberman, S.; Walsh, T.; Schechter, M.; Adar, T.; Goldin, E.; Beeri, R.; Sharon, N.; Baris, H.; Ben Avi, L.; Half, E.; et al. Features of Patients With Hereditary Mixed Polyposis Syndrome Caused by Duplication of GREM1 and Implications for Screening and Surveillance. Gastroenterology 2017, 152, 1876–1880.e1. [Google Scholar] [CrossRef]
- Ballester-Vargas, V.; Tomlinson, I. Hereditary Mixed Polyposis Syndrome. Intest. Polyposis Syndr. 2016, 165–171. [Google Scholar] [CrossRef]
- Taupin, D.; Lam, W.; Rangiah, D.; McCallum, L.; Whittle, B.; Zhang, Y.; Andrews, D.; Field, M.; Goodnow, C.C.; Cook, M.C. A Deleterious RNF43 Germline Mutation in a Severely Affected Serrated Polyposis Kindred. Hum. Genome Var. 2015, 2, 15013. [Google Scholar] [CrossRef] [Green Version]
- Quintana, I.; Mejías-Luque, R.; Terradas, M.; Navarro, M.; Piñol, V.; Mur, P.; Belhadj, S.; Grau, E.; Darder, E.; Solanes, A.; et al. Evidence Suggests That Germline Mutations Are a Rare Cause of Serrated Polyposis. Gut 2018, 67, 2230–2232. [Google Scholar] [CrossRef]
- Yurgelun, M.B.; Kulke, M.H.; Fuchs, C.S.; Allen, B.A.; Uno, H.; Hornick, J.L.; Ukaegbu, C.I.; Brais, L.K.; McNamara, P.G.; Mayer, R.J.; et al. Cancer Susceptibility Gene Mutations in Individuals With Colorectal Cancer. J. Clin. Oncol. 2017, 35, 1086–1095. [Google Scholar] [CrossRef]
- Tutlewska, K.; Lubinski, J.; Kurzawski, G. Germline Deletions in the EPCAM Gene as a Cause of Lynch Syndrome—Literature Review. Hered. Cancer Clin. Pract. 2013, 11, 9. [Google Scholar] [CrossRef] [Green Version]
- Lynch, H.T.; Lynch, P.M.; Lanspa, S.J.; Snyder, C.L.; Lynch, J.F.; Boland, C.R. Review of the Lynch Syndrome: History, Molecular Genetics, Screening, Differential Diagnosis, and Medicolegal Ramifications. Clin. Genet. 2009, 76, 1–18. [Google Scholar] [CrossRef]
- Lynch, H.T.; Shaw, T.G. Practical Genetics of Colorectal Cancer. Chin. Clin. Oncol. 2013, 2, 12. [Google Scholar]
- Balaguer, F.; Moreira, L.; Lozano, J.J.; Link, A.; Ramirez, G.; Shen, Y.; Cuatrecasas, M.; Arnold, M.; Meltzer, S.J.; Syngal, S.; et al. Colorectal Cancers with Microsatellite Instability Display Unique miRNA Profiles. Clin. Cancer Res. 2011, 17, 6239–6249. [Google Scholar] [CrossRef] [Green Version]
- Giardiello, F.M.; Trimbath, J.D. Peutz-Jeghers Syndrome and Management Recommendations. Clin. Gastroenterol. Hepatol. 2006, 4, 408–415. [Google Scholar] [CrossRef] [PubMed]
- Chae, H.-D.; Jeon, C.-H. Peutz-Jeghers Syndrome with Germline Mutation of STK11. Ann. Surg. Treat. Res. 2014, 86, 325–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goodenberger, M.; Lindor, N.M. Lynch Syndrome and MYH-Associated Polyposis: Review and Testing Strategy. J. Clin. Gastroenterol. 2011, 45, 488–500. [Google Scholar] [CrossRef]
- Bogaert, J.; Prenen, H. Molecular Genetics of Colorectal Cancer. Ann. Gastroenterol. Hepatol. 2014, 27, 9–14. [Google Scholar]
- Sweetser, S.; Smyrk, T.C.; Sinicrope, F.A. Serrated Colon Polyps as Precursors to Colorectal Cancer. Clin. Gastroenterol. Hepatol. 2013, 11, 760–767, quiz e54–e55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gala, M.K.; Mizukami, Y.; Le, L.P.; Moriichi, K.; Austin, T.; Yamamoto, M.; Lauwers, G.Y.; Bardeesy, N.; Chung, D.C. Germline Mutations in Oncogene-Induced Senescence Pathways Are Associated with Multiple Sessile Serrated Adenomas. Gastroenterology 2014, 146, 520–529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le, D.T.; Durham, J.N.; Smith, K.N.; Wang, H.; Bartlett, B.R.; Aulakh, L.K.; Lu, S.; Kemberling, H.; Wilt, C.; Luber, B.S.; et al. Mismatch Repair Deficiency Predicts Response of Solid Tumors to PD-1 Blockade. Science 2017, 357, 409–413. [Google Scholar] [CrossRef] [Green Version]
- Rudolph, K.L.; Millard, M.; Bosenberg, M.W.; DePinho, R.A. Telomere Dysfunction and Evolution of Intestinal Carcinoma in Mice and Humans. Nat. Genet. 2001, 28, 155–159. [Google Scholar] [CrossRef]
- Ayiomamitis, G.D.; Notas, G.; Zaravinos, A.; Zizi-Sermpetzoglou, A.; Georgiadou, M.; Sfakianaki, O.; Kouroumallis, E. Differences in Telomerase Activity between Colon and Rectal Cancer. Can. J. Surg. 2014, 57, 199–208. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.-Y.; Hsieh, J.-S.; Chang, M.-Y.; Huang, T.-J.; Chen, F.-M.; Cheng, T.-L.; Alexandersen, K.; Huang, Y.-S.; Tzou, W.-S.; Lin, S.-R. Molecular Detection of APC, K-Ras, and p53 Mutations in the Serum of Colorectal Cancer Patients as Circulating Biomarkers. World J. Surg. 2004, 28, 721–726. [Google Scholar] [CrossRef]
- Midthun, L.; Shaheen, S.; Deisch, J.; Senthil, M.; Tsai, J.; Hsueh, C.-T. Concomitant and Mutations in Colorectal Cancer. J. Gastrointest. Oncol. 2019, 10, 577–581. [Google Scholar] [CrossRef] [PubMed]
- Mauri, G.; Vitiello, P.P.; Sogari, A.; Crisafulli, G.; Sartore-Bianchi, A.; Marsoni, S.; Siena, S.; Bardelli, A. Liquid Biopsies to Monitor and Direct Cancer Treatment in Colorectal Cancer. Br. J. Cancer 2022. [Google Scholar] [CrossRef] [PubMed]
- Zygulska, A.L.; Pierzchalski, P. Novel Diagnostic Biomarkers in Colorectal Cancer. Int. J. Mol. Sci. 2022, 23, 852. [Google Scholar] [CrossRef] [PubMed]
- Umwali, Y.; Yue, C.-B.; Gabriel, A.N.A.; Zhang, Y.; Zhang, X. Roles of Exosomes in Diagnosis and Treatment of Colorectal Cancer. World J. Clin. Cases 2021, 9, 4467–4479. [Google Scholar] [CrossRef]
- Ruiz-López, L.; Blancas, I.; Garrido, J.M.; Mut-Salud, N.; Moya-Jódar, M.; Osuna, A.; Rodríguez-Serrano, F. The Role of Exosomes on Colorectal Cancer: A Review. J. Gastroenterol. Hepatol. 2018, 33, 792–799. [Google Scholar] [CrossRef] [Green Version]
- Pös, O.; Biró, O.; Szemes, T.; Nagy, B. Circulating Cell-Free Nucleic Acids: Characteristics and Applications. Eur. J. Hum. Genet. 2018, 26, 937–945. [Google Scholar] [CrossRef] [Green Version]
- Szilágyi, M.; Pös, O.; Márton, É.; Buglyó, G.; Soltész, B.; Keserű, J.; Penyige, A.; Szemes, T.; Nagy, B. Circulating Cell-Free Nucleic Acids: Main Characteristics and Clinical Application. Int. J. Mol. Sci. 2020, 21, 6827. [Google Scholar] [CrossRef]
- Aucamp, J.; Bronkhorst, A.J.; Badenhorst, C.P.S.; Pretorius, P.J. The Diverse Origins of Circulating Cell-Free DNA in the Human Body: A Critical Re-Evaluation of the Literature. Biol. Rev. Camb. Philos. Soc. 2018, 93, 1649–1683. [Google Scholar] [CrossRef]
- Hu, Z.; Chen, H.; Long, Y.; Li, P.; Gu, Y. The Main Sources of Circulating Cell-Free DNA: Apoptosis, Necrosis and Active Secretion. Crit. Rev. Oncol. Hematol. 2021, 157, 103166. [Google Scholar] [CrossRef]
- Glyn, T.; Purcell, R. Circulating Bacterial DNA: A New Paradigm for Cancer Diagnostics. Front. Med. 2022, 9, 831096. [Google Scholar] [CrossRef]
- Dasari, A.; Morris, V.K.; Allegra, C.J.; Atreya, C.; Benson, A.B., 3rd; Boland, P.; Chung, K.; Copur, M.S.; Corcoran, R.B.; Deming, D.A.; et al. ctDNA Applications and Integration in Colorectal Cancer: An NCI Colon and Rectal-Anal Task Forces Whitepaper. Nat. Rev. Clin. Oncol. 2020, 17, 757–770. [Google Scholar] [CrossRef]
- Frattini, M.; Gallino, G.; Signoroni, S.; Balestra, D.; Lusa, L.; Battaglia, L.; Sozzi, G.; Bertario, L.; Leo, E.; Pilotti, S.; et al. Quantitative and Qualitative Characterization of Plasma DNA Identifies Primary and Recurrent Colorectal Cancer. Cancer Lett. 2008, 263, 170–181. [Google Scholar] [CrossRef]
- Cassinotti, E.; Boni, L.; Segato, S.; Rausei, S.; Marzorati, A.; Rovera, F.; Dionigi, G.; David, G.; Mangano, A.; Sambucci, D.; et al. Free Circulating DNA as a Biomarker of Colorectal Cancer. Int. J. Surg. 2013, 11 (Suppl. 1), S54–S57. [Google Scholar] [CrossRef] [Green Version]
- Tie, J.; Cohen, J.D.; Lahouel, K.; Lo, S.N.; Wang, Y.; Kosmider, S.; Wong, R.; Shapiro, J.; Lee, M.; Harris, S.; et al. Circulating Tumor DNA Analysis Guiding Adjuvant Therapy in Stage II Colon Cancer. N. Engl. J. Med. 2022, 386, 2261–2272. [Google Scholar] [CrossRef]
- Zhitnyuk, Y.V.; Koval, A.P.; Alferov, A.A.; Shtykova, Y.A.; Mamedov, I.Z.; Kushlinskii, N.E.; Chudakov, D.M.; Shcherbo, D.S. Deep cfDNA Fragment End Profiling Enables Cancer Detection. Mol. Cancer 2022, 21, 26. [Google Scholar]
- Cristiano, S.; Leal, A.; Phallen, J.; Fiksel, J.; Adleff, V.; Bruhm, D.C.; Jensen, S.Ø.; Medina, J.E.; Hruban, C.; White, J.R.; et al. Genome-Wide Cell-Free DNA Fragmentation in Patients with Cancer. Nature 2019, 570, 385–389. [Google Scholar] [CrossRef]
- Mouliere, F.; Chandrananda, D.; Piskorz, A.M.; Moore, E.K.; Morris, J.; Ahlborn, L.B.; Mair, R.; Goranova, T.; Marass, F.; Heider, K.; et al. Enhanced Detection of Circulating Tumor DNA by Fragment Size Analysis. Sci. Transl. Med. 2018, 10, eaat4921. [Google Scholar] [CrossRef] [Green Version]
- Flamini, E.; Mercatali, L.; Nanni, O.; Calistri, D.; Nunziatini, R.; Zoli, W.; Rosetti, P.; Gardini, N.; Lattuneddu, A.; Verdecchia, G.M.; et al. Free DNA and Carcinoembryonic Antigen Serum Levels: An Important Combination for Diagnosis of Colorectal Cancer. Clin. Cancer Res. 2006, 12, 6985–6988. [Google Scholar] [CrossRef] [Green Version]
- Kidess, E.; Heirich, K.; Wiggin, M.; Vysotskaia, V.; Visser, B.C.; Marziali, A.; Wiedenmann, B.; Norton, J.A.; Lee, M.; Jeffrey, S.S.; et al. Mutation Profiling of Tumor DNA from Plasma and Tumor Tissue of Colorectal Cancer Patients with a Novel, High-Sensitivity Multiplexed Mutation Detection Platform. Oncotarget 2015, 6, 2549–2561. [Google Scholar] [CrossRef] [Green Version]
- Vidal, J.; Muinelo, L.; Dalmases, A.; Jones, F.; Edelstein, D.; Iglesias, M.; Orrillo, M.; Abalo, A.; Rodríguez, C.; Brozos, E.; et al. Plasma ctDNA RAS Mutation Analysis for the Diagnosis and Treatment Monitoring of Metastatic Colorectal Cancer Patients. Ann. Oncol. 2017, 28, 1325–1332. [Google Scholar] [CrossRef]
- Nakamura, Y.; Okamoto, W.; Kato, T.; Esaki, T.; Kato, K.; Komatsu, Y.; Yuki, S.; Masuishi, T.; Nishina, T.; Ebi, H.; et al. Circulating Tumor DNA-Guided Treatment with Pertuzumab plus Trastuzumab for HER2-Amplified Metastatic Colorectal Cancer: A Phase 2 Trial. Nat. Med. 2021, 27, 1899–1903. [Google Scholar] [CrossRef]
- Mouliere, F.; Robert, B.; Arnau Peyrotte, E.; Del Rio, M.; Ychou, M.; Molina, F.; Gongora, C.; Thierry, A.R. High Fragmentation Characterizes Tumour-Derived Circulating DNA. PLoS ONE 2011, 6, e23418. [Google Scholar] [CrossRef]
- Henriksen, T.V.; Reinert, T.; Christensen, E.; Sethi, H.; Birkenkamp-Demtröder, K.; Gögenur, M.; Gögenur, I.; Zimmermann, B.G.; IMPROVE Study Group; Dyrskjøt, L.; et al. The Effect of Surgical Trauma on Circulating Free DNA Levels in Cancer Patients-Implications for Studies of Circulating Tumor DNA. Mol. Oncol. 2020, 14, 1670–1679. [Google Scholar] [CrossRef]
- Osumi, H.; Shinozaki, E.; Yamaguchi, K.; Zembutsu, H. Clinical Utility of Circulating Tumor DNA for Colorectal Cancer. Cancer Sci. 2019, 110, 1148–1155. [Google Scholar] [CrossRef] [Green Version]
- Ahcene Djaballah, S.; Daniel, F.; Milani, A.; Ricagno, G.; Lonardi, S. HER2 in Colorectal Cancer: The Long and Winding Road From Negative Predictive Factor to Positive Actionable Target. Am. Soc. Clin. Oncol. Educ. Book 2022, 42, 1–14. [Google Scholar] [CrossRef]
- Barták, B.K.; Nagy, Z.B.; Spisák, S.; Tulassay, Z.; Dank, M.; Igaz, P.; Molnár, B. In vivo analysis of circulating cell-free DNA release and degradation. Orv. Hetil. 2018, 159, 223–233. [Google Scholar] [CrossRef] [Green Version]
- Wu, D.; Zhou, G.; Jin, P.; Zhu, J.; Li, S.; Wu, Q.; Wang, G.; Sheng, J.; Wang, J.; Song, L.; et al. Detection of Colorectal Cancer Using a Simplified SEPT9 Gene Methylation Assay Is a Reliable Method for Opportunistic Screening. J. Mol. Diagn. 2016, 18, 535–545. [Google Scholar] [CrossRef] [Green Version]
- Song, L.; Li, Y.; Jia, J.; Zhou, G.; Wang, J.; Kang, Q.; Jin, P.; Sheng, J.; Cai, G.; Cai, S.; et al. Algorithm Optimization in Methylation Detection with Multiple RT-qPCR. PLoS ONE 2016, 11, e0163333. [Google Scholar] [CrossRef] [Green Version]
- Wasserkort, R.; Kalmar, A.; Valcz, G.; Spisak, S.; Krispin, M.; Toth, K.; Tulassay, Z.; Sledziewski, A.Z.; Molnar, B. Aberrant Septin 9 DNA Methylation in Colorectal Cancer Is Restricted to a Single CpG Island. BMC Cancer 2013, 13, 398. [Google Scholar] [CrossRef] [Green Version]
- Tóth, K.; Wasserkort, R.; Sipos, F.; Kalmár, A.; Wichmann, B.; Leiszter, K.; Valcz, G.; Juhász, M.; Miheller, P.; Patai, Á.V.; et al. Detection of Methylated Septin 9 in Tissue and Plasma of Colorectal Patients with Neoplasia and the Relationship to the Amount of Circulating Cell-Free DNA. PLoS ONE 2014, 9, e115415. [Google Scholar] [CrossRef]
- Leon Arellano, M.; García-Arranz, M.; Ruiz, R.; Olivera, R.; Magallares, S.; Olmedillas-Lopez, S.; Valdes-Sanchez, T.; Guadalajara, H.; García-Olmo, D. A First Step to a Biomarker of Curative Surgery in Colorectal Cancer by Liquid Biopsy of Methylated Septin 9 Gene. Dis. Markers 2020, 2020, 9761406. [Google Scholar] [CrossRef] [PubMed]
- Wills, B.; Gorse, E.; Lee, V. Role of Liquid Biopsies in Colorectal Cancer. Curr. Probl. Cancer 2018, 42, 593–600. [Google Scholar] [CrossRef] [PubMed]
- Provenzale, D.; Gupta, S.; Ahnen, D.J.; Markowitz, A.J.; Chung, D.C.; Mayer, R.J.; Regenbogen, S.E.; Blanco, A.M.; Bray, T.; Cooper, G.; et al. NCCN Guidelines Insights: Colorectal Cancer Screening, Version 1.2018. J. Natl. Compr. Cancer Netw. 2018, 16, 939–949. [Google Scholar] [CrossRef] [PubMed]
- Lamb, Y.N.; Dhillon, S. Epi proColon 2.0 CE: A Blood-Based Screening Test for Colorectal Cancer. Mol. Diagn. Ther. 2017, 21, 225–232. [Google Scholar] [CrossRef]
- Song, L.; Jia, J.; Peng, X.; Xiao, W.; Li, Y. The Performance of the SEPT9 Gene Methylation Assay and a Comparison with Other CRC Screening Tests: A Meta-Analysis. Sci. Rep. 2017, 7, 3032. [Google Scholar] [CrossRef] [Green Version]
- Adler, A.; Geiger, S.; Keil, A.; Bias, H.; Schatz, P.; deVos, T.; Dhein, J.; Zimmermann, M.; Tauber, R.; Wiedenmann, B. Improving Compliance to Colorectal Cancer Screening Using Blood and Stool Based Tests in Patients Refusing Screening Colonoscopy in Germany. BMC Gastroenterol. 2014, 14, 183. [Google Scholar] [CrossRef] [Green Version]
- Imperiale, T.F.; Ransohoff, D.F.; Itzkowitz, S.H.; Levin, T.R.; Lavin, P.; Lidgard, G.P.; Ahlquist, D.A.; Berger, B.M. Multitarget Stool DNA Testing for Colorectal-Cancer Screening. N. Engl. J. Med. 2014, 370, 1287–1297. [Google Scholar] [CrossRef] [Green Version]
- Ahlquist, D.A. Multi-Target Stool DNA Test: A New High Bar for Noninvasive Screening. Dig. Dis. Sci. 2015, 60, 623–633. [Google Scholar] [CrossRef]
- Mayor, R.; Casadomé, L.; Azuara, D.; Moreno, V.; Clark, S.J.; Capellà, G.; Peinado, M.A. Long-Range Epigenetic Silencing at 2q14.2 Affects Most Human Colorectal Cancers and May Have Application as a Non-Invasive Biomarker of Disease. Br. J. Cancer 2009, 100, 1534–1539. [Google Scholar] [CrossRef] [Green Version]
- Lee, B.B.; Lee, E.J.; Jung, E.H.; Chun, H.-K.; Chang, D.K.; Song, S.Y.; Park, J.; Kim, D.-H. Aberrant Methylation of APC, MGMT, RASSF2A, and Wif-1 Genes in Plasma as a Biomarker for Early Detection of Colorectal Cancer. Clin. Cancer Res. 2009, 15, 6185–6191. [Google Scholar] [CrossRef] [Green Version]
- Ahlquist, D.A.; Taylor, W.R.; Mahoney, D.W.; Zou, H.; Domanico, M.; Thibodeau, S.N.; Boardman, L.A.; Berger, B.M.; Lidgard, G.P. The Stool DNA Test Is More Accurate than the Plasma Septin 9 Test in Detecting Colorectal Neoplasia. Clin. Gastroenterol. Hepatol. 2012, 10, 272–277.e1. [Google Scholar] [CrossRef] [Green Version]
- Gutierrez, A.; Demond, H.; Brebi, P.; Ili, C.G. Novel Methylation Biomarkers for Colorectal Cancer Prognosis. Biomolecules 2021, 11, 1722. [Google Scholar] [CrossRef]
- Laugsand, E.A.; Brenne, S.S.; Skorpen, F. DNA Methylation Markers Detected in Blood, Stool, Urine, and Tissue in Colorectal Cancer: A Systematic Review of Paired Samples. Int. J. Colorectal Dis. 2021, 36, 239–251. [Google Scholar] [CrossRef]
- Trejo-Becerril, C.; Pérez-Cárdenas, E.; Taja-Chayeb, L.; Anker, P.; Herrera-Goepfert, R.; Medina-Velázquez, L.A.; Hidalgo-Miranda, A.; Pérez-Montiel, D.; Chávez-Blanco, A.; Cruz-Velázquez, J.; et al. Cancer Progression Mediated by Horizontal Gene Transfer in an in Vivo Model. PLoS ONE 2012, 7, e52754. [Google Scholar] [CrossRef] [Green Version]
- Alekseeva, L.; Mironova, N. Role of Cell-Free DNA and Deoxyribonucleases in Tumor Progression. Int. J. Mol. Sci. 2021, 22, 2246. [Google Scholar] [CrossRef]
- Thierry, A.R.; El Messaoudi, S.; Gahan, P.B.; Anker, P.; Stroun, M. Origins, Structures, and Functions of Circulating DNA in Oncology. Cancer Metastasis Rev. 2016, 35, 347–376. [Google Scholar] [CrossRef] [Green Version]
- Haupts, A.; Vogel, A.; Foersch, S.; Hartmann, M.; Maderer, A.; Wachter, N.; Huber, T.; Kneist, W.; Roth, W.; Lang, H.; et al. Comparative Analysis of Nuclear and Mitochondrial DNA from Tissue and Liquid Biopsies of Colorectal Cancer Patients. Sci. Rep. 2021, 11, 16745. [Google Scholar] [CrossRef]
- Meddeb, R.; Dache, Z.A.A.; Thezenas, S.; Otandault, A.; Tanos, R.; Pastor, B.; Sanchez, C.; Azzi, J.; Tousch, G.; Azan, S.; et al. Quantifying Circulating Cell-Free DNA in Humans. Sci. Rep. 2019, 9, 5220. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Zhou, J.; Yuan, Q.; Su, J.; Li, Q.; Lu, X.; Zhang, L.; Cai, Z.; Han, J. Quantitative Detection of Circulating MT-ND1 as a Potential Biomarker for Colorectal Cancer. Bosn. J. Basic Med. Sci. 2021, 21, 577–586. [Google Scholar] [CrossRef]
- Zhou, K.; Liu, Y.; Yuan, Q.; Lai, D.; Guo, S.; Wang, Z.; Su, L.; Zhang, H.; Wang, X.; Guo, W.; et al. Next-Generation Sequencing-Based Analysis of Urine Cell-Free mtDNA Reveals Aberrant Fragmentation and Mutation Profile in Cancer Patients. Clin. Chem. 2022, 68, 561–573. [Google Scholar] [CrossRef]
- Thyagarajan, B.; Guan, W.; Fedirko, V.; Barcelo, H.; Tu, H.; Gross, M.; Goodman, M.; Bostick, R.M. No Association between Mitochondrial DNA Copy Number and Colorectal Adenomas. Mol. Carcinog. 2016, 55, 1290–1296. [Google Scholar] [CrossRef] [Green Version]
- Rapisuwon, S.; Vietsch, E.E.; Wellstein, A. Circulating Biomarkers to Monitor Cancer Progression and Treatment. Comput. Struct. Biotechnol. J. 2016, 14, 211–222. [Google Scholar] [CrossRef] [Green Version]
- Xue, V.W.; Cheung, M.T.; Chan, P.T.; Luk, L.L.Y.; Lee, V.H.; Au, T.C.; Yu, A.C.; Cho, W.C.S.; Tsang, H.F.A.; Chan, A.K.; et al. Non-Invasive Potential Circulating mRNA Markers for Colorectal Adenoma Using Targeted Sequencing. Sci. Rep. 2019, 9, 12943. [Google Scholar] [CrossRef]
- Shu, T.; Wu, K.; Guo, Y.; He, Q.; Song, X.; Shan, J.; Wu, L.; Liu, J.; Wang, Z.; Liu, L.; et al. Evaluation of Fecal SYPL1 as a Diagnostic Biomarker in Colorectal Cancer. Clin. Biochem. 2022, 103, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Engstrand, J.; Nilsson, H.; Strömberg, C.; Jonas, E.; Freedman, J. Colorectal Cancer Liver Metastases—A Population-Based Study on Incidence, Management and Survival. BMC Cancer 2018, 18, 78. [Google Scholar] [CrossRef] [PubMed]
- Favoriti, P.; Carbone, G.; Greco, M.; Pirozzi, F.; Pirozzi, R.E.M.; Corcione, F. Worldwide Burden of Colorectal Cancer: A Review. Updates Surg. 2016, 68, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Battula, N.; Tsapralis, D.; Mayer, D.; Isaac, J.; Muiesan, P.; Sutcliffe, R.P.; Bramhall, S.; Mirza, D.; Marudanayagam, R. Repeat Liver Resection for Recurrent Colorectal Metastases: A Single-Centre, 13-Year Experience. HPB 2014, 16, 157–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imai, K.; Allard, M.-A.; Benitez, C.C.; Vibert, E.; Sa Cunha, A.; Cherqui, D.; Castaing, D.; Bismuth, H.; Baba, H.; Adam, R. Early Recurrence After Hepatectomy for Colorectal Liver Metastases: What Optimal Definition and What Predictive Factors? Oncologist 2016, 21, 887–894. [Google Scholar] [CrossRef] [Green Version]
- Pun, J.C.-S.; Chan, J.Y.-J.; Chun, B.K.-M.; Ng, K.-W.; Tsui, S.Y.-K.; Wan, T.M.-H.; Lo, O.; Poon, J.T.-C.; Ng, L.; Pang, R. Plasma Bmi1 mRNA as a Potential Prognostic Biomarker for Distant Metastasis in Colorectal Cancer Patients. Mol. Clin. Oncol. 2014, 2, 817–820. [Google Scholar] [CrossRef] [Green Version]
- Jimenez-Luna, C.; González-Flores, E.; Ortiz, R.; Martínez-González, L.J.; Antúnez-Rodríguez, A.; Expósito-Ruiz, M.; Melguizo, C.; Caba, O.; Prados, J. Circulating PTGS2, JAG1, GUCY2C and PGF mRNA in Peripheral Blood and Serum as Potential Biomarkers for Patients with Metastatic Colon Cancer. J. Clin. Med. Res. 2021, 10, 2248. [Google Scholar] [CrossRef]
- Kong, Y.W.; Ferland-McCollough, D.; Jackson, T.J.; Bushell, M. microRNAs in Cancer Management. Lancet Oncol. 2012, 13, e249–e258. [Google Scholar] [CrossRef]
- Peng, Y.; Croce, C.M. The Role of MicroRNAs in Human Cancer. Signal Transduct. Target. Ther. 2016, 1, 15004. [Google Scholar] [CrossRef] [Green Version]
- Sohel, M.M.H. Circulating microRNAs as Biomarkers in Cancer Diagnosis. Life Sci. 2020, 248, 117473. [Google Scholar] [CrossRef]
- Turchinovich, A.; Weiz, L.; Langheinz, A.; Burwinkel, B. Characterization of Extracellular Circulating microRNA. Nucleic Acids Res. 2011, 39, 7223–7233. [Google Scholar] [CrossRef]
- Kang, E.; Jung, S.C.; Nam, S.K.; Park, Y.; Seo, S.H.; Park, K.U.; Oh, H.-K.; Kim, D.-W.; Kang, S.-B.; Lee, H.S. Tissue miR-200c-3p and Circulating miR-1290 as Potential Prognostic Biomarkers for Colorectal Cancer. Sci. Rep. 2022, 12, 2295. [Google Scholar] [CrossRef]
- Nassar, F.J.; Msheik, Z.S.; Itani, M.M.; Helou, R.E.; Hadla, R.; Kreidieh, F.; Bejjany, R.; Mukherji, D.; Shamseddine, A.; Nasr, R.R.; et al. Circulating miRNA as Biomarkers for Colorectal Cancer Diagnosis and Liver Metastasis. Diagnostics (Basel) 2021, 11, 341. [Google Scholar] [CrossRef]
- Chen, E.; Li, Q.; Wang, H.; Yang, F.; Min, L.; Yang, J. MiR-92a Promotes Tumorigenesis of Colorectal Cancer, a Transcriptomic and Functional Based Study. Biomed. Pharmacother. 2018, 106, 1370–1377. [Google Scholar] [CrossRef]
- Huang, Z.; Huang, D.; Ni, S.; Peng, Z.; Sheng, W.; Du, X. Plasma microRNAs Are Promising Novel Biomarkers for Early Detection of Colorectal Cancer. Int. J. Cancer 2010, 127, 118–126. [Google Scholar] [CrossRef]
- Min, L.; Chen, L.; Liu, S.; Yu, Y.; Guo, Q.; Li, P.; Zhu, S. Loss of Circulating Exosomal miR-92b Is a Novel Biomarker of Colorectal Cancer at Early Stage. Int. J. Med. Sci. 2019, 16, 1231–1237. [Google Scholar] [CrossRef] [Green Version]
- Fu, F.; Jiang, W.; Zhou, L.; Chen, Z. Circulating Exosomal miR-17-5p and miR-92a-3p Predict Pathologic Stage and Grade of Colorectal Cancer. Transl. Oncol. 2018, 11, 221–232. [Google Scholar] [CrossRef]
- Zou, S.-L.; Chen, Y.-L.; Ge, Z.-Z.; Qu, Y.-Y.; Cao, Y.; Kang, Z.-X. Downregulation of Serum Exosomal miR-150-5p Is Associated with Poor Prognosis in Patients with Colorectal Cancer. Cancer Biomark. 2019, 26, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Liu, X.; Pan, B.; Hu, X.; Zhu, Y.; Su, Y.; Guo, Z.; Zhang, G.; Xu, M.; Xu, X.; et al. Serum Exosomal miR-122 as a Potential Diagnostic and Prognostic Biomarker of Colorectal Cancer with Liver Metastasis. J. Cancer 2020, 11, 630–637. [Google Scholar] [CrossRef]
- Imaoka, H.; Toiyama, Y.; Fujikawa, H.; Hiro, J.; Saigusa, S.; Tanaka, K.; Inoue, Y.; Mohri, Y.; Mori, T.; Kato, T.; et al. Circulating microRNA-1290 as a Novel Diagnostic and Prognostic Biomarker in Human Colorectal Cancer. Ann. Oncol. 2016, 27, 1879–1886. [Google Scholar] [CrossRef]
- Peng, X.; Wang, J.; Zhang, C.; Liu, K.; Zhao, L.; Chen, X.; Huang, G.; Lai, Y. A Three-miRNA Panel in Serum as a Noninvasive Biomarker for Colorectal Cancer Detection. Int. J. Biol. Markers 2020, 35, 74–82. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, M.; Ding, Y.; Fan, Z.; Zhang, J.; Zhang, H.; Jiang, B.; Zhu, Y. Serum MicroRNA Profile in Patients with Colon Adenomas or Cancer. BMC Med. Genom. 2017, 10, 23. [Google Scholar] [CrossRef] [Green Version]
- Maminezhad, H.; Ghanadian, S.; Pakravan, K.; Razmara, E.; Rouhollah, F.; Mossahebi-Mohammadi, M.; Babashah, S. A Panel of Six-Circulating miRNA Signature in Serum and Its Potential Diagnostic Value in Colorectal Cancer. Life Sci. 2020, 258, 118226. [Google Scholar] [CrossRef]
- Sazanov, A.A.; Kiselyova, E.V.; Zakharenko, A.A.; Romanov, M.N.; Zaraysky, M.I. Plasma and Saliva miR-21 Expression in Colorectal Cancer Patients. J. Appl. Genet. 2017, 58, 231–237. [Google Scholar] [CrossRef]
- Rapado-González, Ó.; Majem, B.; Álvarez-Castro, A.; Díaz-Peña, R.; Abalo, A.; Suárez-Cabrera, L.; Gil-Moreno, A.; Santamaría, A.; López-López, R.; Muinelo-Romay, L.; et al. A Novel Saliva-Based miRNA Signature for Colorectal Cancer Diagnosis. J. Clin. Med. Res. 2019, 8, 2029. [Google Scholar] [CrossRef] [Green Version]
- Iwasaki, H.; Shimura, T.; Kitagawa, M.; Yamada, T.; Nishigaki, R.; Fukusada, S.; Okuda, Y.; Katano, T.; Horike, S.-I.; Kataoka, H. A Novel Urinary miRNA Biomarker for Early Detection of Colorectal Cancer. Cancers 2022, 14, 461. [Google Scholar] [CrossRef]
- Taniue, K.; Akimitsu, N. The Functions and Unique Features of LncRNAs in Cancer Development and Tumorigenesis. Int. J. Mol. Sci. 2021, 22, 632. [Google Scholar] [CrossRef] [PubMed]
- Schwarzmueller, L.; Bril, O.; Vermeulen, L.; Léveillé, N. Emerging Role and Therapeutic Potential of lncRNAs in Colorectal Cancer. Cancers 2020, 12, 3843. [Google Scholar] [CrossRef] [PubMed]
- Galamb, O.; Barták, B.K.; Kalmár, A.; Nagy, Z.B.; Szigeti, K.A.; Tulassay, Z.; Igaz, P.; Molnár, B. Diagnostic and Prognostic Potential of Tissue and Circulating Long Non-Coding RNAs in Colorectal Tumors. World J. Gastroenterol. 2019, 25, 5026–5048. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Shen, X. Long Noncoding RNAs: Functions and Mechanisms in Colon Cancer. Mol. Cancer 2020, 19, 167. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Yang, L.; Zhao, J.; Li, C.; Nie, J.; Liu, F.; Zhuo, C.; Zheng, Y.; Li, B.; Wang, Z.; et al. Nuclear-Enriched Abundant Transcript 1 as a Diagnostic and Prognostic Biomarker in Colorectal Cancer. Mol. Cancer 2015, 14, 191. [Google Scholar] [CrossRef] [Green Version]
- Dai, M.; Chen, X.; Mo, S.; Li, J.; Huang, Z.; Huang, S.; Xu, J.; He, B.; Zou, Y.; Chen, J.; et al. Meta-Signature LncRNAs Serve as Novel Biomarkers for Colorectal Cancer: Integrated Bioinformatics Analysis, Experimental Validation and Diagnostic Evaluation. Sci. Rep. 2017, 7, 46572. [Google Scholar] [CrossRef]
- Shaker, O.G.; Senousy, M.A.; Elbaz, E.M. Association of rs6983267 at 8q24, HULC rs7763881 Polymorphisms and Serum lncRNAs CCAT2 and HULC with Colorectal Cancer in Egyptian Patients. Sci. Rep. 2017, 7, 16246. [Google Scholar] [CrossRef]
- Wang, L.; Duan, W.; Yan, S.; Xie, Y.; Wang, C. Circulating Long Non-Coding RNA Colon Cancer-Associated Transcript 2 Protected by Exosome as a Potential Biomarker for Colorectal Cancer. Biomed. Pharmacother. 2019, 113, 108758. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, X.; Gao, S.; Jing, F.; Yang, Y.; Du, L.; Zheng, G.; Li, P.; Li, C.; Wang, C. Exosomal Long Noncoding RNA CRNDE-H as a Novel Serum-Based Biomarker for Diagnosis and Prognosis of Colorectal Cancer. Oncotarget 2016, 7, 85551–85563. [Google Scholar] [CrossRef]
- Yang, Y.-N.; Zhang, R.; Du, J.-W.; Yuan, H.-H.; Li, Y.-J.; Wei, X.-L.; Du, X.-X.; Jiang, S.-L.; Han, Y. Predictive Role of UCA1-Containing Exosomes in Cetuximab-Resistant Colorectal Cancer. Cancer Cell Int. 2018, 18, 164. [Google Scholar] [CrossRef] [Green Version]
- Yu, M.; Song, X.-G.; Zhao, Y.-J.; Dong, X.-H.; Niu, L.-M.; Zhang, Z.-J.; Shang, X.-L.; Tang, Y.-Y.; Song, X.-R.; Xie, L. Circulating Serum Exosomal Long Non-Coding RNAs FOXD2-AS1, NRIR, and XLOC_009459 as Diagnostic Biomarkers for Colorectal Cancer. Front. Oncol. 2021, 11, 618967. [Google Scholar] [CrossRef]
- Abedini, P.; Fattahi, A.; Agah, S.; Talebi, A.; Beygi, A.H.; Amini, S.M.; Mirzaei, A.; Akbari, A. Expression Analysis of Circulating Plasma Long Noncoding RNAs in Colorectal Cancer: The Relevance of lncRNAs ATB and CCAT1 as Potential Clinical Hallmarks. J. Cell. Physiol. 2019, 234, 22028–22033. [Google Scholar] [CrossRef]
- Zhao, W.; Song, M.; Zhang, J.; Kuerban, M.; Wang, H. Combined Identification of Long Non-Coding RNA CCAT1 and HOTAIR in Serum as an Effective Screening for Colorectal Carcinoma. Int. J. Clin. Exp. Pathol. 2015, 8, 14131–14140. [Google Scholar]
- Liu, Y.; Chen, X.; Chen, X.; Liu, J.; Gu, H.; Fan, R.; Ge, H. Long Non-Coding RNA HOTAIR Knockdown Enhances Radiosensitivity through Regulating microRNA-93/ATG12 Axis in Colorectal Cancer. Cell Death Dis. 2020, 11, 175. [Google Scholar] [CrossRef]
- Hu, D.; Zhan, Y.; Zhu, K.; Bai, M.; Han, J.; Si, Y.; Zhang, H.; Kong, D. Plasma Exosomal Long Non-Coding RNAs Serve as Biomarkers for Early Detection of Colorectal Cancer. Cell. Physiol. Biochem. 2018, 51, 2704–2715. [Google Scholar] [CrossRef]
- Zhu, M.; Luo, Y.; Xu, A.; Xu, X.; Zhong, M.; Ran, Z. Long Noncoding RNA TCONS_00026334 Is Involved in Suppressing the Progression of Colorectal Cancer by Regulating miR-548n/TP53INP1 Signaling Pathway. Cancer Med. 2020, 9, 8639–8649. [Google Scholar] [CrossRef]
- Xiao, W.; Li, J.; Hu, J.; Wang, L.; Huang, J.-R.; Sethi, G.; Ma, Z. Circular RNAs in Cell Cycle Regulation: Mechanisms to Clinical Significance. Cell Prolif. 2021, 54, e13143. [Google Scholar] [CrossRef]
- Ameli-Mojarad, M.; Ameli-Mojarad, M.; Hadizadeh, M.; Young, C.; Babini, H.; Nazemalhosseini-Mojarad, E.; Bonab, M.A. The Effective Function of Circular RNA in Colorectal Cancer. Cancer Cell Int. 2021, 21, 496. [Google Scholar] [CrossRef]
- Memczak, S.; Jens, M.; Elefsinioti, A.; Torti, F.; Krueger, J.; Rybak, A.; Maier, L.; Mackowiak, S.D.; Gregersen, L.H.; Munschauer, M.; et al. Circular RNAs Are a Large Class of Animal RNAs with Regulatory Potency. Nature 2013, 495, 333–338. [Google Scholar] [CrossRef]
- Ren, S.; Lin, P.; Wang, J.; Yu, H.; Lv, T.; Sun, L.; Du, G. Circular RNAs: Promising Molecular Biomarkers of Human Aging-Related Diseases via Functioning as an miRNA Sponge. Mol. Ther. Methods Clin. Dev. 2020, 18, 215–229. [Google Scholar] [CrossRef]
- Liu, K.; Mou, Y.; Shi, X.; Liu, T.; Chen, Z.; Zuo, X. Circular RNA 100146 Promotes Colorectal Cancer Progression by the MicroRNA 149/HMGA2 Axis. Mol. Cell. Biol. 2021, 41, e00445-20. [Google Scholar] [CrossRef]
- Li, S.; Yan, G.; Liu, W.; Li, C.; Wang, X. Circ0106714 Inhibits Tumorigenesis of Colorectal Cancer by Sponging miR-942-5p and Releasing DLG2 via Hippo-YAP Signaling. Mol. Carcinog. 2020, 59, 1323–1342. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.-W.; Zheng, B.-A.; Hu, Z.-M.; Qian, Z.-Y.; Huang, C.-J.; Liu, X.-Q.; Wu, W.-D. Circular RNA hsa_circ_000984 Promotes Colon Cancer Growth and Metastasis by Sponging miR-106b. Oncotarget 2017, 8, 91674–91683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, C.; Li, D.; Yan, Q.; Wang, Y.; Yang, X.; Zhang, S.; Zhang, Y.; Zhang, Z. Circ_0005927 Inhibits the Progression of Colorectal Cancer by Regulating miR-942-5p/BATF2 Axis. Cancer Manag. Res. 2021, 13, 2295–2306. [Google Scholar] [CrossRef] [PubMed]
- Shang, A.; Gu, C.; Wang, W.; Wang, X.; Sun, J.; Zeng, B.; Chen, C.; Chang, W.; Ping, Y.; Ji, P.; et al. Exosomal circPACRGL Promotes Progression of Colorectal Cancer via the miR-142-3p/miR-506-3p- TGF-β1 Axis. Mol. Cancer 2020, 19, 117. [Google Scholar] [CrossRef]
- Geng, Y.; Zheng, X.; Hu, W.; Wang, Q.; Xu, Y.; He, W.; Wu, C.; Zhu, D.; Wu, C.; Jiang, J. Hsa_circ_0009361 Acts as the Sponge of miR-582 to Suppress Colorectal Cancer Progression by Regulating APC2 Expression. Clin. Sci. 2019, 133, 1197–1213. [Google Scholar] [CrossRef]
- Hsiao, K.-Y.; Lin, Y.-C.; Gupta, S.K.; Chang, N.; Yen, L.; Sun, H.S.; Tsai, S.-J. Noncoding Effects of Circular RNA CCDC66 Promote Colon Cancer Growth and Metastasis. Cancer Res. 2017, 77, 2339–2350. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.; Yao, B.; Wen, X.; Jia, B. FBXW7 Circular RNA Regulates Proliferation, Migration and Invasion of Colorectal Carcinoma through NEK2, mTOR, and PTEN Signaling Pathways in Vitro and in Vivo. BMC Cancer 2019, 19, 918. [Google Scholar] [CrossRef] [Green Version]
- Ren, C.; Zhang, Z.; Wang, S.; Zhu, W.; Zheng, P.; Wang, W. Circular RNA hsa_circ_0001178 Facilitates the Invasion and Metastasis of Colorectal Cancer through Upregulating ZEB1 via Sponging Multiple miRNAs. Biol. Chem. 2020, 401, 487–496. [Google Scholar] [CrossRef]
- Ren, T.-J.; Liu, C.; Hou, J.-F.; Shan, F.-X. CircDDX17 Reduces 5-Fluorouracil Resistance and Hinders Tumorigenesis in Colorectal Cancer by Regulating miR-31-5p/KANK1 Axis. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 1743–1754. [Google Scholar]
- Wang, X.; Zhang, H.; Yang, H.; Bai, M.; Ning, T.; Deng, T.; Liu, R.; Fan, Q.; Zhu, K.; Li, J.; et al. Exosome-Delivered circRNA Promotes Glycolysis to Induce Chemoresistance through the miR-122-PKM2 Axis in Colorectal Cancer. Mol. Oncol. 2020, 14, 539–555. [Google Scholar] [CrossRef]
- Jian, X.; He, H.; Zhu, J.; Zhang, Q.; Zheng, Z.; Liang, X.; Chen, L.; Yang, M.; Peng, K.; Zhang, Z.; et al. Hsa_circ_001680 Affects the Proliferation and Migration of CRC and Mediates Its Chemoresistance by Regulating BMI1 through miR-340. Mol. Cancer 2020, 19, 20. [Google Scholar] [CrossRef]
- Xu, Y.; Qiu, A.; Peng, F.; Tan, X.; Wang, J.; Gong, X. Exosomal Transfer of Circular RNA FBXW7 Ameliorates the Chemoresistance to Oxaliplatin in Colorectal Cancer by Sponging miR-18b-5p. Neoplasma 2021, 68, 108–118. [Google Scholar] [CrossRef]
- Xi, L.; Liu, Q.; Zhang, W.; Luo, L.; Song, J.; Liu, R.; Wei, S.; Wang, Y. Circular RNA circCSPP1 Knockdown Attenuates Doxorubicin Resistance and Suppresses Tumor Progression of Colorectal Cancer via miR-944/FZD7 Axis. Cancer Cell Int. 2021, 21, 153. [Google Scholar] [CrossRef]
- Zhao, K.; Cheng, X.; Ye, Z.; Li, Y.; Peng, W.; Wu, Y.; Xing, C. Exosome-Mediated Transfer of circ_0000338 Enhances 5-Fluorouracil Resistance in Colorectal Cancer through Regulating MicroRNA 217 (miR-217) and miR-485-3p. Mol. Cell. Biol. 2021, 41, e00517-20. [Google Scholar] [CrossRef]
- Hon, K.W.; Ab-Mutalib, N.S.; Abdullah, N.M.A.; Jamal, R.; Abu, N. Extracellular Vesicle-Derived Circular RNAs Confers Chemoresistance in Colorectal Cancer. Sci. Rep. 2019, 9, 16497. [Google Scholar] [CrossRef] [Green Version]
- Yu, C.-Y.; Kuo, H.-C. The Emerging Roles and Functions of Circular RNAs and Their Generation. J. Biomed. Sci. 2019, 26, 29. [Google Scholar] [CrossRef]
- Liang, Y.; Shi, J.; He, Q.; Sun, G.; Gao, L.; Ye, J.; Tang, X.; Qu, H. Hsa_circ_0026416 Promotes Proliferation and Migration in Colorectal Cancer via miR-346/NFIB Axis. Cancer Cell Int. 2020, 20, 494. [Google Scholar] [CrossRef]
- Mohammadi, D.; Zafari, Y.; Estaki, Z.; Mehrabi, M.; Moghbelinejad, S. Evaluation of Plasma circ_0006282 as a Novel Diagnostic Biomarker in Colorectal Cancer. J. Clin. Lab. Anal. 2022, 36, e24147. [Google Scholar] [CrossRef]
- Li, J.; Song, Y.; Wang, J.; Huang, J. Plasma Circular RNA Panel Acts as a Novel Diagnostic Biomarker for Colorectal Cancer Detection. Am. J. Transl. Res. 2020, 12, 7395–7403. [Google Scholar]
- Ye, D.-X.; Wang, S.-S.; Huang, Y.; Chi, P. A 3-Circular RNA Signature as a Noninvasive Biomarker for Diagnosis of Colorectal Cancer. Cancer Cell Int. 2019, 19, 276. [Google Scholar] [CrossRef]
- Pan, B.; Qin, J.; Liu, X.; He, B.; Wang, X.; Pan, Y.; Sun, H.; Xu, T.; Xu, M.; Chen, X.; et al. Identification of Serum Exosomal Hsa-Circ-0004771 as a Novel Diagnostic Biomarker of Colorectal Cancer. Front. Genet. 2019, 10, 1096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Cai, A.; Zhao, Y. Three CircRNAs Function as Potential Biomarkers for Colorectal Cancer. Clin. Lab. 2020, 66. [Google Scholar] [CrossRef] [PubMed]
- Sobhani, I.; Tap, J.; Roudot-Thoraval, F.; Roperch, J.P.; Letulle, S.; Langella, P.; Corthier, G.; Tran Van Nhieu, J.; Furet, J.P. Microbial Dysbiosis in Colorectal Cancer (CRC) Patients. PLoS ONE 2011, 6, e16393. [Google Scholar] [CrossRef] [PubMed]
- Rezasoltani, S.; Asadzadeh-Aghdaei, H.; Nazemalhosseini-Mojarad, E.; Dabiri, H.; Ghanbari, R.; Zali, M.R. Gut Microbiota, Epigenetic Modification and Colorectal Cancer. Iran. J. Microbiol. 2017, 9, 55–63. [Google Scholar] [PubMed]
- Marchesi, J.R.; Dutilh, B.E.; Hall, N.; Peters, W.H.M.; Roelofs, R.; Boleij, A.; Tjalsma, H. Towards the Human Colorectal Cancer Microbiome. PLoS ONE 2011, 6, e20447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, Q.; Lu, W.; Kong, X.; Shao, Y.W.; Hu, Y.; Wang, A.; Bao, H.; Cao, R.; Liu, K.; Wang, X.; et al. Alterations of Circulating Bacterial DNA in Colorectal Cancer and Adenoma: A Proof-of-Concept Study. Cancer Lett. 2021, 499, 201–208. [Google Scholar] [CrossRef]
Syndrome | Gene(s) | Inheritance | Ref. |
---|---|---|---|
Lynch Syndrome (LS) | Heterozygous mutations in MMR genes MLH1, MSH2 (or EPCAM deletions), MSH6 and PMS2 | AD | [21] |
Familial Colorectal Cancer Type X (FCCTX) | BRCA2, SEMA4, NTS, RASSF9, GALNT12, KRAS, BRAF, APC, BMPR1A, and RPS20 | - | [22,23] |
Turcot Syndrome (TS) | MMR genes (MLH1 and PMS2) or APC | AD/AR | [24] |
Familial Adenomatous Polyposis (FAP)/APC-Associated Polyposis | APC | AD | [25] |
MUTYH-Associated Polyposis (MAP) | MUTYH | AR | [26] |
Polymerase Proofreading-Associated Polyposis (PPAP) | POLD1/POLE | AD | [27] |
NTHL1-Tumor Syndrome | NTHL1 | AR | [28] |
Constitutional MMR Deficiency Syndrome (CMMRD) | Biallelic mutations in MMR genes MLH1, MSH2, MSH6 and PMS2 | AR | [29] |
Peutz–Jeghers Syndrome (PJS) | STK11/LKB1 | AD | [30] |
PTEN Hamartoma Tumor Syndrome (PHTS) | PTEN | AD | [31] |
Juvenile Polyposis Syndrome (JPS) | SMAD4/BMPR1A | AD | [32] |
Hereditary Mixed Polyposis Syndrome (HMPS) | GREM1 | AD | [33,34] |
RNF43-associated Serrated Polyposis | RNF43 | AD | [35,36] |
Study | Source | Biomarker/Function | Technique | Accuracy |
---|---|---|---|---|
Zhitnyuk et al. [66] | ATAC-seq dataset | cfDNA fragment end profiles/reveal the presence of early-stage colorectal and renal cancers | Anchored multiplex PCR followed by MPS | AUC = 0.94 |
Cristiano et al. [67] | Plasma | genome-wide fragmentation features/detection of seven cancer types * | Low coverage WGS | AUC = 0.94 |
Mouliere et al. [68] | Plasma | fragment length and copy number analysis/distinguish cancer from healthy individuals | Low coverage WGS (0.4×) | AUC > 0.99 |
Flamini et al. [69] | Serum | carriers of certain “tumorigenic” properties | qPCR | AUC = 0.86 |
Kidess et al. [70] | Plasma and tissue | BRAF, EGFR, KRAS, PIK3CA | SCODA followed by MPS | NA |
Vidal et al. [71] | Plasma | RAS/diagnosis and anti-EGFR treatment monitoring of mCRC | OncoBEAM RAS ctDNA assay | NA |
Nakamura et al. [72] | Plasma | HER2/monitor anti-HER2 therapy response in mCRC | Guardant360 | AUC = 0.53 |
Study | Source | Exp. | Function | Technique |
---|---|---|---|---|
Haupts et al. [98] | Plasma | ↑ | potential diagnostic biomarker for CRC screening | MPS |
Meddeb et al. [99] | Plasma | ↑ | diagnostic and prognostic biomarker in metastatic CRC patients | qRT-PCR |
Xu et al. [100] | Plasma/tissue | ↑ | biomarker of early CRC, prediction of tumor response and progression | ddPCR, MPS |
Zhou et al. [101] | Urine | ↑ | monitoring of aberrant fragmentation and mutation profiles | MPS |
cf-miRNAs | Source | Exp. | Targets | Biomarker/Function | Ref. |
---|---|---|---|---|---|
miR-1290 | Plasma | ↑ | epithelial-mesenchymal transition (EMT) markers | prognostic/poor overall survival, advanced TNM stage | [116] |
miR-21 miR-145 miR-203 miR-155 miR-210 miR-31 miR-345 | Plasma | ↑ | various downstream targets (e.g., PTEN, PDCD4 genes; WNT/β-Catenin signaling pathway, etc.) | diagnostic/differentiation of surgery- naïve CRC patients, diagnosis of liver metastases | [117] |
miR-92a | Plasma/ EMVs | ↑ | signaling pathways-BMPs/SMAD; WNT/β-Catenin; PTEN/AKT/FoxO; genes-DKK3, KLF4, SMAD7 | diagnostic/distinguishing advanced neoplasia CRC patients, early CRC screening | [118,119] |
miR-92b | Plasma/ EMVs | ↓ | NA | diagnostic/early CRC detection | [120] |
miR-17-5p mmiR-92a-3p | Serum/ EMVs | ↑ | NA | prognostic/primary and mCRC diagnosis, correlation with stages and grades of CRC | [121] |
miR-150-5p | Serum/ EMVs | ↓ | ZEB1 | diagnostic and prognostic/poor differentiation, positive lymph node metastasis, TNM stage | [122] |
miR-122 | Serum/ EMVs | ↑ | PKM2 | prognostic/differentiation of CRC patients with liver metastasis | [123] |
miR-1290 | Serum | ↑ | various tumor suppressors (e.g., Forkhead box protein-A1, N-acetyltransferase etc.) | diagnostic/early CRC detection, recurrence monitoring, tumor aggressivity | [124] |
miR-30e-3p, mmiR-146a-5p/ mmiR-148a-3p | Serum | ↑|↓ | miR-146a-5p via carboxypeptidase M/src-FAK | diagnostic | [125] |
miR-1247-5p miR-1293 miR-548at-5p miR-107 miR-139-3p | Serum | ↓ | various downstream targets | diagnostic/detection of precancerous polyps and early CRC stages | [126] |
miR-19a miR-20a miR-150 let-7a | miR-143 miR-145 | Serum | ↑|↓ | various downstream targets | diagnostic, prognostic/CRC screening, TNM staging and LNM status determination | [127] |
miR-21 | Plasma/saliva | ↑ | MAPK, WNT/β-Catenin signaling/PTEN, PDCD, DKK2 | diagnostic and prognostic/CRC screening | [128] |
miR-186-5p miR-29a-3p miR-29c-3p miR-766-3p miR-491-5p | Saliva | ↑ | various downstream targets | diagnostic and prognostic/distinguishing CRC from healthy controls, predicting disease outcome in advanced stages | [129] |
miR-129-1-3p mmiR-566 | Urine | ↑ | NA | diagnostic/early CRC detection | [130] |
cf-lncRNAs | Source | Exp. | Biomarker/Function | Ref. |
---|---|---|---|---|
NEAT1 variant 1/variant 2 | Whole blood | ↑ | diagnostic | [135] |
BLACAT1 | Serum | ↑ | diagnostic/distinguishing CRC patients, non-cancer patients and healthy individuals | [136] |
CCAT2, HULC | Serum | ↑ | diagnostic/screening of CRC or adenomatous polyps | [137] |
CCAT2 | Serum/EMVs | ↑ | diagnostic | [138] |
CRNDE-h | Serum/EMVs | ↑ | prognostic and diagnostic/low overall survival of CRC patients | [139] |
UCA1 | Serum/EMVs | ↑ | predictive/resistance to cetuximab | [140] |
FOXD2-AS1 NRIR XLOC_0009459 | EMVs | ↑ | diagnostic/early-stage CRC diagnosis | [141] |
ATB, CCAT1 | Plasma | ↑ | diagnostic | [142] |
CCAT1, HOTAIR|p21 | Plasma | ↑|↓ | prognostic | [143] |
HOTAIR | Plasma | ↓ | prognostic/increase radiosensitivity via miRNA-93/ATG12 axis | [144] |
LNCV6_116109/98390/38772/108266/84003/98602 | Plasma/EMVs | ↑ | diagnostic/early-stage CRC diagnosis | [145] |
TCONS_00026334 | NA | ↓ | tumor suppressor/suppress CRC progression via miR-548n/TP53ONP1 axis | [146] |
circRNA | Target Molecules/Genes | Function | Ref. |
---|---|---|---|
hsa-circ-000984 | miR-106b/↑ of CDK6 | proliferation, metastasis | [153] |
hsa-circ-0005927 | miR-942-5p/↓ of BATF2 | cell colony-forming ability, apoptosis, migration | [154] |
circPACRGL | miR-142-3p, miR-506-3p/↑ of TGF-β1 | proliferation, metastasis (migration and invasion) | [155] |
hsa-circ-0009361 | miR-582-3p/↓ of APC2/WNT/β-catenin signaling path | suppress cell growth and metastasis | [156] |
circCCDC66 | various oncogenes | proliferation, migration, invasion | [157] |
circ-FBXW7 | NEK2, mTOR, PTEN | proliferation, migration, invasion | [158] |
hsa-circ-0001178 | miR-382/587/616/↑ of ZEB1 | metastasis, invasion | [159] |
hsa-circ-DDX17 | miR-31-5p/↓ of KANK1 | promotes sensitivity to 5-FU | [160] |
ciRS-122 | miR-122/↑ of PKM2 | promotes resistance to oxaliplatin | [161] |
hsa-circ-001680 | miR-340/↑ of BMI1 | promotes chemoresistance to irinotecan | [162] |
circ-FBXW7 | miR-18b-5p | ameliorates chemoresistance to oxaliplatin | [163] |
circ-CSPP1 | miR-944/↓ of FZD7 | enhanced doxorubicin sensitivity | [164] |
circ-0000338 | miR-217, miR-485-3p | enhanced 5-FU resistance | [165] |
circRNA | Source | Exp. | Biomarker/Function | Ref. |
---|---|---|---|---|
hsa-circ-0006282 | Plasma | ↑ | diagnostic; improving the detection and monitoring of CRCs in combination with carcinoembryonic antigen (CEA) and carbohydrate antigen199 (CA199) | [169] |
hsa-circ-0001900 hsa-circ-0001178 hsa-circ-0005927 | Plasma | ↑ | diagnostic/improving the detection of CAE-negative CRC | [170] |
hsa-circ-0082182 hsa-circ-0000370| hsa-circ-0035455 | Plasma | ↑|↓ | diagnostic | [171] |
hsa-circ-0004771 | Serum/ EMVs | ↑ | diagnostic/differentiation of benign intestinal diseases, stage I/II CRCs, and CRCs from healthy individuals | [172] |
circ-FMN2 circ-LMNB1 circ-ZNF609 | Serum | ↑ | diagnostic and prognostic/correlation with histopathological grade, lymph node metastasis, TNM stages | [173] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Styk, J.; Buglyó, G.; Pös, O.; Csók, Á.; Soltész, B.; Lukasz, P.; Repiská, V.; Nagy, B.; Szemes, T. Extracellular Nucleic Acids in the Diagnosis and Progression of Colorectal Cancer. Cancers 2022, 14, 3712. https://doi.org/10.3390/cancers14153712
Styk J, Buglyó G, Pös O, Csók Á, Soltész B, Lukasz P, Repiská V, Nagy B, Szemes T. Extracellular Nucleic Acids in the Diagnosis and Progression of Colorectal Cancer. Cancers. 2022; 14(15):3712. https://doi.org/10.3390/cancers14153712
Chicago/Turabian StyleStyk, Jakub, Gergely Buglyó, Ondrej Pös, Ádám Csók, Beáta Soltész, Peter Lukasz, Vanda Repiská, Bálint Nagy, and Tomáš Szemes. 2022. "Extracellular Nucleic Acids in the Diagnosis and Progression of Colorectal Cancer" Cancers 14, no. 15: 3712. https://doi.org/10.3390/cancers14153712
APA StyleStyk, J., Buglyó, G., Pös, O., Csók, Á., Soltész, B., Lukasz, P., Repiská, V., Nagy, B., & Szemes, T. (2022). Extracellular Nucleic Acids in the Diagnosis and Progression of Colorectal Cancer. Cancers, 14(15), 3712. https://doi.org/10.3390/cancers14153712