New Implications of Patients’ Sex in Today’s Lung Cancer Management
Abstract
:Simple Summary
Abstract
1. Introduction
2. Sex and Lung Cancer Epidemiology
Smoking in Females
3. Sex and Cancer Immunity
3.1. The Immune System in Female Patients
3.2. Immune Checkpoint Inhibition in Female Patients
Women | Men | |||
---|---|---|---|---|
Histology | PD-L1 | HR | HR | |
KEYNOTE-024 [31] | All | ≥50% | 0.95 (0.56–1.62) | 0.54 (0.36–0.79) |
KEYNOTE-042 [33] | All | ≥1% * | 0.89 (0.68–1.17) | 0.80 (0.68–0.94) |
IMPOWER-110 [34] | All | ≥1% | 0.69 (0.34–1.39) | 0.57 (0.35–0.93) |
EMPOWER-Lung 1 [32] | All | ≥50% | 1.11 (0.42–2.59) | 0.50 (0.36–0.69) |
CHECKMATE 227 [36] | All | ≥1% | 0.91 (0.69–1.21) | 0.75 (0.61–0.93) |
Women | Men | |||
---|---|---|---|---|
Histology | PD-L1 | HR | HR | |
KEYNOTE-189 [37] | NSQ | All | 0.29 (0.19–0.44) | 0.66 (050–0.87) |
KEYNOTE-407 [38] | SQ | All | 0.49 (0.30–0.81) | 0.42 (0.22–0.81) |
IMPOWER-130 [40] | NSQ | All | 0.66 (0.46–0.93) | 0.87 (0.66–1.15) |
IMPOWER-131 [41] | SQ | All | 0.68 (0.44–1.04) | 0.91 (0.75–1.12) |
IMPOWER-150 [42] | NSQ | All | 0.92 (0.70–1.22) | 0.72 (0.58–0.90 |
CHECKMATE 9LA [43] | All | All | 0.68 (0.47–1.00) | 0.66 (0.53–0.82) |
4. EGFR and ALK Inhibition in Females
5. Sex and Lung Cancer Screening
5.1. Benefits from Lung Cancer Screening (LCS) in Female Patients
5.2. Harms of Lung Cancer Screening in Female Patients
5.3. Eligibility and Uptake of Lung Cancer Screening in Female Patients
5.4. Future Challenges and Opportunities for Female Patients
6. Smoking Cessation in Female Patients
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Belgian Cancer Registry, Brussels. Available online: https://kankerregister.org (accessed on 8 April 2022).
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLO-BOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Clayton, J.A. Studying both sexes: A guiding principle for biomedicine. FASEB J. 2015, 30, 519–524. [Google Scholar] [CrossRef] [Green Version]
- Wagner, A.; Oertelt-Prigione, S.; Adjei, A.; Buclin, T.; Cristina, V.; Csajka, C.; Coukos, G.; Dafni, U.; Dotto, G.-P.; Ducreux, M.; et al. Gender medicine and oncology: Report and consensus of an ESMO workshop. Ann. Oncol. 2019, 30, 1914–1924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Available online: http://orwh.od.nih.gov/sexinscience/overview/pdf/NOT-OD-15-102_Guidance.pdf (accessed on 28 June 2022).
- Available online: http://www.genderbasic.nl/recommendations (accessed on 28 June 2022).
- Zhang, Y.; Ren, J.-S.; Huang, H.-Y.; Shi, J.-F.; Li, N.; Zhang, Y.; Dai, M. International trends in lung cancer incidence from 1973 to2007. Cancer Med. 2018, 7, 1479–1489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jani, C.; Marshall, D.C.; Singh, H.; Goodall, R.; Shalhoub, J.; Al Omari, O.; Salciccioli, J.D.; Thomson, C.C. Lung cancer mortality in Europe and the USA between 2000 and 2017: An observational analysis. ERJ Open Res. 2021, 7, 00311–02021. [Google Scholar] [CrossRef]
- Barta, J.A.; Powell, C.A.; Wisnivesky, J.P. Global Epidemiology of Lung Cancer. Ann. Glob. Health 2019, 85, 8. [Google Scholar] [CrossRef] [Green Version]
- Sagerup, C.M.T.; Smastuen, M.; Johannesen, T.B.; Helland, Å.; Brustugun, O.T. Sex-specific trends in lung cancer incidence and survival: A population study of 40 118 cases. Thorax 2011, 66, 301–307. [Google Scholar] [CrossRef] [Green Version]
- Risch, H.A.; Howe, G.R.; Jain, M.; Burch, J.D.; Holowaty, E.J.; Miller, A.B. Are female smokers at higher risk for lung cancer than male smokers? A case-control analysis by histological type. Am. J. Epidemiol. 1993, 138, 281–293. [Google Scholar] [CrossRef]
- Singh, S.; Parulekar, W.; Murray, N.; Feld, R.; Evans, W.K.; Tu, D.; Shepherd, F.A. Influence of Sex on Toxicity and Treatment Outcome in Small-Cell Lung Cancer. J. Clin. Oncol. 2005, 23, 850–856. [Google Scholar] [CrossRef]
- Wolf, M.; Holle, R.; Hans, K.; Drings, P.; Havemann, K. Analysis of prognostic factors in 766 patients with small cell lung cancer (SCLC): The role of sex as a predictor for survival. Br. J. Cancer 1991, 63, 986–992. [Google Scholar] [CrossRef] [Green Version]
- Alexiou, C.; Onyeaka, C.P.; Beggs, D.; Akar, R.; Beggs, L.; Salama, F.D.; Duffy, J.P.; Morgan, W.E. Do women live longer following lung resection for carcinoma? Eur. J. Cardiothorac. Surg. 2002, 21, 21–25. [Google Scholar] [CrossRef] [Green Version]
- De Matteis, S.; Consonni, D.; Pesatori, A.C.; Bergen, A.W.; Bertazzi, P.A.; Caporaso, N.E.; Lubin, J.H.; Wacholder, S.; Landi, M.T. Are women who smoke at higher risk for lung cancer than men who smoke? Am. J. Epidemiol. 2013, 177, 601–612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Keeffe, L.M.; Taylor, G.; Huxley, R.R.; Mitchell, P.; Woodward, M.; Peters, S.A. Smoking as a risk factor for lung cancer in women and men: A systematic review and meta-analysis. BMJ Open 2018, 8, e021611. [Google Scholar] [CrossRef] [Green Version]
- Jin, K.; Wu, M.; Zhou, J.Y.; Yang, J.; Han, R.Q.; Jin, Z.Y.; Liu, A.M.; Gu, X.; Zhang, X.F.; Wang, X.S.; et al. Tobacco smoking modifies the association between hormonal factors and lung cancer occurrence among post-menopausal Chinese woman. Translat. Oncol. 2019, 12, 819–827. [Google Scholar] [CrossRef]
- Mollerup, S.; Berge, G.; Bæra, R.; Skaug, V.; Hewer, A.; Phillips, D.H.; Stangeland, L.; Haugen, A. Sex differences in risk of lung cancer: Expression of genes in the PAH bioactivation pathway in relation to smoking and bulky DNA adducts. Int. J. Cancer 2006, 119, 741–744. [Google Scholar] [CrossRef]
- Belani, C.P.; Marts, S.; Schiller, J.; Socinski, M.A. Women and lung cancer: Epidemiology, tumor biology, and emerging trends in clinical research. Lung Cancer 2007, 55, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Stapelfeld, C.; Dammann, C.; Maser, E. Sex-specificity in lung cancer risk. Int. J. Cancer 2020, 146, 2376–2382. [Google Scholar] [CrossRef]
- Kiyohara, C.; Ohno, Y. Sex differences in lung cancer susceptibility: A review. Gend. Med. 2010, 7, 381–401. [Google Scholar] [CrossRef]
- Donington, J.S.; Colson, Y.L. Sex and Gender Differences in Non-Small Cell Lung Cancer. Semin. Thorac. Cardiovasc. Surg. 2011, 23, 137–145. [Google Scholar] [CrossRef]
- Gazdar, A.F.; Thun, M.J. Lung Cancer, Smoke Exposure, and Sex. J. Clin. Oncol. 2007, 25, 469–471. [Google Scholar] [CrossRef]
- Conforti, F.; Pala, L.; Bagnardi, V.; De Pas, T.; Martinetti, M.; Viale, G.; Gelber, R.D.; Goldhirsch, A. Cancer immunotherapy efficacy and patients’ sex: A systematic review and meta-analysis. Lancet Oncol. 2018, 19, 737–746. [Google Scholar] [CrossRef]
- Irelli, A.; Sirufo, M.M.; D’Ugo, C.; Ginaldi, L.; De Martinis, M. Sex and Gender Influences on Cancer Immunotherapy Response. Biomedicines 2020, 8, 232. [Google Scholar] [CrossRef]
- Klein, S.L.; Flanagan, K.L. Sex differences in immune responses. Nat. Rev. Immunol. 2016, 16, 626–638. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, I.; Dejager, L.; Libert, C. X-chromosome-located microRNAs in immunity: Might they explain male/female differences? The X chromosome-genomic context may affect X-located miRNAs and downstream signaling, thereby contributing to the enhanced immune response of females. Bioessays 2011, 33, 791–802. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, I.; Lleo, A.; Gershwin, M.E.; Invernizzi, P. The X chromosome and immune associated genes. J. Autoimmun. 2011, 38, J187–J192. [Google Scholar] [CrossRef]
- Nosrati, A.; Tsai, K.K.; Goldinger, S.M.; Tumeh, P.; Grimes, B.; Loo, K.; Algazi, A.P.; Nguyen-Kim, T.D.; Levesque, M.; Dummer, R.; et al. Evaluation of clinicopathological factors in PD-1 response: Derivation and valida-tion of a prediction scale for response to PD-1 monotherapy. Br. J. Cancer 2017, 116, 1141–1147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buchbinder, E.I.; Desai, A. CTLA-4 and PD-1 Pathways: Similarities, Differences, and Implications of Their Inhibition. Am. J. Clin. Oncol. 2016, 39, 98–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reck, M.; Rodríguez–Abreu, D.; Robinson, A.G.; Hui, R.; Csőszi, T.; Fülöp, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; et al. Updated Analysis of KEYNOTE-024: Pembrolizumab Versus Platinum-Based Chemotherapy for Advanced Non–Small-Cell Lung Cancer With PD-L1 Tumor Proportion Score of 50% or Greater. J. Clin. Oncol. 2019, 37, 537–546. [Google Scholar] [CrossRef]
- Sezer, A.; Kilickap, S.; Gümüş, M.; Bondarenko, I.; Özgüroğlu, M.; Gogishvili, M.; Turk, H.M.; Cicin, I.; Bentsion, D.; Gladkov, O.; et al. Cemiplimab monotherapy for first-line treatment of advanced non-small-cell lung cancer with PD-L1 of at least 50%: A multicentre, open-label, global, phase 3, randomised, controlled trial. Lancet 2021, 397, 592–604. [Google Scholar] [CrossRef]
- Mok, T.S.K.; Wu, Y.-L.; Kudaba, I.; Kowalski, D.M.; Cho, B.C.; Turna, H.Z.; Castro, G., Jr.; Srimuninnimit, V.; Laktionov, K.K.; Bondarenko, I.; et al. Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042): A randomised, open-label, controlled, phase 3 trial. Lancet 2019, 393, 1819–1830. [Google Scholar] [CrossRef]
- Herbst, R.S.; Giaccone, G.; de Marinis, F.; Reinmuth, N.; Vergnenegre, A.; Barrios, C.H.; Morise, M.; Felip, E.; Andric, Z.; Geater, S.; et al. Atezolizumab for First-Line Treatment of PD-L1–Selected Patients with NSCLC. N. Engl. J. Med. 2020, 383, 1328–1339. [Google Scholar] [CrossRef] [PubMed]
- Conforti, F.; Pala, L.; Pagan, E.; Corti, C.; Bagnardi, V.; Queirolo, P.; Catania, C.; De Pas, T.; Giaccone, G. Sex-based differences in response to anti-PD-1 or PD-L1 treatment in patients with non-small-cell lung cancer expressing high PD-L1 levels. A systematic review and meta-analysis of randomized clinical trials. ESMO Open 2021, 6, 100251. [Google Scholar] [CrossRef] [PubMed]
- Hellmann, M.D.; Paz-Ares, L.; Bernabe Caro, R.; Zurawski, B.; Kim, S.-W.; Carcereny Costa, E.; Park, K.; Alexandru, A.; Lupinacci, L.; de la Mora Jimenez, E.; et al. Nivolumab plus Ipilimumab in Advanced Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2019, 381, 2020–2031. [Google Scholar] [CrossRef]
- Gadgeel, S.; Rodríguez-Abreu, D.; Speranza, G.; Esteban, E.; Felip, E.; Dómine, M.; Hui, R.; Hochmair, M.J.; Clingan, P.; Powell, S.F.; et al. Updated Analysis From KEYNOTE-189: Pembrolizumab or Placebo Plus Pemetrexed and Platinum for Previously Untreated Metastatic Nonsquamous Non–Small-Cell Lung Cancer. J. Clin. Oncol. 2020, 38, 1505–1517. [Google Scholar] [CrossRef] [PubMed]
- Paz-Ares, L.; Vicente, D.; Tafreshi, A.; Robinson, A.; Parra, H.S.; Mazières, J.; Hermes, B.; Cicin, I.; Medgyasszay, B.; Rodríguez-Cid, J.; et al. A Randomized, Placebo-Controlled Trial of Pembrolizumab Plus Chemotherapy in Patients with Metastatic Squamous NSCLC: Protocol-Specified Final Analysis of KEYNOTE-J. Thorac. Oncol. 2020, 15, 1657–1669. [Google Scholar] [CrossRef]
- Dafni, U.; Tsourti, Z.; Vervita, K.; Peters, S. Immune checkpoint inhibitors, alone or in combination with chemotherapy, as first-line treatment for advanced non-small lung cancer. A systematic review and network meta-analysis. Lung Cancer 2019, 134, 127–140. [Google Scholar] [CrossRef]
- West, H.; McCleod, M.; Hussein, M.; Morabito, A.; Rittmeyer, A.; Conter, H.J.; Kopp, H.G.; Daniel, D.; McCune, S.; Mekhail, T.; et al. Atezolizumab in combination with carboplatin plus nab-paclitaxel chemotherapy compared with chemotherapy alone as first-line treatment for metastatic non-squamous non-small-cell lung cancer (IMpow-er130): A multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 2019, 20, 924–937. [Google Scholar]
- Jotte, R.; Cappuzzo, F.; Vynnychenko, I.; Stroyakovskiy, D.; Rodríguez-Abreu, D.; Hussein, M.; Soo, R.; Conter, H.J.; Kozuki, T.; Huang, K.-C.; et al. Atezolizumab in Combination with Carboplatin and Nab-Paclitaxel in Advanced Squamous NSCLC (IMpower131): Results From a Randomized Phase III Trial. J. Thorac. Oncol. 2020, 15, 1351–1360. [Google Scholar] [CrossRef]
- Reck, M.; Shankar, G.; Lee, A.; Coleman, S.; McCleland, M.; Papadimitrakopoulou, V.A.; Socinski, M.A.; Sandler, A. Atezolizumab in combination with bevacizumab, paclitaxel and carboplatin for the first-line treatment of patients with metastatic non-squamous non-small cell lung cancer, including patients with EGFR mutations. Expert Rev. Respir. Med. 2019, 14, 125–136. [Google Scholar] [CrossRef]
- Paz-Ares, L.; Ciuleanu, T.-E.; Cobo, M.; Schenker, M.; Zurawski, B.; Menezes, J.; Richardet, E.; Bennouna, J.; Felip, E.; Juan-Vidal, O.; et al. First-line nivolumab plus ipilimumab combined with two cycles of chemotherapy in patients with non-small-cell lung cancer (CheckMate 9LA): An international, randomised, open-label, phase 3 trial. Lancet Oncol. 2021, 22, 198–211. [Google Scholar] [CrossRef]
- Pan, Z.K.; Ye, F.; Wu, X.; An, H.X.; Wu, J.X. Clinicopathological and prognostic significance of programmed cell death ligand1 (PD-L1) ex-pression in patients with non-small cell lung cancer: A meta-analysis. J. Thorac. Dis. 2015, 7, 462–470. [Google Scholar]
- Valpione, S.; Pasquali, S.; Campana, L.G.; Piccin, L.; Mocellin, S.; Pigozzo, J.; Chiarion-Sileni, V. Sex and interleukin-6 are prognostic factors for autoimmune toxicity following treatment with anti-CTLA4 blockade. J. Transl. Med. 2018, 16, 194. [Google Scholar] [CrossRef] [Green Version]
- Klein, S.L.; Morgan, R. The impact of sex and gender on immunotherapy outcomes. Biol. Sex Differ. 2020, 11, 24. [Google Scholar] [CrossRef] [PubMed]
- Unger, J.M.; Vaidya, R.; Albain, K.S.; LeBlanc, M.; Minasian, L.M.; Gotay, C.C.; Henry, N.L.; Fisch, M.J.; Lee, S.M.; Blanke, C.D.; et al. Sex Differences in Risk of Severe Adverse Events in Patients Receiving Immunotherapy, Targeted Therapy, or Chemotherapy in Cancer Clinical Trials. J. Clin. Oncol. 2022, 40, 1474–1486. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.L.; Yuan, J.Q.; Wang, K.F.; Fu, X.H.; Han, X.R.; Threapleton, D.; Yang, Z.Y.; Mao, C.; Tang, J.L. The prevalence of EGFR mutations in patients with non-small cell lung cancer: A sys-tematic review and meta-analysis. Oncotarget 2016, 7, 78985–78993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinto, J.A.; Vallejos, C.S.; Raez, L.E.; Mas, L.A.; Ruiz, R.; Torres-Roman, J.S.; Morante, Z.; Araujo, J.M.; Gómez, H.L.; Aguilar, A.; et al. Gender and outcomes in non-small cell lung cancer: An old prognostic variable comes back for targeted therapy and immunotherapy? ESMO Open 2018, 3, e000344. [Google Scholar] [CrossRef] [Green Version]
- Van Iersel, C.A.; De Koning, H.J.; Draisma, G.; Mali, W.P.; Scholten, E.T.; Nackaerts, K.; Prokop, M.; Habbema, J.D.; Oudkerk, M.; Van Klaveren, R.J. Risk-based selection from the general population in a screening trial: Selection criteria, recruitment and power for the Dutch-Belgian randomised lung cancer multi-slice CT screening trial (NELSON). Int. J. Cancer 2007, 120, 868–874. [Google Scholar] [CrossRef]
- Infante, M.; Cavuto, S.; Lutman, F.R.; Passera, E.; Chiarenza, M.; Chiesa, G.; Brambilla, G.; Angeli, E.; Aranzulla, G.; Chiti, A.; et al. Long-Term Follow-up Results of the DANTE Trial, a Randomized Study of Lung Cancer Screening with Spiral Computed Tomography. Am. J. Respir. Crit. Care Med. 2015, 191, 1166–1175. [Google Scholar] [CrossRef]
- Pedersen, J.H.; Ashraf, H.; Dirksen, A.; Bach, K.; Hansen, H.; Toennesen, P.; Thorsen, H.; Brodersen, J.; Skov, B.G.; Døssing, M.; et al. The Danish Randomized Lung Cancer CT Screening Trial—Overall Design and Results of the Prevalence Round. J. Thorac. Oncol. 2009, 4, 608–614. [Google Scholar] [CrossRef] [Green Version]
- Pinsky, P.F.; Church, T.R.; Izmirlian, G.; Kramer, B.S. The National Lung Screening Trial: Results stratified by demographics, smoking history, and lung cancer histology. Cancer 2013, 119, 3976–3983. [Google Scholar] [CrossRef]
- Aberle, D.R.; Adams, A.M.; Berg, C.D.; Black, W.C.; Clapp, J.D.; Fagerstrom, R.M.; Gareen, I.F.; Gatsonis, C.; Marcus, P.M.; Sicks, J.D. National Lung Screening Trial Research Team. Reduced lung-cancer mortality with low-dose computed tomographic screening. N. Engl. J. Med. 2011, 365, 395–409. [Google Scholar] [PubMed] [Green Version]
- Pastorino, U.; Sverzellati, N.; Sestini, S.; Silva, M.; Sabia, F.; Boeri, M.; Cantarutti, A.; Sozzi, G.; Corrao, G.; Marchianò, A. Ten-year results of the Multicentric Italian Lung Detection trial demonstrate the safety and efficacy of biennial lung cancer screening. Eur. J. Cancer 2019, 118, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Pegna, A.L.; Picozzi, G.; Mascalchi, M.; Carozzi, F.M.; Carrozzi, L.; Comin, C.; Spinelli, C.; Falaschi, F.; Grazzini, M.; Innocenti, F.; et al. ITALUNG Study Research Group. Design, recruitment and baseline results of the ITALUNG trial for lung cancer screening with low-dose CT. Lung Cancer 2009, 64, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Becker, N.; Motsch, E.; Trotter, A.; Heussel, C.P.; Dienemann, H.; Schnabel, P.A.; Kauczor, H.U.; Maldonado, S.G.; Miller, A.B.; Kaaks, R.; et al. Lung cancer mortality reduction by LDCT screening-Results from the ran-domized German LUSI trial. Int. J. Cancer 2020, 146, 1503–1513. [Google Scholar] [CrossRef]
- National Lung Screening Trial Research Team. Lung Cancer Incidence and Mortality with Extended Follow-up in the National Lung Screening Trial. J. Thorac. Oncol. 2019, 14, 1732–1742. [Google Scholar] [CrossRef]
- de Koning, H.J.; van der Aalst, C.M.; de Jong, P.A.; Scholten, E.T.; Nackaerts, K.; Heuvelmans, M.A.; Lammers, J.W.; Weenink, C.; Yousaf-Khan, U.; Horeweg, N.; et al. Reduced Lung-Cancer Mortality with Volume CT Screening in a Ran-domized Trial. N. Engl. J. Med. 2020, 382, 503–513. [Google Scholar] [CrossRef]
- Hoffman, R.M.; Atallah, R.P.; Struble, R.D.; Badgett, R.G. Lung Cancer Screening with Low-Dose CT: A Meta-Analysis. J. Gen. Intern. Med. 2020, 35, 3015–3025. [Google Scholar] [CrossRef]
- Meza, R.; Jeon, J.; Toumazis, I.; Haaf, K.T.; Cao, P.; Bastani, M.; Han, S.S.; Blom, E.F.; Jonas, D.; Feuer, E.J.; et al. Evaluation of the Benefits and Harms of Lung Cancer Screening With Low-Dose Computed Tomography: A Collaborative Modeling Study for the U.S. Preventive Services Task Force. JAMA 2021, 325, 988–997. [Google Scholar] [CrossRef]
- Brenner, D.J. Radiation risks potentially associated with low-dose CT screening of adult smokers for lung cancer. Radiology 2004, 231, 440–445. [Google Scholar] [CrossRef]
- Schmitz-Feuerhake, I.; Busby, C.; Pflugbeil, S. Genetic radiation risks: A neglected topic in the low dose debate. Environ. Health Toxicol. 2016, 31, e2016001. [Google Scholar] [CrossRef]
- Narendran, N.; Luzhna, L.; Kovalchuk, O. Sex Difference of Radiation Response in Occupational and Accidental Exposure. Front. Genet. 2019, 10, 260. [Google Scholar] [CrossRef] [PubMed]
- Rampinelli, C.; De Marco, P.; Origgi, D.; Maisonneuve, P.; Casiraghi, M.; Veronesi, G.; Spaggiari, L.; Bellomi, M. Exposure to low dose computed tomography for lung cancer screening and risk of cancer: Secondary analysis of trial data and risk-benefit analysis. BMJ 2017, 356, j347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brodersen, J.; Schwartz, L.M.; Heneghan, C.; O’Sullivan, J.W.; Aronson, J.K.; Woloshin, S. Overdiagnosis: What it is and what it isn’t. BMJ Evid.-Based Med. 2018, 23, 1–3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blom, E.F.; Haaf, K.T.; de Koning, H.J. Trends in lung cancer risk and screening eligibility affect overdiagnosis estimates. Lung Cancer 2019, 139, 200–206. [Google Scholar] [CrossRef]
- Brenner, H.; Krilaviciute, A. Commonly Applied Selection Criteria for Lung Cancer Screening May Have Strongly Varying Diagnostic Performance in Different Countries. Cancers 2020, 12, 3012. [Google Scholar] [CrossRef]
- Radzikowska, E.; Głaz, P.; Roszkowski, K. Lung cancer in women: Age, smoking, histology, performance status, stage, initial treatment and survival. Population-based study of 20 561 cases. Ann. Oncol. 2002, 13, 1087–1093. [Google Scholar] [CrossRef]
- Baldwin, D.R.; Brain, K.; Quaife, S. Participation in lung cancer screening. Transl. Lung Cancer Res. 2021, 10, 1091–1098. [Google Scholar] [CrossRef]
- Zahnd, W.E.; Eberth, J.M. Lung Cancer Screening Utilization: A Behavioral Risk Factor Surveillance System Analysis. Am. J. Prev Med. 2019, 57, 250–255. [Google Scholar] [CrossRef]
- Lopez-Olivo, M.A.; Maki, K.G.; Choi, N.J.; Hoffman, R.M.; Shih, Y.C.; Lowenstein, L.M.; Hicklen, R.S.; Volk, R.J. Patient Adherence to Screening for Lung Cancer in the US: A Systematic Review and Meta-analysis. JAMA 2020, 3, e2025102. [Google Scholar] [CrossRef]
- Lam, A.C.; Aggarwal, R.; Cheung, S.; Stewart, E.L.; Darling, G.; Lam, S.; Xu, W.; Liu, G.; Kavanagh, J. Predictors of participant nonadherence in lung cancer screening programs: A sys-tematic review and meta-analysis. Lung Cancer 2020, 146, 134–144. [Google Scholar] [CrossRef]
- Raju, S.; Khawaja, A.; Han, X.; Wang, X.; Mazzone, P.J. Lung Cancer Screening: Characteristics of Nonparticipants and Potential Screening Barriers. Clin. Lung Cancer 2020, 21, e329–e336. [Google Scholar] [CrossRef] [PubMed]
- Barton, M.K. Integration of lung cancer screening into practice is lacking. CA: Cancer J. Clin. 2015, 65, 255–256. [Google Scholar] [CrossRef] [PubMed]
- Lewis, J.; Petty, W.J.; Tooze, J.A.; Miller, D.P.; Chiles, C.; Miller, A.A.; Weaver, K.E. Low-Dose CT Lung Cancer Screening Practices and Attitudes among Primary Care Pro-viders at an Academic Medical Center. Cancer Epidemiol. Biomark. Prev. 2015, 24, 664–670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López, D.B.; Flores, E.J.; Miles, R.C.; Wang, G.X.; Glover, M.; Shepard, J.-A.O.; Lehman, C.D.; Narayan, A.K. Assessing Eligibility for Lung Cancer Screening Among Women Undergoing Screening Mammography: Cross-Sectional Survey Results from the National Health Interview Survey. J. Am. Coll. Radiol. 2019, 16, 1433–1439. [Google Scholar] [CrossRef]
- Rivera, M.P.; Katki, H.A.; Tanner, N.T.; Triplette, M.; Sakoda, L.C.; Wiener, R.S.; Cardarelli, R.; Carter-Harris, L.; Crothers, K.; Fathi, J.T.; et al. Addressing Disparities in Lung Cancer Screening Eligibility and Healthcare Access. An Official American Thoracic Society Statement. Am. J. Respir. Crit. Care Med. 2020, 202, e95–e112. [Google Scholar] [CrossRef]
- USPreventive Services Task Force; Krist, A.H.; Davidson, K.W. Screening for Lung Cancer: US Preventive Services Task Force Recommendation Statement. JAMA 2021, 325, 962–970. [Google Scholar]
- Jeganathan, V.; Knight, S.; Bricknell, M.; Ridgers, A.; Wong, R.; Brazzale, D.J.; Ruehland, W.R.; Rahman, M.A.; Leong, T.L.; McDonald, C.F. Impact of smoking status and chronic obstructive pulmonary disease on pulmonary complications post lung cancer surgery. PLoS ONE 2022, 17, e0266052. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Kamdar, O.; Le, W.; Rosen, G.D.; Upadhyay, D. Nicotine Induces Resistance to Chemotherapy by Modulating Mito-chondrial Signaling in Lung Cancer. Am. J. Resp. Cell Mol. Biol. 2009, 40, 135–146. [Google Scholar] [CrossRef] [Green Version]
- Scanlon, P.D.; Connett, J.E.; Waller, L.A. Smoking cessation and lung function in mild-to-moderate chronic obstructive pul-monary disease. The Lung Health Study. Am. J. Respir. Crit. Care Med. 2000, 161, 381–390. [Google Scholar] [CrossRef]
- Browning, K.K.; Ferketich, A.K.; Salsberry, P.J.; Wewers, M.E. Socioeconomic disparity in provider-delivered assistance to quit smoking. Nicotine Tob. Res. 2008, 10, 55–61. [Google Scholar] [CrossRef]
- Rahmanian, S.D.; Diaz, P.T.; Wewers, M.E. Tobacco Use and Cessation Among Women: Research and Treatment-Related Issues. J. Women’s Health 2011, 20, 349–357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bohadana, A.; Nilsson, F.; Rasmussen, T.; Martinet, Y. Gender differences in quit rates following smoking cessation with com-bination nicotine therapy: Influence of baseline smoking behavior. Nicotine Tob. Res. 2003, 5, 111–116. [Google Scholar] [CrossRef]
- Allen, S.S.; Bade, T.; Center, B.; Finstad, D.; Hatsukami, D. Menstrual phase effects on smoking relapse. Addiction 2008, 103, 809–821. [Google Scholar] [CrossRef] [Green Version]
- Perkins, K.A.; Marcus, M.D.; Levine, M.D.; D’Amico, D.; Miller, A.; Broge, M.; Ashcom, J.; Shiffman, S. Cognitive-behavioral therapy to reduce weight concerns improves smoking ces-sation outcome in weight-concerned women. J. Consult. Clin. Psychol. 2001, 69, 604–613. [Google Scholar] [CrossRef] [PubMed]
Lung Cancer Screening Trial | % Females |
---|---|
Danish Lung Cancer Screening Trial (DLCST) [52] | 44.8 |
Lung Screening Study (LSS) [53] | 41.4 |
National Lung Screening Trial (NLST) [54] | 41.0 |
Multicentric Italian Lung Detection (MILD) [55] | 35.5 |
Italian Lung Study (ITALUNG) [56] | 35.3 |
German Lung Cancer Screening Intervention (LUSI) [57] | 35.3 |
Nederlands Leuvens Longkanker Screeningsonderzoek (NELSON) [50] | 16.4 |
Detection and Screening of Early Lung Cancer with Novel Imaging Technology and Molecular Assays (DANTE) [51] | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raskin, J.; Snoeckx, A.; Janssens, A.; De Bondt, C.; Wener, R.; van de Wiel, M.; van Meerbeeck, J.P.; Smits, E. New Implications of Patients’ Sex in Today’s Lung Cancer Management. Cancers 2022, 14, 3399. https://doi.org/10.3390/cancers14143399
Raskin J, Snoeckx A, Janssens A, De Bondt C, Wener R, van de Wiel M, van Meerbeeck JP, Smits E. New Implications of Patients’ Sex in Today’s Lung Cancer Management. Cancers. 2022; 14(14):3399. https://doi.org/10.3390/cancers14143399
Chicago/Turabian StyleRaskin, Jo, Annemiek Snoeckx, Annelies Janssens, Charlotte De Bondt, Reinier Wener, Mick van de Wiel, Jan P. van Meerbeeck, and Evelien Smits. 2022. "New Implications of Patients’ Sex in Today’s Lung Cancer Management" Cancers 14, no. 14: 3399. https://doi.org/10.3390/cancers14143399
APA StyleRaskin, J., Snoeckx, A., Janssens, A., De Bondt, C., Wener, R., van de Wiel, M., van Meerbeeck, J. P., & Smits, E. (2022). New Implications of Patients’ Sex in Today’s Lung Cancer Management. Cancers, 14(14), 3399. https://doi.org/10.3390/cancers14143399