miRNAs in Serum Exosomes for Differential Diagnosis of Brain Metastases
Abstract
:Simple Summary
Abstract
1. Introduction
2. Results
2.1. Increased Levels of miR-21 Associated with Decreased miR-124-3p in Serum Exosomes Characterized Patients with BMs
2.2. The Lowest Median miR-124-3p Expression Was Found in the Group of Patients with BMs from Melanoma
2.3. miR-21 Expression Was Reduced after Both Surgery and Gamma-Knife Treatment of BMs
3. Discussion
4. Materials and Methods
4.1. Clinical Features
4.2. Study Design
4.3. Analysis of miRNA Expression
4.4. Radiosurgical Techniques
4.5. Surgical Techniques
4.6. Statistics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BM | brain metastasis |
WBRT | radiotherapy of the whole brain |
SRS | radiosurgery |
CT | Computed Tomography |
MRI | Magnetic Resonance Imaging |
miRNAs | microRNAs |
HGG | high malignancy grade gliomas |
LGG | low malignancy grade gliomas |
GK | gamma knife |
References
- Zimm, S.; Wampler, G.L.; Stablein, D.; Hazra, T.; Young, H.F. Intracerebral metastases in solid-tumor patients: Natural history and results of treatment. Cancer 1981, 48, 384–394. [Google Scholar] [CrossRef]
- Nayak, L.; Lee, E.Q.; Wen, P.Y. Epidemiology of brain metastases. Curr. Oncol. Rep. 2012, 14, 48–54. [Google Scholar] [CrossRef]
- Achrol, A.S.; Rennert, R.C.; Anders, C.; Soffietti, R.; Ahluwalia, M.S.; Nayak, L.; Peters, S.; Arvold, N.D.; Harsh, G.R.; Steeg, P.S.; et al. Brain metastases. Nat. Rev. Dis. Primer 2019, 5, 5. [Google Scholar] [CrossRef]
- Golden, D.W.; Lamborn, K.R.; McDermott, M.W.; Kunwar, S.; Wara, W.M.; Nakamura, J.L.; Sneed, P.K. Prognostic factors and grading systems for overall survival in patients treated with radiosurgery for brain metastases: Variation by primary site. J. Neurosurg. 2008, 109, 77–86. [Google Scholar] [CrossRef]
- Scoccianti, S.; Ricardi, U. Treatment of brain metastases: Review of phase III randomized controlled trials. Radiother. Oncol. 2012, 102, 168–179. [Google Scholar] [CrossRef] [Green Version]
- Leksell, L. Stereotactic radiosurgery. J. Neurol. Neurosurg. Psychiatry 1983, 46, 797–803. [Google Scholar] [CrossRef] [Green Version]
- Soffietti, R.; Rudā, R.; Mutani, R. Management of brain metastases. J. Neurol. 2002, 249, 1357–1369. [Google Scholar] [CrossRef]
- Gállego Pérez-Larraya, J.; Hildebrand, J. Brain metastases. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2014; Volume 121, pp. 1143–1157. ISBN 978-0-7020-4088-7. Available online: https://linkinghub.elsevier.com/retrieve/pii/B9780702040887000778 (accessed on 8 October 2021).
- Zorofchian, S.; Iqbal, F.; Rao, M.; Aung, P.P.; Esquenazi, Y.; Ballester, L.Y. Circulating tumour DNA, microRNA and metabolites in cerebrospinal fluid as biomarkers for central nervous system malignancies. J. Clin. Pathol. 2019, 72, 271–280. [Google Scholar] [CrossRef] [Green Version]
- Yi, Z.; Qu, C.; Zeng, Y.; Liu, Z. Liquid biopsy: Early and accurate diagnosis of brain tumor. J. Cancer Res. Clin. Oncol. 2022. Available online: https://link.springer.com/10.1007/s00432-022-04011-3 (accessed on 22 April 2022). [CrossRef]
- De Rubis, G.; Rajeev Krishnan, S.; Bebawy, M. Liquid Biopsies in Cancer Diagnosis, Monitoring, and Prognosis. Trends Pharmacol. Sci. 2019, 40, 172–186. [Google Scholar] [CrossRef]
- Petrescu, G.E.D.; Sabo, A.A.; Torsin, L.I.; Calin, G.A.; Dragomir, M.P. MicroRNA based theranostics for brain cancer: Basic principles. J. Exp. Clin. Cancer Res. 2019, 38, 231. [Google Scholar] [CrossRef] [Green Version]
- Aili, Y.; Maimaitiming, N.; Mahemuti, Y.; Qin, H.; Wang, Y.; Wang, Z. Liquid biopsy in central nervous system tumors: The potential roles of circulating miRNA and exosomes. Am. J. Cancer Res. 2020, 10, 4134–4150. [Google Scholar]
- Santangelo, A.; Rossato, M.; Lombardi, G.; Benfatto, S.; Lavezzari, D.; De Salvo, G.L.; Indraccolo, S.; Dechecchi, M.C.; Prandini, P.; Gambari, R.; et al. A molecular signature associated with prolonged survival in glioblastoma patients treated with regorafenib. Neuro Oncol. 2021, 23, 264–276. [Google Scholar] [CrossRef]
- Santangelo, A.; Imbrucè, P.; Gardenghi, B.; Belli, L.; Agushi, R.; Tamanini, A.; Munari, S.; Bossi, A.M.; Scambi, I.; Benati, D.; et al. A microRNA signature from serum exosomes of patients with glioma as complementary diagnostic biomarker. J. Neurooncol. 2018, 136, 51–62. [Google Scholar] [CrossRef]
- Olioso, D.; Caccese, M.; Santangelo, A.; Lippi, G.; Zagonel, V.; Cabrini, G.; Lombardi, G.; Dechecchi, M.C. Serum Exosomal microRNA-21, 222 and 124-3p as Noninvasive Predictive Biomarkers in Newly Diagnosed High-Grade Gliomas: A Prospective Study. Cancers 2021, 13, 3006. [Google Scholar] [CrossRef]
- Aparici-Robles, F.; Davidhi, A.; Carot-Sierra, J.M.; Perez-Girbes, A.; Carreres-Polo, J.; Mazon Momparler, M.; Juan-Albarracín, J.; Fuster-Garcia, E.; Garcia-Gomez, J.M. Glioblastoma versus solitary brain metastasis: MRI differentiation using the edema perfusion gradient. J. Neuroimaging Off. J. Am. Soc. Neuroimaging 2022, 32, 127–133. [Google Scholar] [CrossRef]
- Bautista-Sánchez, D.; Arriaga-Canon, C.; Pedroza-Torres, A.; De La Rosa-Velázquez, I.A.; González-Barrios, R.; Contreras-Espinosa, L.; Montiel-Manríquez, R.; Castro-Hernández, C.; Fragoso-Ontiveros, V.; Álvarez-Gómez, R.M.; et al. The Promising Role of miR-21 as a Cancer Biomarker and Its Importance in RNA-Based Therapeutics. Mol. Ther. -Nucleic Acids 2020, 20, 409–420. [Google Scholar] [CrossRef]
- Nikolova, E.; Georgiev, C.; Laleva, L.; Milev, M.; Spiriev, T.; Stoyanov, S.; Taseva-Mineva, T.; Mitev, V.; Todorova, A. Diagnostic, grading and prognostic role of a restricted miRNAs signature in primary and metastatic brain tumours. Discussion on their therapeutic perspectives. Mol. Genet. Genomics 2022, 297, 357–371. [Google Scholar] [CrossRef]
- Kopkova, A.; Sana, J.; Machackova, T.; Vecera, M.; Radova, L.; Trachtova, K.; Vybihal, V.; Smrcka, M.; Kazda, T.; Slaby, O.; et al. Cerebrospinal Fluid MicroRNA Signatures as Diagnostic Biomarkers in Brain Tumors. Cancers 2019, 11, 1546. [Google Scholar] [CrossRef] [Green Version]
- Sanuki, R.; Yamamura, T. Tumor Suppressive Effects of miR-124 and Its Function in Neuronal Development. Int. J. Mol. Sci. 2021, 22, 5919. [Google Scholar] [CrossRef]
- Deng, D.; Wang, L.; Chen, Y.; Li, B.; Xue, L.; Shao, N.; Wang, Q.; Xia, X.; Yang, Y.; Zhi, F. MicroRNA-124-3p regulates cell proliferation, invasion, apoptosis, and bioenergetics by targeting PIM1 in astrocytoma. Cancer Sci. 2016, 107, 899–907. [Google Scholar] [CrossRef]
- Ghafouri-Fard, S.; Shoorei, H.; Bahroudi, Z.; Abak, A.; Majidpoor, J.; Taheri, M. An update on the role of miR-124 in the pathogenesis of human disorders. Biomed. Pharmacother. 2021, 135, 111198. [Google Scholar] [CrossRef]
- Margolin-Miller, Y.; Yanichkin, N.; Shichrur, K.; Toledano, H.; Ohali, A.; Tzaridis, T.; Michowitz, S.; Fichman-Horn, S.; Feinmesser, M.; Pfister, S.M.; et al. Prognostic relevance of miR-124-3p and its target TP53INP1 in pediatric ependymoma. Genes. Chromosomes Cancer 2017, 56, 639–650. [Google Scholar] [CrossRef]
- Zhu, Z.; Li, Q.; Xu, M.; Qi, Z. Effect of Whole-Brain and Intensity-Modulated Radiotherapy on Serum Levels of miR-21 and Prognosis for Lung Cancer Metastatic to the Brain. Med. Sci. Monit. 2020, 26, e924640-1–e924640-6. Available online: https://www.medscimonit.com/abstract/index/idArt/924640 (accessed on 30 October 2020).
- Mohammadi, C.; Gholamzadeh Khoei, S.; Fayazi, N.; Mohammadi, Y.; Najafi, R. miRNA as promising theragnostic biomarkers for predicting radioresistance in cancer: A systematic review and meta-analysis. Crit. Rev. Oncol. Hematol. 2021, 157, 103183. [Google Scholar] [CrossRef]
- Cellini, F.; Morganti, A.G.; Genovesi, D.; Silvestris, N.; Valentini, V. Role of microRNA in response to ionizing radiations: Evidences and potential impact on clinical practice for radiotherapy. Molecules 2014, 19, 5379–5401. [Google Scholar] [CrossRef]
- Chen, Y.; Cui, J.; Gong, Y.; Wei, S.; Wei, Y.; Yi, L. MicroRNA: A novel implication for damage and protection against ionizing radiation. Environ. Sci. Pollut. Res. Int. 2021, 28, 15584–15596. [Google Scholar] [CrossRef]
- Gwak, H.S.; Kim, T.H.; Jo, G.H.; Kim, Y.J.; Kwak, H.J.; Kim, J.H.; Yin, J.; Yoo, H.; Lee, S.H.; Park, J.B. Silencing of microRNA-21 confers radio-sensitivity through inhibition of the PI3K/AKT pathway and enhancing autophagy in malignant glioma cell lines. PLoS ONE 2012, 7, e47449. [Google Scholar]
- Mert, U.; Ozgür, E.; Tiryakioglu, D.; Dalay, N.; Gezer, U. Induction of p53-inducible microRNA miR-34 by gamma radiation and bleomycin are different. Front. Genet. 2012, 3, 220. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, N.; Gautam, A.; Holmes-Hampton, G.P.; Kumar, V.P.; Biswas, S.; Kumar, R.; Hamad, D.; Dimitrov, G.; Olabisi, A.O.; Hammamieh, R.; et al. microRNA and Metabolite Signatures Linked to Early Consequences of Lethal Radiation. Sci. Rep. 2020, 10, 5424. [Google Scholar] [CrossRef]
- Nicolato, A.; Lupidi, F.; Sandri, M.F.; Foroni, R.; Zampieri, P.; Mazza, C.; Maluta, S.; Beltramello, A.; Gerosa, M. Gamma knife radiosurgery for cerebral arteriovenous malformations in children/adolescents and adults. Part I: Differences in epidemiologic, morphologic, and clinical characteristics, permanent complications, and bleeding in the latency period. Int. J. Radiat. Oncol. Biol. Phys. 2006, 64, 904–913. [Google Scholar] [CrossRef]
- NHS Commissioning Board Clinical Reference Group for Stereotactic Radiosurgery. Clinical Commissioning Policy: Stereotactic Radiosurgery/Stereotactic Radiotherapy for Cerebral Metastases. 2013. Available online: http://www.england.nhs.uk/wp-content/uploads/2013/04/d05-p-d.pdf (accessed on 19 October 2012).
Category | n | Age (Years) Mean ± SEM | Males (n) | Females (n) |
---|---|---|---|---|
Healthy Controls | 30 | 41 ± 12 | 13 | 17 |
BMs | 105 | 64 ± 11 | 38 | 67 |
HGGs | 91 | 56 ± 14 | 60 | 31 |
BMs | HGGs | Healthy Controls | |
---|---|---|---|
miR-21 | −4.3 (95% CI: −4.78–−3.81) | −4.06 (95% CI: -4.78–−3.81 | −6.9 (95% CI: −8.04–−6.09) |
miR-222 | −1.03 (95% CI: −1.62–−0.51) | −0.48 (95% CI: −0.38–0.94) | −1.42 (95% CI: −2.16–−0.42) |
miR-124-3p | −6.63 (95% CI: −7.22–−5.77) | −3.06 (95% CI: −4.11–−2.32) | −5.28 (95% CI: −5.67–−4.41) |
miR-21/miR-124-3p | 0.67 (95% CI: 0.58–0.71) | 1.07 (95% CI: 0.89–1.32) | 1.36 (95% CI: 1.24–1.63) |
miRNA | Cutoff | Youden Index | Sensitivity | Specificity | |
---|---|---|---|---|---|
BMs vs. healthy controls | |||||
miR-21 | −5.86 | 0.530 | 0.764 | 0.767 | |
miR-222 | 0.42 | 0.310 | 0.310 | 1.000 | |
miR-124-3p | −6.86 | 0.426 | 0.487 | 0.939 | |
miR-21/ miR-124-3p | 0.96 | 0.636 | 0.736 | 0.900 | |
HGGs vs. healthy controls | |||||
miR-21 | −5.76 | 0.580 | 0.813 | 0.767 | |
miR-222 | 0.10 | 0.519 | 0.549 | 0.970 | |
miR-124-3p | −5.06 | 0.389 | 0.813 | 0.576 | |
miR-21/ miR-124-3p | 1.05 | 0.361 | 0.495 | 0.867 | |
BMs vs. HGGs | |||||
miR-21 | −3.18 | 0.125 | 0.407 | 0.718 | |
miR-222 | 0.06 | 0.242 | 0.560 | 0.681 | |
miR-124-3p | −5.06 | 0.521 | 0.813 | 0.708 | |
miR-21/ miR-124-3p | 0.80 | 0.336 | 0.681 | 0.655 |
Category | n | Age (Years) Mean ± SEM | Males (n) | Females (n) |
---|---|---|---|---|
Secondary brain metastases from pulmonary cancer | 35 | 64 ± 11 | 19 | 16 |
Secondary brain metastases from breast cancer | 33 | 64 ± 12 | 0 | 33 |
Secondary brain metastases from melanoma | 13 | 63 ± 12 | 8 | 5 |
Other tumors | 24 | 64 ± 11 | 11 | 13 |
Healthy Controls | Lung Cancer | Breast Cancer | Melanoma | |
---|---|---|---|---|
miR-124-3p | −5.28 (95% CI: −5.67–−4.41) | −6.125 (95% CI: −7.24–−4.90) | −6.54 (95% CI: −7.82–−5.23) | −7.64 (95% CI: −9.41–−5.26) |
Pre-Surgery | Post-Surgery | Pre-Gamma Knife | Post-Gamma Knife | |
---|---|---|---|---|
miR-21 | −5.78 (95% CI: −10.85–−0. 69) | −7.46 (95% CI: −9.92–−4.30) | −3.15 (95% CI: −5.55–−2.22) | −7.27 (95% CI: −9.61–−5.76) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Catelan, S.; Olioso, D.; Santangelo, A.; Scapoli, C.; Tamanini, A.; Pinna, G.; Sala, F.; Lippi, G.; Nicolato, A.; Cabrini, G.; et al. miRNAs in Serum Exosomes for Differential Diagnosis of Brain Metastases. Cancers 2022, 14, 3493. https://doi.org/10.3390/cancers14143493
Catelan S, Olioso D, Santangelo A, Scapoli C, Tamanini A, Pinna G, Sala F, Lippi G, Nicolato A, Cabrini G, et al. miRNAs in Serum Exosomes for Differential Diagnosis of Brain Metastases. Cancers. 2022; 14(14):3493. https://doi.org/10.3390/cancers14143493
Chicago/Turabian StyleCatelan, Silvia, Debora Olioso, Alessandra Santangelo, Chiara Scapoli, Anna Tamanini, Giampietro Pinna, Francesco Sala, Giuseppe Lippi, Antonio Nicolato, Giulio Cabrini, and et al. 2022. "miRNAs in Serum Exosomes for Differential Diagnosis of Brain Metastases" Cancers 14, no. 14: 3493. https://doi.org/10.3390/cancers14143493
APA StyleCatelan, S., Olioso, D., Santangelo, A., Scapoli, C., Tamanini, A., Pinna, G., Sala, F., Lippi, G., Nicolato, A., Cabrini, G., & Dechecchi, M. C. (2022). miRNAs in Serum Exosomes for Differential Diagnosis of Brain Metastases. Cancers, 14(14), 3493. https://doi.org/10.3390/cancers14143493